Stereo Vision (Correspondences)

EECS 598-08 Fall 2014
Foundations of Computer Vision

Instructor: Jason Corso (jjcorso) web.eecs.umich.edu/~jjcorso/t/598F14

Readings: FP 7; SZ 11; TV 7

Date: 10/27/14

Plan

- Stereo vision
- Rectification
- Correspondence problem
- Active stereo vision systems

Stereo Vision

Goal: estimate the position of P given the observation of P from two view points

Assumptions: known camera parameters and position (K, R, T)

Stereo Vision

Subgoals:

- Solve the correspondence problem
- Use corresponding observations to triangulate

The Correspondence Problem

• Given a point in 3d, discover corresponding observations in left and right images

Triangulation

Intersecting the two lines of sight gives rise to P

Epipolar Geometry

- Epipolar Plane
- Baseline
- Epipolar Lines

- Epipoles e₁, e₂
 - = intersections of baseline with image planes
 - = projections of the other camera center

The Epipolar Constraint

- E p_2 is the epipolar line associated with p_2 ($I_1 = E p_2$)
- $E^T p_1$ is the epipolar line associated with $p_1 (I_2 = E^T p_1)$
- $E e_2 = 0$ and $E^T e_1 = 0$
- E is 3x3 matrix; 5 DOF
- E is singular (rank two)

• When views are **parallel** both correspondence and triangulation become much easier!

- Parallel epipolar lines
- Epipoles at infinity
- •V = V'

Rectification: making two images "parallel"

$$K_1=K_2=$$
 known x parallel to O_1O_2

$$E = [t_{\times}]R$$

Cross product as matrix multiplication

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a}_{\times}] \mathbf{b}$$

$$K_1=K_2=$$
 known x parallel to O_1O_2

$$E = [t_{\times}]R = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{vmatrix}$$

 $\rightarrow V = V'?$

Slide source: S. Savarese

GOAL: Estimate the perspective transformation H that makes the images parallel

Making the Image Planes Parallel The Projective Transformation

Now we don't have the destination image ③

GOAL: Estimate the perspective transformation H that makes images parallel

- This leaves degrees of freedom for determining H
- If an inappropriate H is chosen, severe projective distortions on image take place
- We impose a number of restrictions while computing H

0. Compute epipoles

$$e = \begin{bmatrix} e_1 & e_2 & 1 \end{bmatrix}^T = K R^T T$$
 $e' = K' T$

1. Map e to the x-axis at location $[1,0,1]^T$ (normalization)

$$e = \begin{bmatrix} e_1 & e_2 & 1 \end{bmatrix}^T \implies$$

$$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$$

$$H_1 = R_H T_H$$

$$\mathbf{H}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

2. Send epipole to infinity: $e = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T \rightarrow \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$

Minimizes the distortion in a neighborhood (approximates id. mapping)

- 3. Define: $H = H_2 H_1$
- 4. Align epipolar lines

Projective Transformation of a Line

$$H = \begin{bmatrix} A & t \\ v & b \end{bmatrix}$$

$$l' \rightarrow H^{-T} l$$

- 3. Define: $H = H_2 H_1$
- 4. Align epipolar lines

$$\overline{H}'^{-T}l' = \overline{H}^{-T}l$$

These are called matched pair of transformation

[HZ] Chapters: 11 (sec. 11.12)

Why is Rectification Useful?

- Makes the correspondence problem easier
- Makes triangulation easy

Application: View Morphing

S. M. Seitz and C. R. Dyer, *Proc. SIGGRAPH 96*, 1996, 21-30

Morphing Without Using Geometry

Rectification

Stereo Vision

Subgoals:

- Solve the correspondence problem
- Use corresponding observations to triangulate

Computing Depth

Computing Depth

$$x - x' = \frac{B \cdot f}{z}$$
 = disparity

Note: Disparity is inversely proportional to depth

Computing Depth

Disparity Maps

$$Z = f \frac{T}{u_1 - u_2}$$

Stereo pair

Disparity map / depth map

Disparity map with occlusions

Stereo Vision

Subgoals:

- Solve the correspondence problem
- Use corresponding observations to triangulate

The Correspondence Problem

Given a point in 3d, discover corresponding observations in left and right images [also called binocular fusion problem]

The Correspondence Problem

•A Cooperative Model (Marr and Poggio, 1976)

Correlation Methods (1970--)

•Multi-Scale Edge Matching (Marr, Poggio and Grimson, 1979-81)

[FP] Chapters: 8

Pick up a window around p(u,v)

- Pick up a window around p(u,v)
- Build vector W
- Slide the window along v line in image 2 and compute w'
- Keep sliding until ww' is maximized.

Slide source: S. Savarese.

Normalized Correlation; minimize:

$$\frac{(w-\overline{w})(w'-\overline{w}')}{\left\|(w-\overline{w})(w'-\overline{w}')\right\|}$$

Correlation Methods

Window size = 3

Window size = 20

- Smaller window
 - More detail
 - More noise
- Larger window
 - Smoother disparity maps
 - Less prone to noise

Fore shortening effect

- It is desirable to have small T/z ratio!
- Small error in measurements implies large error in estimating depth

Homogeneous regions

Hard to match pixels in these regions

Repetitive patterns

The Correspondence Problem is Difficult

- Occlusions
- Fore shortening
- Baseline trade-off
- Homogeneous regions
- Repetitive patterns

Apply non-local constraints to help enforce the correspondences

Results with window search

Data

Ground truth

Window-based matching

Improving correspondence: Non-local constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image

Improving correspondence: Non-local constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering
 - Corresponding points should be in the same order in both views

Not always in presence of occlusions!

Dynamic Programming (Baker and Binford, 1981)

[Uses ordering constraint]

- •Nodes = matched feature points (e.g., edge points).
- Arcs = matched intervals along the epipolar lines.
- Arc cost = discrepancy between intervals.

Find the minimum-cost path going monotonically down and right from the top-left corner of the graph to its bottom-right corner.

Dynamic Programming (Baker and Binford, 1981)


```
% Loop over all nodes (k, l) in ascending order.
for k = 1 to m do
  for l = 1 to n do
   % Initialize optimal cost C(k, l) and backward pointer B(k, l).
   C(k,l) \leftarrow +\infty; B(k,l) \leftarrow \text{nil};
   % Loop over all inferior neighbors (i, j) of (k, l).
   for (i, j) \in \text{Inferior} - \text{Neighbors}(k, l) do
     % Compute new path cost and update backward pointer if necessary.
     d \leftarrow C(i, j) + Arc - Cost(i, j, k, l);
     if d < C(k, l) then C(k, l) \leftarrow d; B(k, l) \leftarrow (i, j) endif;
     endfor;
   endfor;
  endfor:
% Construct optimal path by following backward pointers from (m, n).
P \leftarrow \{(m,n)\}; (i,j) \leftarrow (m,n);
while B(i, j) \neq \text{nil do } (i, j) \leftarrow B(i, j); P \leftarrow \{(i, j)\} \cup P \text{ endwhile.}
```

Dynamic Programming (Ohta and Kanade, 1985)

Reprinted from "Stereo by Intra- and Intet-Scanline Search," by Y. Ohta and T. Kanade, IEEE Trans. on Pattern Analysis and Machine Intelligence, 7(2):139-154 (1985). © 1985 IEEE.

Improving correspondence: Non-local constraints

Uniqueness

 For any point in one image, there should be at most one matching point in the other image

Ordering

Corresponding points should be in the same order in both views

Smoothness

 Disparity is typically a smooth function of x (expect in occluding boundaries)

Smoothness

Stereo Matching as Energy Minimization

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 01

Energy functions of this form can be minimized using graph cuts

Stereo Matching as Energy Minimization

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 01

Ground truth

Window-based matching

Graph cuts

Stereo SDK stereo vision software development kit.

A. Criminisi, A. Blake and D. Robertson

Stereo SDK

Demo video: Real-time dense stereo matching

http://research.microsoft.com/vision/cambridge/i2i/MSRC_SDK

Application: Foreground/Background Segmentation

V. Kolmogorov, A. Criminisi, A. Blake, G. Cross and C. Rother. **Bi-layer segmentation of binocular stereo video** CVPR 2005

http://research.microsoft.com/~antcrim/demos/ACriminisi_Recognition_CowDemo.wmv

Application: 3D Urban Scene Modeling

3D Urban Scene Modeling Integrating Recognition and Reconstruction, N. Cornelis, B. Leibe, K. Cornelis, L. Van Gool, IJCV 08.

Link to movie.

Active Stereo: Point

Replace one of the two cameras by a projector

- Single camera
- Projector geometry calibrated
- What's the advantage of having the projector? Correspondence problem solved

Active Stereo: Stripe

- -Projector and camera are parallel
- Correspondence problem solved!

Laser scanning

Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

Optical triangulation

- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

Laser scanning

The Digital Michelangelo Project, Levoy et al.

Active Stereo: Shadows

- 1 camera,1 light source
- very cheap setup
- calibrated the light source

Active Stereo: Shadows

Active Stereo: Color-Coded Stripes

- Dense reconstruction
- Correspondence problem again
- Get around it by using color codes

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. *3DPVT* 2002

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. *3DPVT* 2002

Rapid shape acquisition: Projector + stereo cameras

Next Lecture: Affine Structure from Motion

• Readings: FP 8.1-2; SZ 7