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Abstract

Vajda and Buttyán proposed several lightweight
authentication protocols for authenticating RFID
tags to readers, and left open the quantifiable cryp-
tographic strength. Our cryptanalysis answers this
open question by implementing and measuring at-
tacks against their XOR and SUBSET protocols. A
passive eavesdropper can impersonate a tag in the
XOR protocol after observing only 70 challenge-
response transactions between the tag and reader.
In contrast, the theoretical maximum strength of the
XOR protocol could have required 16! ∗ 2 observed
transactions to break the key. Our experiments also
show that a passive eavesdropper can recover the
shared secret used in the XOR protocol by observ-
ing an expected 1,092 transactions. Additionally,
a nearly optimal active attack against the SUBSET
protocol extracts almost one bit of information for
each bit emitted by the tag.

1 Introduction

Low-cost RFID tags are used increasingly in
widespread applications such as inventory control,
transit systems, livestock management, and build-
ing access control. Cryptography can help pre-
vent unauthorized communication between tags and
readers in such applications. Vajda and Buttyán [9]
developed several lightweight cryptographic proto-
cols for low-cost tags. We show that their XOR and
SUBSET protocols provide inadequate protection
from passive and active adversaries.

1.1 Background

For their XOR protocol, Vajda and Buttyán [9]
describe a possible passive attack that involves
guessing the session keys by a brute force attack

after observing two consecutive runs of the proto-
col. The attacker is able to learn the difference
between consecutive session keys and formulate
guesses on the subsequent session keys. In approx-
imately 1/16th of the cases, the session key will
have a special property. Our first attack exploits
certain statistical properties of the bitstring and de-
termines the correct key value with high probability
after observing an average of 70 transactions. Our
second attack can fully recover the shared secret key
in 1,092 expected guesses.

Vajda and Buttyán present an active attack
against their SUBSET protocol, which requires
more than 256 queries for their parameters. Our
active attack requires only 9 queries under the same
parameters. The attacker sends the tag a specifically
formatted query and adaptively sends a subsequent
query based on the previous response.

2. Vajda and Buttyán Protocol 1

Protocol 1 in Figure 1 is a challenge-response
protocol in which the tag and reader share a secret,
k(0). To construct a challenge, the reader selects a
bitstring x uniformly at random. The reader trans-
mits a(i) = x(i) ⊕ k(i) to the tag, where i is the
ith transaction between the reader and tag. k(i) is
calculated by a function of k(0) where k(i+1) =
F (k(i)). Because x(i) is random, a(i) is also ran-
dom. In an information-theoretic sense, a(i) reveals
nothing about the secret k(0).

The tag uses its knowledge of k(i) to extract
x(i). The tag then responds to the reader with
b(i) = x(i)⊕k(0). Knowing x(i) and k(0), the reader
can verify the correctness of the tag’s response.

The protocol is considered broken when an ad-
versary can send a valid b(i) = x(i) ⊕ k(0) or learn
the value of k(0). Vajda and Buttyán [9] note that
a passive attacker can learn k(i) ⊕ k(i+1) after ob-
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Figure 1. Steps 1-4 of VB Protocol 1. The tag knows k(0) and the function to calculate
k(i). The tag uses a(i), k(i), and k(0) to form a valid response b(i). Steps 2a and 3a
show how an active adversary can implement the Repeated Keys Attack to successfully
impersonate a tag. Mallory knows k(i−2)⊕k(0) after observing a challenge/response pair
from an earlier transaction between the reader and tag. In this example, the session key
is repeated every 2 cycles. Thus, k(i) = k(i−2), and Mallory can form a valid response
without knowing k(i) or k(0).

serving two consecutive transactions of the proto-
col. However, they suggest that an attacker must
use a brute force attack to guess the session key k(i)

and completely break the protocol, which requires
as many as 16! ∗ 2 guesses, for the 128-bit example.

We demonstrate two types of attacks against Pro-
tocol 1. First is an active attack based on key se-
quence cycles that obtains the value x(i) ⊕ k(0) and
can successfully impersonate a tag after observing
an average of 70 transactions for a 128-bit key. The
second attack is independent of key cycles and can
fully recover k(0) in 1,092 expected guesses.

2.1 Implementation

We implemented the 128-bit key length ex-
ample [9] and randomly generated 1,000 ses-
sions with 10,000 transactions per session, i.e.
we randomly generated 1,000 different k(0) val-
ues and the next 10,000 keys using the function
F (k(i)). Figure 2 shows that the session keys
k(1), . . . , k(i), . . . , k(10,000) cycle after an average
of 68 keys. That is, the function resulted in a re-
peating pattern of session keys after an average of
68 sessions. For a cycle period of c, k(i) = k(i+c).
The average cycle period is 2, meaning that k(i) =
k(i+2). The minimum cycle period was 1, which oc-
curred in 31.9% of our results. All of the observed

keys eventually repeat, and the maximum cycle pe-
riod was 36, which occurred in only 1 out of the
1,000 sessions.

Session key cycles lead to our first attack, which
allows an active adversary to successfully imper-
sonate a tag. We also developed active and passive
attacks that, independent of session key cycles, al-
low an adversary to gain full knowledge of k(0).

2.2 Repeated Keys Attack

An active adversary, Mallory, can learn k(i) ⊕
k(0) after observing one challenge/response pair.
As shown in Figure 1, Mallory learns a(i) = x(i) ⊕
k(i) and b(i) = x(i) ⊕ k(0), and can calculate their
bitwise difference to learn k(i) ⊕ k(0). She builds a
table with k(i)⊕k(0), k(i+1)⊕k(0), k(i+2)⊕k(0), . . .
rows. Two rows will have the same value when
the session key repeats, allowing the attacker to
determine the key cycle period. Without loss of
generality, assume that the key cycle period is 2.
Thus, k(i−2) = k(i). As Figure 1 shows, when the
reader sends x(i) ⊕ k(i), the attacker can calculate
(x(i) ⊕ k(i))⊕ (k(i−2) ⊕ k(0)) = x(i) ⊕ k(0). This
forms a valid response which the attacker can then
broadcast to the reader, thus successfully imperson-
ating a valid tag.

In 68.8% of the sessions we generated, the key
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Figure 2. This histogram shows that keys repeat much earlier than the 16!∗2 theoretical
maximum. 1,000 instances of the VB Protocol 1 with random K(0)’s execute until a key
repeats. A key repeats on average after 68 transactions between a tag and reader.

cycle period is 2 or less. If the attacker begins
eavesdropping with the first transaction between the
reader and tag, he can detect a repeated key cy-
cle and impersonate a tag after 70 transactions. If
the adversary begins eavesdropping after 68 trans-
actions, then, on average, he can impersonate the
tag after observing just 3 transactions.

2.3 Nibble Attack

Based on properties of the session key function
F (k(i)), active and passive attacks can determine
the correct k(0) value with high probability after ob-
serving an expected 1,092 transactions.

Passive attack: Vajda and Buttyán [9] give an
example using 128-bit key lengths. The function
k(i+1) = F (k(i)) is defined as follows. First cut
each byte of k(i) in half to obtain two nibbles.
The left nibbles k
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0,L, k

(i)
1,L, . . . , k

(i)
15,L form k

(i)
L and
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k
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(i)
0,L

th
,
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elements of

k
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(i+1)
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(i)
R .

Observe that if k
(i)
0,L = 0, then the first four bits

of k(i) are equal to 0. The 0th and the k
(i)
0,L

th
ele-

ments of k
(i)
0,R are switched. Hence, k

(i)
0,R = k

(i+1)
0,R

and the function F resulted in no change to k
(i)
0,R,

and thus we know that k
(i)
0,L = 0. This event will

happen for roughly a 1/16th-fraction of values i.
Knowing k

(i)
0,L = 0, we can compute x

(i)
0,L and there-

fore k
(0)
0,L.

As noted in [9], it is possible for a passive adver-
sary to learn k(i) ⊕ k(i+1) after observing two con-
secutive runs of the protocol. Mallory constructs a
table as in Figure 3 and looks at the Indicator col-
umn for ‘0000’ in the second nibble. When this oc-
curs, she knows that k

(i)
0,R = k

(i+1)
0,R because their

bitwise difference is ‘0000.’ Thus, she also knows
that k

(i)
0,L = 0. She can use column 1 to calculate

x
(i)
0,L and then use column 2 to determine k

(0)
0,L.

Using similar reasoning, she can find rows in the
Indicator column where the fourth nibble is ‘0000,’
which indicates that k

(i)
1,R = k

(i+1)
1,R . Thus k

(i)
1,L = 1

and she can use the table to calculate k
(0)
1,L. She can

use this reasoning to find all nibbles of k
(0)
L and k

(0)
R

and learn the full value of k(0), thus breaking the
scheme completely.

Active attack: Our passive attack algorithm can
also be employed as an active attack. Mallory
first sends the tag a string of 0′s. When a tag
receives a challenge a(i), it always responds with
a(i)⊕k(i)⊕k(0). Thus Mallory will learn k(i)⊕k(0)

by sending a challenge of all 0′s to the tag. She
can continue to sends challenges of all 0′s to learn
k(i+1) ⊕ k(0), k(i+2) ⊕ k(0), etc. and construct a
table similar to Figure 3. The same analysis from



the passive attack can be employed to determine the
full value of k(0).

Remark There are cases in which a nibble is
swapped twice, such that k

(i)
0,R = k

(i+1)
0,R and k

(i)
0,L 6=

0. Thus, Mallory needs to find two cases with a
‘0000’ nibble. If the values calculated for k

(0)
0,L

agree, then this is the correct value with high prob-
ability. Otherwise, she must find a third nibble and
take the majority value to eliminate false positives.
A false positive occurs in 1

15 cases, because the
‘0000’ actually occurs in one of the other 15 posi-
tions. Mallory must find two ‘0000’ nibbles (16 ex-
pected trials to find each) and find a third in 1

15 + 1
15

of the cases. This results in 32 ∗ (16 + 16 + 16 ∗
( 1
15 + 1

15 )) = 1, 092 expected trials to fully recover
all 32 nibbles of k(0).

3 Vajda and Buttyán Protocol 2

Protocol 2 is a challenge-response protocol in
which the tag and reader share two secrets, kL and
kR.

To construct a challenge, the reader selects two
bitstrings x and y uniformly at random. The reader
transmits a = x⊕kL and b = y⊕kR to the tag. Be-
cause x and y are random, a and b are also random.
In an information-theoretic sense, the pair (a, b) re-
veals nothing about the secrets kL and kR.

The secrets kL and kR effectively act as “masks”
to conceal the challenge values x and y. The tag
uses its knowledge of kL and kR to extract x =
a ⊕ kL and y = b ⊕ kR. The tag then responds to
the reader with selected portions of x indexed by y,
as detailed below. Knowing x and y, the reader can
verify the correctness of the tag’s response.

While a challenge alone in this protocol leaks no
information, a challenge-response pair does leak a
considerable amount. Vajda and Buttyán note this

Reader Tag

a = x ⊕ kL

b = (y1 ⊕ kR,1) || . . . || (ym ⊕ kR,m)

c = x[y1], x[y2], . . . , x[ym]

Figure 4. VB protocol 2

leakage, but hypothesize that it is about one bit
per protocol invocation. They suggest, therefore,
that their challenge-response protocol may be suit-
able for practical scenarios in which hundreds of ac-
cesses to a tag are impractical for an attacker.

We demonstrate an active attack against Protocol
2 that recovers kL and kR almost optimally, in the
sense that the attack extracts nearly one bit of infor-
mation from every bit emitted by the tag. In other
words, the security of Protocol 2 is nearly no better
than that of a protocol in which the tag directly re-
veals a portion of its key in response to a challenge.

Protocol details: Let l and m be security param-
eters. The secret kL has bit-length l, a power of 2.
The other secret, kR, has bit-length m log2 l. Let
kR = kR,1 ‖ . . . ‖ kR,m, i.e., we partition the
secret into m substrings, each of bit-length log2 l.

As we have explained, x and y are random bit
strings. By analogy with our notation for kR, let
y = y1 ‖ . . . ‖ ym. A challenge consists of a pair
(a = x ⊕ kL, b = y ⊕ kR). The response of the
tag comprises selected bits of x; the tag determines
which bits of x to return to the reader by treating
y1, ...ym as indices into x. Let x[i] denote the ith

bit of x for 0 ≤ i ≤ log2 l (with either big-endian
or little-endian notation). See Figure 4 for a concise
protocol specification.

Overview of active attack: Vajda and Buttyán
describe an active attack involving l queries to the
tag that recovers kL. We refer the reader to [9] for
details. As an example, they consider l = 256 and
m = 16. They hypothesize that an active attacker
requires at least 256 queries to break their scheme.
We show that considerably fewer queries suffice.

The active attack that we describe first recovers
kR in log2 l + 1 queries—9 queries for the sug-
gested parameters l = 256 and m = 16. The at-
tack then fully recovers kL with at most dl/me ad-
ditional queries—i.e., 16 queries for the suggested
parameters in [9], amounting to a total of 25 queries
for the full attack.

The attack is nearly optimal in the following
sense. The total bit length of the shared secrets
kR and kL is D = l + m log2 l, while our at-
tack involves a total bit output from the tag of
(dl/me + log2 l + 1)m ≤ D + 2m bits. Viewed
another way, our attack is optimal to within two
queries—and only one query when l is divisible by



R → T T → R Leak Indicator
x(i) ⊕ k(i) x(i) ⊕ k(0) k(i) ⊕ k(0) k(i−1) ⊕ k(i)

x(i+1) ⊕ k(i+1) x(i+1) ⊕ k(0) k(i+1) ⊕ k(0) k(i) ⊕ k(i+1)

x(i+2) ⊕ k(i+2) x(i+2) ⊕ k(0) k(i+2) ⊕ k(0) k(i+1) ⊕ k(i+2)

Figure 3. Information leaked by Protocol 1. The first and second columns are the ob-
served challenge and response, respectively. The Leak column is the bitwise differ-
ence between the first two columns, and the Indicator column is the bitwise difference
between rows in the Leak column. When our algorithm finds a ‘0000’ nibble in the In-
dicator column, it combines this with information from the Leak column to calculate a
nibble of k(0).

m. (The attack could be further optimized some-
what, but the gains would be small, of course.)

Attack details: Let us denote by a(j), b(j), and
c(j) the protocol values in the jth query, for j =
0, 1, . . . , log2 l. Let c(j)[i] denote the ith bit of the
tag response.

The attack is as follows. Let j′ = log2 l− j. We
construct the vector a(j) as a sequence of 2j′

‘0’
bits, followed by 2j′

‘1’ bits, then 2j′
‘0’ bits, etc.,

up to the full length of l bits. In other words, we let
a(0) = 00 . . . 00, i.e., the all-0s string. We let a(1) =
00 . . . 0011 . . . 11, i.e., the first half consists of 0s,
then second half of 1s. The final query, a(log2 l),
consists of alternating ‘0’ and ‘1’ bits.

For all j, we let b(j) = ~0, i.e., b is a string of 0
bits. (This is a matter of convenience. It is easy to
modify the attack such that b is any desired value in
any query.) In query q, we challenge the tag with
the pair (a(j), b(j)).

Since b(j) = ~0, for any i, we have yi = kR,i.
Therefore, c[i] = x[kR,i]. Now observe that for any
0 ≤ i ≤ log2 l, if the leading bit kR,i[0] = 0, then
c(0)[i] = c(1)[i], since kR,i indexes the first half of
the vector a, which is constant across the 0th and
1st queries. Otherwise c(0)[i] 6= c(1)[i]. Similarly,
if kR,i[1] = 0, then we observe c(0)[i] = c(2)[i];
otherwise c(0)[i] 6= c(2)[i]. Similar comparisons
across queries reveal the remaining bits of kR,i.
Thus, for any i, log2 l + 1 queries suffice to recover
kR,i in its entirety. Furthermore, we may recover
kR,i for every 1 ≤ i ≤ m independently in parallel.
Hence, with log2 l + 1 queries, we may recover kR

completely.
With knowledge of kR, we can quickly recover

kL. Suppose (a, b, c) is a given challenge-response
tuple. Using kR, we can create a value b that cor-
responds to any sequence of indices y1, . . . , ym we

desire. We know that c[i] = x[yi]. Therefore, c[i] =
a[yi] ⊕ kL[yi], and hence kL[yi] = a[yi] ⊕ c[i]. In
other words, by setting b as desired and using a ran-
dom vector a, we may recover any m desired bits in
kL. Thus, dl/me queries suffices to recover all of
xL.

4 Related Work

Other cryptographic protocols have been de-
signed for resource-constrained devices. Grain [5]
is a lightweight stream cipher that was designed
for hardware applications with restricted resources,
such as memory and power consumption, and may
be suitable for use in RFID tags. Compared to the
VB protocols, Grain has a more intricate encryp-
tion algorithm that employs a linear feedback shift
register. A cryptanalysis [1, 8] of Grain uses linear
approximations of the keystream output to recover
the 80-bit key in 243 computations. In the simpler
VB XOR protocol, the 128-bit session key can be
recovered in an expected 1,092 transactions.

The Hopper and Blum (HB) protocol and an
augmented version, HB+, have been applied to
lightweight RFID tags and are secure against pas-
sive and active adversaries under the Learning Par-
ity with Noise hardness assumption [6, 10, 3]. The
HB+ protocol was shown to be vulnerable to an ac-
tive attack in a larger adversarial model [4], but both
HB and HB+ are secure under parallel and concur-
rent executions [7].

Texas Instruments developed a proprietary cryp-
tographic protocol for RFID devices that was im-
plemented in vehicle immobilizer systems and the
Exxon Mobile SpeedPass. The importance of us-
ing secure cryptographic protocols was highlighted
by a cryptanalysis of the Texas Instruments proto-
col, which showed that an attacker could effectively



impersonate an RFID device [2].

5 Conclusion

The Vajda and Buttyán Protocols 1 and 2 have
design weaknesses that render the protocols inade-
quate for tag authentication under reasonable threat
models. With few resources, active and passive at-
tackers can determine the session keys for both of
the protocols — breaking the schemes completely.

Our implementation and measurement of Pro-
tocol 1 helped to reveal weaknesses in the gen-
eration of session keys. It is challenging to de-
sign cryptographic methods on low-cost RFID tags
that can withstand a simple adversary. Researchers
are likely to continue proposing new cryptographic
methods for the uniquely constrained environment
and untraditional threat model of RFID tags. There-
fore, we urge researchers to provide at a minimum a
reference implementation and basic measurements
so that security flaws can be detected early in the de-
sign process. Statistical measurements cannot prove
a scheme to be secure; for instance, linear con-
gruential number generators are statistically ran-
dom yet insecure. But statistical measurements can
help to identify simple flaws that render a candidate
scheme cryptographically insecure.
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