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From dense motion to tracking 
2 

F. Pernici:  http://www.youtube.com/watch?v=yTvEzWg1cw0!



From dense motion to tracking 
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Von Hardenburg ACM PUI 2001!



From tracking to … 
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Plan 

•  Parametric Motion Estimation!
–  From optical flow per pixel/block toward a motion model of 

certain regions or patches in the video.!

•  Tracking and Filtering!

•  Motion Segmentation!
–  Interesting topic but not exactly tracking…!
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Motion models 

Translation 

2 unknowns 

Affine 

6 unknowns 

Perspective 

8 unknowns 

3D rotation 

3 unknowns 

Source: Szeliski!
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•  Substituting into the B.C. Equation:!
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Each pixel provides 1 linear constraint in 6 global unknowns!

0≈+⋅+⋅ tyx IvIuI
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!

Least Squares Minimization  (over all pixels): 

Example:  Affine Motion 

Source: Szeliski!
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•  Two views presumed in temporal sequence…track or 
analyze spatio-temporal gradient!

),( ii yx ),( ii yx ʹ′ʹ′

•   Sparse or dense in first 
frame!
•   Search in second frame!
•   Motion models expressed in 
terms of position change!

Source: Szeliski!

Tracking with a motion model 
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•  Two views presumed in temporal sequence…track or 
analyze spatio-temporal gradient!

•   Sparse or dense in first 
frame!
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Affine motion model:!

Source: Szeliski!

Tracking with a motion model 
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Quadratic – instantaneous 
approximation to planar motion ! 2
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Projective – exact planar motion!

Other 2D Motion Models 

Source: Szeliski!
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Instantaneous camera motion:!

Global parameters: !

 Global parameters: ! 32191 ,,,,, ttthh …
),( yxγ

Homography+Epipole!

Local Parameter:!

Residual Planar Parallax Motion!

 Global parameters: ! 321 ,, ttt

),( yxγLocal Parameter:!

3D Motion Models 

Source: Szeliski!
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Discrete Search vs. Gradient Based 

•  Consider image I translated by!

!
•  The discrete search method simply searches for the best 

estimate.!
•  The gradient method linearizes the intensity function and 

solves for the estimate!
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Source: Szeliski!
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Correlation and SSD 

•  For larger displacements, do template matching!
–  Define a small area around a pixel as the template!
–  Match the template against each pixel within a search area in 

next image.!
–  Use a match measure such as correlation, normalized 

correlation, or sum-of-squares difference!
–  Choose the maximum (or minimum) as the match!
–  Sub-pixel estimate (Lucas-Kanade)!

Source: Szeliski!
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Shi-Tomasi feature tracker 

1.  Find good features (min eigenvalue of 2×2 Hessian)!
2.  Use Lucas-Kanade to track with pure translation!
3.  Fit affine motion model (registration) with first feature patch!
4.  Terminate tracks whose dissimilarity gets too large!
5.  Start new tracks when needed!

Source: Szeliski!
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Tracking results 

Source: Szeliski!

18 



Tracking - dissimilarity 

Source: Szeliski!
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Tracking results 

Source: Szeliski!
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Shi-Tomasi Feature Extraction Example 
21 

Source:  https://www.youtube.com/watch?v=jKW2y5NhO_k!



Points As Constraints in Tracking 
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Filtering for Tracking 
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Tracking scenarios 

•  Follow a point!
•  Follow a template!
•  Follow a changing template!
•  Follow all the elements of a moving person, fit a model to it.!
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Source: Darrell!



It can get very challenging… 

Method: Yang and Ramanan.  “Articulated Pose Estimation with Flexible Mixtures-of-Parts.” CVPR 2011.!
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What are the dynamics of the thing being tracked?!
How is it observed?!
!

Things to consider in tracking 

Source: Darrell!
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Three main issues in tracking 

Source: Darrell!
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Simplifying Assumptions 

Source: Darrell!
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Kalman filter graphical model and corresponding 
factorized joint probability 

x1! x2! x3!

y1! y2! y3!
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Source: Darrell!
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Tracking as induction 

•  Make a measurement starting in the 0th frame!
•  Then:  assume you have an estimate at the ith frame, after 

the measurement step.!
•  Show that you can do prediction for the i+1th frame, and 

measurement for the i+1th frame.!

Source: Darrell!
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Base case 

Source: Darrell!
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Prediction step 

given!

Source: Darrell!
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Update step 

given!

Source: Darrell!
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The Kalman Filter 

•  Key ideas: !
–  Linear models interact uniquely well with Gaussian noise - 

make the prior Gaussian, everything else Gaussian and the 
calculations are easy!

–  Gaussians are really easy to represent: once you know the 
mean and covariance, you’re done!

!

Source: Darrell!
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Recall the three main issues in tracking 

(Ignore data association for now)!

Source: Darrell!
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The Kalman Filter 

[figure from http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html]!
Source: Darrell!
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The Kalman Filter in 1D 

•  Dynamic Model!

•  Notation!

Predicted mean	



Corrected mean	



Source: Darrell!
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The Kalman Filter 

Source: Darrell!
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Prediction for 1D Kalman filter 

•  The new state is obtained by!
–  multiplying old state by known constant!
–  adding zero-mean noise!

•  Therefore, predicted mean for new state is!
–  constant times mean for old state!

•  Old variance is normal random variable!
–  variance is multiplied by square of constant	


–  and variance of noise is added.!

Source: Darrell!
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Source: Darrell!
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The Kalman Filter 

Source: Darrell!
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Measurement update for 1D Kalman filter 

Notice:!
–  if measurement noise is small, !
we rely mainly on the measurement,!
–  if it’s large, mainly on the prediction!
–   σ does not depend on y!

Source: Darrell!
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Source: Darrell!
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Source:    https://www.youtube.com/watch?v=uiegHFqmkyE!



KF Example Application 
45 

Source:    https://www.youtube.com/watch?v=Y3TzhXYF0Lg!
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Kalman filter for computing an on-line 
average 

•  What Kalman filter parameters and initial conditions 
should we pick so that the optimal estimate for x at 
each iteration is just the average of all the 
observations seen so far?!

Source: Darrell!



47 

Iteration         0                   1                                 2!
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What happens if the x dynamics are given a 
non-zero variance? 

Source: Darrell!
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Linear dynamic models 

•  A linear dynamic model has the form!

•  This is much, much more general than it looks, and 
extremely powerful!

€ 

yi = N Mixi;Σmi( )

€ 

xi = N Di−1xi−1;Σdi( )

Source: Darrell!
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Examples of linear state space models 

•  Drifting points!
–  assume that the new position of the point is the old one, plus 

noise!
                                       D = Identity!

!

€ 

yi = N Mixi;Σmi( )

€ 

xi = N Di−1xi−1;Σdi( )

cic.nist.gov/lipman/sciviz/images/random3.gif !
http://www.grunch.net/synergetics/images/
random3.jpg!Source: Darrell!
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         Constant velocity            

•  We have!

–  (the Greek letters denote noise terms)!
•  Stack (u, v) into a single state vector!

–  which is the form we had above!

€ 

ui = ui−1 + Δtvi−1 + εi
vi = vi−1 + ςi

€ 

u
v
⎛ 
⎝ 
⎜ 
⎞ 
⎠ 
⎟ 
i

=
1 Δt
0 1
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
u
v
⎛ 
⎝ 
⎜ 
⎞ 
⎠ 
⎟ 
i−1

+ noise

€ 

yi = N Mixi;Σmi( )

€ 

xi = N Di−1xi−1;Σdi( )

Di-1! xi-1!xi!

Source: Darrell!
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position!

position!

Constant!
Velocity!
Model!

velocity!

time!

measurement,position!

time!

Source: Darrell!
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        Constant acceleration 

•  We have!

–  (the Greek letters denote noise terms)!
•  Stack (u, v) into a single state vector!

–  which is the form we had above!

€ 

ui = ui−1 + Δtvi−1 + ε i
vi = vi−1 + Δtai−1 +ς i
ai = ai−1 + ξi

€ 

u
v
a
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1 Δt 0
0 1 Δt
0 0 1
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⎜ 
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⎠ 

⎟ 
⎟ 
i−1

+ noise

€ 

yi = N Mixi;Σmi( )

€ 

xi = N Di−1xi−1;Σdi( )

Di-1! xi-1!xi!

Source: Darrell!
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time!

position!

position!

velocity!

Constant!
Acceleration!
Model!

Source: Darrell!
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Assume we have a point, moving on a line with a periodic 
movement defined with a differential eq:  

 
 
can be defined as  
 
 
 
with state defined as stacked position and velocity u=(p, v) 
!

Periodic motion 

€ 

yi = N Mixi;Σmi( )

€ 

xi = N Di−1xi−1;Σdi( )

Source: Darrell!
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Take discrete approximation….(e.g., forward Euler integration 

with Δt stepsize.) 
 
 
 
 

Periodic motion 

€ 

yi = N Mixi;Σmi( )

€ 

xi = N Di−1xi−1;Σdi( )

Di-1!
xi-1!xi!

Source: Darrell!
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n-D 

Generalization to n-D is straightforward but more complex.!
!
!
!
!
!

Source: Darrell!
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n-D 

Generalization to n-D is straightforward but more complex.!
!
!
!
!
!

Source: Darrell!



Generalization to n-D is straightforward but more complex.!
!
!
!
!
Prediction:!
•  Multiply estimate at prior time with forward model:!

•  Propagate covariance through model and add new noise:!
!
!
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n-D Prediction 

Source: Darrell!



Generalization to n-D is straightforward but more complex.!
!
!
!
!
Correction:!
•  Update a priori estimate with measurement to form a 

posteriori!
!
!
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n-D Correction 

Source: Darrell!
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n-D correction 

Find linear filter on innovations !
!
!
!
which minimizes a posteriori error covariance:!
!
!
!
K is the Kalman Gain matrix.  A solution is!
!

( ) ( )⎥⎦
⎤

⎢⎣
⎡ −− ++ xxxxE

T

Source: Darrell!
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As measurement becomes more reliable, K weights 
residual more heavily, !

!
!
!

As prior covariance approaches 0, measurements are 
ignored:!

Kalman Gain Matrix 

1

0
lim −

→Σ
=MKi

m

0lim
0

=
→Σ−

iK
i

Source: Darrell!
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Source: Darrell!
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Constant Velocity Model!
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time!

Source: Darrell!
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time!
Source: Darrell!
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po
si

tio
n!

time!

This is figure 17.3 of Forsyth and Ponce.  The notation is a bit involved, but is logical.  We!
plot the true state as open circles, measurements as x’s,  predicted means as *’s!
with three standard deviation bars, corrected means as +’s with three !
standard deviation bars.!



68 

The o-s give state, x-s measurement.!

po
si

tio
n!

time!
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Smoothing 

•  Idea!
–  We don’t have the best estimate of state - what about the 

future?!
–  Run two filters, one moving forward, the other backward in 

time.!
–  Now combine state estimates!

•  The crucial point here is that we can obtain a smoothed estimate 
by viewing the backward filter’s prediction as yet another 
measurement for the forward filter!

Source: Darrell!
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n!

time!

Forward estimates.!

The o-s give state, x-s measurement.!
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n!

time!The o-s give state, x-s measurement.!

Backward estimates.!
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po
si

tio
n!

time!The o-s give state, x-s measurement.!

Combined forward-backward estimates.!
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[figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html]!

2-D constant velocity example from Kevin Murphy’s Matlab toolbox 

Source: Darrell!
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2-D constant velocity example from Kevin Murphy’s Matlab toolbox!
•  MSE of filtered estimate is 4.9; of smoothed estimate. 3.2. !
•  Not only is the smoothed estimate better, but we know that it is 

better, as illustrated by the smaller uncertainty ellipses!
•   Note how the smoothed ellipses are larger at the ends, 

because these points have seen less data. !
•  Also, note how rapidly the filtered ellipses reach their steady-

state (“Ricatti”) values. !
[figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html]!

Source: Darrell!
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•  Kalman filter homepage!
http://www.cs.unc.edu/~welch/kalman/!
(kalman filter demo applet)!

•  Kevin Murphy’s Matlab toolbox:!
http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html!

Linear Filtering Resources 

Source: Darrell!
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Motion segmentation 
•  How do we represent the motion in this scene?!

Source; Szeliski, Savarese!
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•  Break image sequence into “layers” each of which 
has a coherent (affine) motion!

Motion segmentation 
J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.!

Source; Szeliski, Savarese!
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What are layers? 

•  Each layer is defined by an alpha mask and an affine motion 
model!

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.!
Source; Szeliski, Savarese!
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•  Substituting into the brightness constancy 
equation:!

yaxaayxv
yaxaayxu

654

321

),(
),(

++=

++=

0≈+⋅+⋅ tyx IvIuI

Affine motion 

Source; Szeliski, Savarese!
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•  Substituting into the brightness constancy 
equation:!

yaxaayxv
yaxaayxu

654

321

),(
),(

++=

++=

•   Each pixel provides 1 linear constraint in  
    6 unknowns!

[ ] 2∑ ++++++= tyx IyaxaaIyaxaaIaErr )()()( 654321
!

•  If we have at least 6 pixels in a neighborhood, !
    a1… a6 can be found by least squares minimization:!

Affine motion 

Source; Szeliski, Savarese!
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How do we estimate the layers? 
•  1. Obtain a set of initial affine motion hypotheses!

–  Divide the image into blocks and estimate affine motion parameters in each 
block by least squares!
•  Eliminate hypotheses with high residual error!

2. Map into motion parameter space!
3.  Perform k-means clustering on affine motion parameters!

– Merge clusters that are close and retain the largest clusters to obtain a 
smaller set of hypotheses to describe all the motions in the scene!

a1!

a6!

a2!

Source; Szeliski, Savarese!
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How do we estimate the layers? 
•  1. Obtain a set of initial affine motion hypotheses!

–  Divide the image into blocks and estimate affine motion parameters in each 
block by least squares!
•  Eliminate hypotheses with high residual error!

2. Map into motion parameter space!
3.  Perform k-means clustering on affine motion parameters!

– Merge clusters that are close and retain the largest clusters to obtain a 
smaller set of hypotheses to describe all the motions in the scene!

4. Assign each pixel to best hypothesis --- iterate!

Source; Szeliski, Savarese!
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How do we estimate the layers? 

1.  Obtain a set of initial affine motion hypotheses!
–  Divide the image into blocks and estimate affine motion parameters in each block by 

least squares!
•  Eliminate hypotheses with high residual error!

•    Map into motion parameter space!
•    Perform k-means clustering on affine motion parameters!

– Merge clusters that are close and retain the largest clusters to obtain a smaller 
set of hypotheses to describe all the motions in the scene!

2. Iterate until convergence:!
• Assign each pixel to best hypothesis!

– Pixels with high residual error remain unassigned!
• Perform region filtering to enforce spatial constraints!
• Re-estimate affine motions in each region!

Source; Szeliski, Savarese!
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Example result 

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993. 
Source; Szeliski, Savarese!
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Motion and Tracking in Omnidirectional Video 
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Next Lecture: Structure from Motion 

•  Readings:   FP  8;  SZ 7  !
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