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Structure from motion problem

ST

anlpunt
wens

Given m images of n fixed 3D points

x;, =M, X,, i=1L...m j=1 ..,n

Courtesy of Silvio Savarese.



ructure from motion problem

From the mxn correspondences x;;, estimate:
*m projection matrices M, motion
*n 3D points X, structure

Courtesy of Silvio Savarese.




Structure from motion ambiguity

- Position ambiguity: it is impossible based on the images alone to
estimate the absolute location and pose of the scene w.r.t. a 3D world
coordinate frame




1

M H'=K[R, TJH'=K[RR"' T

Thel calibration matrix lluas not changed!




Structure from motion ambiguity

* In the general case (nothing is
known) the ambiguity is

expressed by an arbitrary affine
or projective transformation

Ml= Ki[Ri Ti]
M
(Mi H-l )(H XJ)

Courtesy of Silvio Savarese.



Projective ambiguity

Courtesy of Silvio Savarese.



Affine ambiguity

Courtesy of Silvio Savarese.



Structure from motion ambiguity

« The ambiguity exists even for calibrated cameras

* For calibrated cameras, the similarity ambiguity is the only

ambiguity [Longuet-Higgins

'81]

‘ -The scene is determined

\ / by the images only up a
N 4 similarity transformation
Similarity (rotation, translation and

scaling)

Courtesy of Silvio Savarese.



Structure from motion ambiguity

-Scale ambiguity: it is impossible based on the images alone to
estimate the absolute scale of the scene (i.e. house height)

Courtesy of Silvio Savarese.



Structure from motion problem

Given m images of n fixed 3D points

x;, =M, X,, i=1L...m j=1 ..,n

Courtesy of Silvio Savarese.



Structure from motion problem

m cameras M,... M_ M. =l|a,, a,, a, b,

Courtesy of Silvio Savarese.



The Projective Structure-from-Motion Problem

Given mimages of n fixed points X; we can write

Xij=Mi XJ for 1=1,...,m and j=1,...,n.

Problem: estimate the m 3x4 matrices M, and
the n positions X from the mxn correspondences x;; .

- With no calibration info, cameras and points can only be
recovered up to a 4x4 projective (15 parameters)

- Given two cameras, how many points are needed?

- How many equations and how many unknown?

2m x n equations in 11m+3n — 15 unknowns
So 7 points! [2x2x7 = 28; 11x2 + 3x7 — 15 = 28]

Courtesy of Silvio Savarese.



Structure-from-Motion Algorithms

» Algebraic approach (by fundamental matrix)

« Factorization method (by SvD)
* Bundle adjustment

Courtesy of Silvio Savarese.



Algebraic approach (2-view case)

- Compute the fundamental matrix F from two views
(eg. 8 point algorithm)

- Use F to estimate projective cameras

- Use these cameras to triangulate and estimate
points in 3D

Courtesy of Silvio Savarese.



Algebraic approach (2-view case)

Apply a projective transformation H such that:

M H"=[I 0] M,H"'=|A b]

Canonical perspective cameras

Courtesy of Silvio Savarese.



Algebraic approach (Fundamental matrix)

X =HX
x=M, H' X =[I|0]X x =M, H' X=[A|b]X
~ - ?
| i . . e
X =[A|b]X=[A|b]|2%|=A[I|0]|2%|+b=A[l|0] Xi+b =Ax+b
X3 X3
1 1

x xb =(Ax+b)xb = Axxb
(Axxb)-x'=(x'xb)'x' =0

x" (Axxb)' =0
'T
"""""""" ' is this familiar? ¢ F = [bx]AE x Fx=0

x'Tg[bX]AEX =0 E :

Courtesy of Silvio Savarese.




Cross product as matrix multiplication

axb=| a 0O -a_||b, |=[a,]b

Courtesy of Silvio Savarese.



Algebraic approach (Fundamental matrix)

xX'Fx=0 F=[b,]A

- Compute the fundamental matrix F from two views
(eg. 8 point algorithm)

Can verify that : Compute b as least sq. A= [bx]_l F
Fb=[bx]Ab=O — solutonof Fb=0 -— =—[ ><]F
det(F)=0; Ibl=1

Notice that b is an epipole

Courtesy of Silvio Savarese.



Epipolar Constraint [from earlier lecture]

* F X, is the epipolar line associated with x, (l; = F x,)
« FTx, isthe epipolar line associated with x, (I, = FTx,)
- _Fis singular (rank two)
- Fe,=0 and F'e, =0
* Fis 3x3 matrix; 7 DOF

Courtesy of Silvio Savarese.



Algebraic approach (Fundamental matrix)

xX'Fx=0 F=[b,]A

- Compute the fundamental matrix F from two views
(eg. 8 point algorithm)

Can verify that: Compute b as least sq. A= [bx]_l F
Fb=[bx]Ab=O — solutonof Fb=0 -— =—[ ><]F
det(F)=0; Ibl=1

Notice that b is an epipole

M =[1 0] M” =|-[e,IF e

Perspective cameras are known

HZ, page 254
PF, page 288

Courtesy of Silvio Savarese.



Structure-from-Motion Algorithms

» Algebraic approach (by fundamental matrix)

« Factorization method (by SvD)

* Bundle adjustment

Courtesy of Silvio Savarese.



Projective factorization

Z,1X

Z,1Xy;

Zmlxml

Courtesy of Silvio Savarese.

Z,X),

Z,)X5,

Zm2Xm2

Z, X1, M,
2y, X051 _ Mz [Xl X,
) points (4 x n)
Zmnxmn i _Mm ]
cameras
(B3mx 4)

D = MS has rank 4



A factorization method - (affine case; last lecture)

« Let's create a 2m x n data (measurement) matrix:

= AN

X

N

X,

A

X

A

In

A,
A, |
=1 [Xl X,
points (3 x n)
Al
cameras
(2m x 3)

The measurement matrix D =M S has rank 3
(it’s a product of a 2mx3 matrix and 3xn matrix)

Courtesy of Silvio Savarese.

S

X,



Projective factorization

Z,1X Zi,X, ot 2 Xy M,

7Z..X 7. X v 7. X M
214921 228922 2nAx2 2

D= | o IX, X,
| ) points (4 x n)

_Zmlxml Zm2Xm2 ot Zmnxmn | _Mm |
cameras

(3m x 4)

D = MS has rank 4

 If we knew the depths z, we could factorize D to
estimate M and S

 If we knew M and S, we could solve for z

« Solution: iterative approach (alternate between above
two steps)

Courtesy of Silvio Savarese.



Structure-from-Motion Algorithms

» Algebraic approach (by fundamental matrix)
« Factorization method (by SvD)

* Bundle adjustment

Courtesy of Silvio Savarese.



Bundle adjustment

* Non-linear method for refining structure and motion
* Minimizing re-projection error

2

E(M,X) = i i D(Xij’ Min)
=1 =1

Courtesy of Silvio Savarese.



Bundle adjustment

* Non-linear method for refining structure and motion

* Minimizing re-projection error
2

E(M,X) = i i D(Xij’ Min)
=1 =1

- Advantages
- Handle large number of views
- Handle missing data

» Limitations
* Large minimization problem (parameters grow with number of views)
* requires good initial condition

Used as the final step of SFM

Courtesy of Silvio Savarese.



Removing the ambiguities:
the Stratified reconstruction

* up grade reconstruction from perspective to affine
[by measuring the plane at infinity]

‘up grade reconstruction from affine to metric
[by measuring the absolute conic]

Recovering the metric reconstruction
from the perspective one is called self-calibration

Courtesy of Silvio Savarese.



Self-calibration

Process of determining intrinsic camera parameters
directly from un-calibrated images

Suppose we have a projective reconstruction {M;, X j}

GOAL' find a rectifying (non-singular) homography H such that

M.=MH i=1-m M. =K[R, T]

1

If world ref. system = camera 1 ref. system: Ml =K,[I O]

If the perspective camera is canonical: M, =[I 0]

Courtesy of Silvio Savarese



Self-calibration

r
M. =M. H M, =K [l 0]
o M, =[I 0]
1 <
At
K, O]=[1 O]H H=
1 v k
L ! l
A=K, We can set k=1
t=0 (this fixes the scale of the reconstruction)
17 — -Kl O] Planes at infinity N H - i I{1 0]

v 1 ”HHH _—pTK1 1_

See appendix



Planes at infinity (ecture 5)

In the metric
(Euclidean) world
coordinates

2 planes are parallel iff their intersections is a line that belongs to I1

oo

The projective transformation of a plane at infinity can be expressed as

w =H'T, =|"

Courtesy of Silvio Savarese.
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Courtesy of Silvio Savarese.
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Self-calibration

GOAL.: find a rectifying homography H such that
WM, X j} — M., H,H_IXJ} IS a metric reconstruction

T ¢ —oacotf@ u ]
K, 0 p
H = T k=10 5 Y
-p K1 1 0 0 1
K, = calibration matrix of first camera 5 unknowns

T
U, = [p 1] = plane at infinity in the projective

reconstruction
3 unknowns

Courtesy of Silvio Savarese.



Self-calibration basic equation

M, =[A, a.] =perspective reconstruction of the camera (known)

H = [ Ijl } = rectifying homography (unknown)
-p K, 1
\
M.=MH i=2--m
................... ) K1 0 T
[K R Tz]=[Az ai] . =\'A1 K,-a.p K, alJ
------------------- —p K, 1| i

Courtesy of Silvio Savarese.



Self-calibration basic equation
{ R, =K'(A, —ap')K,
RI =K(A, —ap") K/
R RI=I

K'(A, —ap" )K, K'(A, —ap) K" =1

(A —ap"JK K (A —ap" )| =K K] = 7



Absolute conic Q_ isa CEIT_

Any XEQOO satisfies:

B
.2 2 2

1 X, +xX5+x5=0

xQ x=0 Q = yoor e

1 X, =0

0

Projective transformation of €2_

w=(K'K)™ w*=KK'

Dual image of the absolute conic

Courtesy of Silvio Savarese.



Properties of w

w=(K'K)"

* [t is not function of R, T

» symmetric (5 unknowns) @ =

Courtesy of Silvio Savarese.
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Self-calibration basic equation

(Ai - aipT )K1K1T (Ai - aipT )T =K, KIT

*

(A -ap")ai (A -ap") =0 | i.m

[A; and a, are known]

How many unknowns? <3 from p
5 from w; [per view]

How many equations? 5 independent equations [per view]

Art of self-calibration:
use constraints on w (K) to generate enough equations on the unknowns

Courtesy of Silvio Savarese.



Self-calibration - identical Ks

*

(Ai —a,p )wl* (Ai -a,p )T =,

(Ai -ap )a) (Ai -a,p’ )T =w

*

‘For m views, 5(m-1) constraints
‘Number of unknowns: 8

—> m>=3 provides enough constraints

To solve the self-calibration problem
with identical cameras we need at least 3 views

Courtesy of Silvio Savarese.



Properties of @

w=(K'K)"

o 0, 0,
1. w=|o, @, o, 2. w, =0 zero-skew
w, @, o,
3 @, =0 4. w,=w,=0
W, = w;

square pixel zero-offset

Courtesy of Silvio Savarese.



Self-calibration - other constraints

*

(Ai B aipT )wl* (Ai ~ aipT )T =

1

(
« zero-offset w, = C()S =(0) —— 2 mlinear constraints

< e Zero-skew W, = 0 — m linear constraints

etc...

Courtesy of Silvio Savarese.



Self-calibration - summary

Condition N. Views
*Constant internal parameters 3

*Aspect ratio and skew known 4

*Focal length and offset vary

*Aspect ratio and skew constant 3

*Focal length and offset vary

*skew =0, all other parameters vary 8

Issue: the larger is the number of view,

the harder is the correspondence problem

Bundle adjustment helps!

Courtesy of Silvio Savarese.




Self-calibration - summary

Constraints on camera motion can be incorporated

- Single axis of rotation: turntable motion

Courtesy of Silvio Savarese.



SFM problem - summary

1. Estimate structure and motion up perspective

transformation
1. Algebraic
2. factorization method
3. bundle adjustment

2. Convert from perspective to metric (self-calibration)
3. Bundle adjustment

*%* Or * %

1. Bundle adjustment with self-calibration constraints

Courtesy of Silvio Savarese.



Correspondences

e Can refine feature matching after a structure
and motion estimate has been produced

— decide which ones obey the epipolar geometry

— decide which ones are geometrically consistent

— (optional) iterate between correspondences and SfM

estimates using MCMC
[Dellaert et al., Machine Learning 2003]

Courtesy of Silvio Savarese.



SFM Summed Up...

From: http://www.youtube.com/watch?v=i7ierVkXYa8



Applications

Courtesy of Oxford Visual Geometry Group

Courtesy of Silvio Savarese.



Applications

D. Nistér, PhD thesis ‘01

Courtesy of Silvio Savarese.



Applications

M. Pollefeys et al 98---

Courtesy of Silvio Savarese.



Applications

M. Brown and D. G. Lowe. Unsupervised 3D Object Recognition and Reconstruction in Unordered Datasets. (3DIM2005)

K o e

| Saad YO8 _

Courtesy of Silvio Savarese.



Photo synth

Noah Snavely, Steven M. Seitz, Richard Szeliski, "
Photo tourism: Exploring photo collections in 3D," ACM Transactions on

Graphics (SIGGRAPH Proceedings),2006,

Courtesy of Silvio Savarese.



Incremental reconstruction of construction sites

Initial pair — 2168 & Complete Set 62,323 points, 160 images

D4AR System | Visualization of Construction Progress | University of Illinois, Urbana-Champaign

WASD: Move

QE: Ebb and Flow i

Click and drag the Qwuse to Iook around

“L: Onset Position’ . Py
[ Walkthrow p%tw.een cameras
GH: Camera@otmns’ ",
OP: Recohst(uctwn Set

8J9 Togge eamera FrustaEsc: Quit
F5: Toggle Tullscreen

Fé: Toggle wireframe

wﬂ!\

%

W\




Reconstructed scene + Site photos

# ' D4AR System | Visualization of Construction Progress | University of Illinois, Urbana-Champai

WASD: Move

QE: Ebb and Flow

Click and drag the mouse to look around
L: Onset Position

[1: Walkthrough between cameras
GH: Camera Motions
Esc: Quit
F5: Toggle fullscreen
‘F&: Toggle wireframe;
B/ Toggle AsPlannediModel

© Apr 2009, D4AR ¢




Dense reconstruction results for RH 160 dataset

of Construction Progress | University of Il , Urbana-Champaign

[l

v | RORCR EN!!RM R mail - Inbox & Visualization of Con... WEF O 536PM



The results of automated progress detection

e o T — - - ;}U‘M__" tion of Construction Progress | University of liinoi, Urbana Champaign

Hit F1'to view the instructions.

Urbana-Champaign

Hit F1'to view the instructions. I ; N Hit F1 to view the instructions,

P ot o0
T e ety
"’,“.» A




Non-rigid SFM...an example

Nonrigid Structure from Motion
in Trajectory Space

NIPS 2008

ljaz Akhter'  Yaser Sheikh? Sohaib Khan' Takeo Kanade?

'"LUMS School of Science and Engineering, Lahore, Pakistan
‘Carnegie Mellon University, Pittsburgh, PA, USA

http://cviab.lums.edu.pk/nrsfm




Next Lecture: Introduction to Visual Recognition

 Readings: FP 15.1, 18.1



