Maximalist Cryptography and Computation on the WISP UHF RFID Tag

Hee-Jin Chae*, Daniel J. Yeager**, Joshua R. Smith**, and Kevin Fu*

*University of Massachusetts Amherst
Department of Computer Science
**Intel Research Seattle

Conference on RFIDSec-2007, 12 July 2007
Motivation

- Strong cryptography available for HF and LF tags
 - MIFARE DESFire: triple-DES security
 - Many ISO14443-compliant tags (HF)

- No support for such cryptography on UHF tag
UHF Security, Why now?

- EPC Gen2 replacing barcode systems
- 5 cents? Probably not.
- 5 dollars? Until recently NO!
 - Improvements in the efficiency of microelectronics
 - Conventional cryptography no longer beyond the reach of a *general purpose* UHF tag
Challenges for UHF RFID Security

- Extremely resource-limited
 - At the very low-end of RFID tags

- Longer reading range
 - More vulnerable to attacks

- No development platform available for UHF
 - RFIDGuardian [Rieback06]: HF
 - DemoTag [Aigner06] : HF
 - Proxmark3 [Westhues] : LF and HF
Minimalist vs. Maximalist Approaches

- **Minimalist Approach**
 - Minimize cryptographic operations to ensure feasibility on an RFID tag
 - Lightweight crypto [Juels04]
 - Often with serious vulnerabilities [Defend07, Kwon06, Li07]
 - Hard to quantify: No UHF development platform

- **Maximalist Approach**
 - Maximize the security on an RFID tag within given set of resources
 - Fully utilize available computational resources
WISP: Intel’s Wireless Identification and Sensing Platform [Smith06]

- Powered wirelessly by RFID reader
- Implemented with microcontroller (TI MSP430)
 - 8MHz 16-bit microcontroller
 - 8KB ROM, 256 bytes RAM, 256 bytes Flash
- Follows EPC GEN1 protocol
 - ~2 msec for one interrogation
 - Transmits one 64 bit “packet” in one interrogation
WISP Constraints

- No power source on-board
- Microcontroller runs at 4MHz with max speed 8MHz
- Small RAM – 256 bytes

<table>
<thead>
<tr>
<th>Platform</th>
<th>Power</th>
<th>Computing</th>
<th>Storage</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>WISP</td>
<td>UHF RF</td>
<td>16-bit 4MHz (max. 8MHz)</td>
<td>8KB ROM 256 bytes RAM</td>
<td>< 4.5m</td>
</tr>
<tr>
<td>EPC Gen2</td>
<td>UHF RF</td>
<td>State machine</td>
<td>96/128 bits</td>
<td>< 7.5m</td>
</tr>
<tr>
<td>Mica2</td>
<td>Battery</td>
<td>8-bit 8MHz</td>
<td>128KB ROM 4KB RAM</td>
<td>< 50m</td>
</tr>
</tbody>
</table>
How much computation is available in one transaction?
WISP Lifecycle

1. Power Save Mode (LP4)
 - Insufficient Voltage

2. Generate Packet (RC5, Calculate CRC)
 - Sufficient Voltage

3. Wait for Query (LP4)
 - Query

4. Receive and Transmit
 - Sufficient Voltage

Hardware Reset
WISP Lifecycle: Scope Trace
WISP Lifecycle: Scope Trace

1. Generate Packet (RC5, Compute CRC)
2. Transmit & Receive
3. Wait for Query (LP4)

- RESET
- Power Save Mode (LP4)
- LP4
WISP Lifecycle: Scope Trace

- (1) Generate Packet (RC5, Compute CRC)
- (2) Transmit & Receive
- (3) Wait for Query (LP4)

RESET

Power Save Mode (LP4)

LP4

Reader ON

Reader OFF

V Supply
Symmetric Cryptography on WISP

- Is classical cryptography feasible on a general purpose UHF RFID tag?

- Why RC5?
 - Simple
 - Relatively small code size (1.6 Kbytes)
 - Small memory requirement
RC5 on WISP

- **Implementation of RC5-32/12/16**
 - 32-bit words, 12 rounds, 16-byte secret key
 - 16-byte secret key hard-coded
 - Expanded key table of size 2(r+1)
 - Encrypt/decrypt 64-bit Tag ID

<table>
<thead>
<tr>
<th>RC5 Functions</th>
<th>Execution Time (ms)</th>
<th>Throughput (bits/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>setupKey()</td>
<td>7.93</td>
<td>-</td>
</tr>
<tr>
<td>encrypt()</td>
<td>1.43</td>
<td>44755</td>
</tr>
<tr>
<td>decrypt()</td>
<td>1.39</td>
<td>46043</td>
</tr>
</tbody>
</table>
Can we do more?

- How much computation is available?
 - Theoretical maximum
 - Friis transmission equation
 - Experimental data on WISP performance
 - Published microcontroller power consumption specification
 - Actual WISP measurement
 - Measured number of cycles available during one lifecycle
 - With varying workloads – writing to flash
Theoretical Maximum Computation

- Model based on the Friis transmission equation

\[P_R = P_T - 20 \log\left(\frac{4\pi d}{\lambda}\right) + G_T + G_R \]
Theoretical Maximum Computation

- Model based on the Friis transmission equation

\[P_R = P_T - 20 \log\left(\frac{4\pi d}{\lambda}\right) + G_T + G_R \]
Available Computation on WISP: Varying Workloads (at 3.0V)
Available Computation on WISP: Varying Workloads (at 3.0V)

10K-40K cycles in one lifecycle
Maximalist Cryptography: difficult, but feasible

- Minimizing the stack
- Minimizing flash writes
- Optimizing with precomputation
Conclusion

- **General purpose** UHF RFID tags with cryptographic capabilities are no longer infeasible
 - RC5 can be implemented in UHF RFID tags with
 - 4MHz computing speed
 - 256 bytes RAM

- **Maximizing cryptography requires model that**
 - Quantifies memory (read vs. write)
 - Quantifies power
 - Quantifies computation