CMOS Workshop 2009

Kevin Fu, Wayne Burleson

Benjamin Ransford, Shane Clark, Mastooreh Salajegheh kevinfu@cs.umass.edu

> Department of Computer Science University of Massachusetts Amherst

CMOS Workshop 2009

Getting Things Done 🔽 on Computational RFIDs with Energy-Aware Checkpointing and Voltage-Aware Scheduling

Kevin Fu, Wayne Burleson Benjamin Ransford, Shane Clark, Mastooreh Salajegheh <u>kevinfu@cs.umass.edu</u>

Department of Computer Science University of Massachusetts Amherst

Scenario: RFID Sensor Network

- Maintenance-free
- Batteryless nodes
- RF power harvesting

• Public-key crypto?

Photos: Impinj, M. W. Moss Ltd., reinforcedearth.com

CMOS Workshop '09 - Kevin Fu & Wayne Burleson

Scenario: RFID Sensor Network

- Maintenance-free
- Batteryless nodes
- RF power harvesting

• Public-key crypto?

Photos: Impinj, M. W. Moss Ltd., reinforcedearth.com

CMOS Workshop '09 – Kevin Fu & Wayne Burleson

Scenario: RFID Sensor Network

- Maintenance-free
- Batteryless nodes
- RF power harvesting

• Public-key crypto?

Photos: Impinj, M. W. Moss Ltd., reinforcedearth.com

CMOS Workshop '09 – Kevin Fu & Wayne Burleson

The next 15 minutes

- 1. Batteryless computing with computational RFID (CRFID)
- 2. Obstacles to computing on harvested energy
 - Fluctuating supply, power loss
- 3. Mementos: s/w for getting things done
 - Checkpointing, program reordering

Batteries constrain design.

Big & heavy relative to circuits.

Must be replaced or recharged.

Energy density *sloooowly* increasing. (1991: 204 Wh/I ... 2005: 514 Wh/I)

AUKAUNE BAN

How can we do useful computation without a battery?

How can we do useful computation without a battery?

Focus on energy harvesting.

Perils of RF harvesting

- Devices become dependent on energy supply
- Unpredictable supply
- Fluctuating voltage
- Frequent loss of power/state

Today's batteryless computers

must finish in one energy lifecycle

non-programmable circuitry

Photos: thisismoney.co.uk, TI

Computational RFID (new term)

- Made possible by ultra-low-power (1.5µA sleep, 600µA active) programmable microcontroller
- von Neumann architecture

Computational RFID (new term)

- Made possible by ultra-low-power (1.5µA sleep, 600µA active) programmable microcontroller
- von Neumann architecture

Perils of RF harvesting

- Devices become dependent on energy supply
- Unpredictable supply
- Fluctuating voltage
- Frequent loss of power/state

Perils of RF harvesting

• Devices become dependent on energy supply

- Unpredictable supply
 - Fluctuating voltage
- Frequent loss of power/state

Getting things done

Major goal: help programs on CRFIDs make forward progress despite fluctuating voltage and constant interruption.

Our system: Mementos

• Designed to aid forward progress.

- Execution checkpointing (suspend, resume)
- Program reordering

Our system: Mementos

• Designed to aid forward progress.

- Frequent loss of power/state
 Execution checkpointing (suspend, resume)
- Program reordering

Our system: Mementos

• Designed to aid forward progress.

Frequent loss of power/state
 Execution checkpointing (suspend, resume)

Program reordering
 Fluctuating voltage

Newmarket Capital Group

Newmarket Capital Group

- Idea: save state to flash before dying
- Challenging! Not cheap:
 - Flash:register 400:1
 - Flash:memory 40:1

Checkpointing

• Compile time static analysis:

- Compute per-block energy estimates
- Run time:
 - CRFID checks own voltage
 - Dynamic checkpointing decision

Energy estimation at compile time

lohol1.

. . .

Instr.	Dest.	Src.	Energy/Instr. (nJ)
NOP			2.0
		reg	1.1
MOV	reg	flash	5.2
		mem	6.3
		reg	8.1
MOV	mem	flash	11.8
		mem	11.7
		reg	461.0
MOV	flash	flash	350.3
		mem	1126.2

MOV R11, R12	1 nJ
ADD R12, R8	1 nJ
(Flash write)	461 n
JMP label2	

Platform-specific energy profile

Annotated instruction stream

. . .

e.g.: modexp

• Halve 32-bit exponent, square 32-bit base

• No checkpointing: dies before finishing

e.g.: modexp

• Halve 32-bit exponent, square 32-bit base

• No checkpointing: dies before finishing

e.g.: modexp

• Halve 32-bit exponent, square 32-bit base

- No checkpointing: dies before finishing
- Checkpoint halfway through:
 - Save base, exp., accumulated result after 15 iterations; die before finishing
 - Restore from checkpoint; 17 more iterations; complete.

Program reordering • Fluctuating voltage

- Observations:
 - Some operations require higher voltage
 - Voltage tends to decline

 Microcontrollers don't perform well on continuously varying voltage (PLL logic limitations)

Program reordering

- Static analysis at compile time
 - Estimate energy requirements
 - Derive dependency graph
- Must not violate program semantics!

Program reordering

 Voltage declines: reorder independent blocks at compile time to excute high-V ops when supply voltage is high

Program reordering

 Smaller timescale: adaptively reschedule blocks at run time to avoid logjams

Challenges

- Predicting program behavior is hard.
- Balance checkpointing behavior:
 - How much state to save
 - How often to checkpoint
- Program reordering:
 - Finding dependencies

Oh, and physics

- Can't harvest RF energy at arbitrary distances (current prototypes: ≤ 10 m)
- Diode drop limits energy harvesting

CRFID applications

Medical implants [Oakland '08]

• RFID Sensor Networks [HotNets '08]

 Computation in inaccessible locations. fragile hazardous

Future developments

• Our work:

• Fully implement checkpointing, reordering

- Device profiling
- CRFIDs: Intel Looks To Blanket The World With Self-Powered Sensors

By <u>Antone Gonsalves</u> InformationWeek

December 5, 2008 05:37 PM

 Intel Research competition (Google *intel wisp challenge*)

Summary

- Computational RFIDs: general-purpose batteryless computers
- Mementos for forward progress
 - Checkpointing to cope with constant power interruptions
 - Program reordering to cope with fluctuating voltage