
Tracking

Instructor: Jason Corso (jjcorso)!
web.eecs.umich.edu/~jjcorso/t/598F14!

!

Materials on these slides have come from many sources in addition to myself; individual slides reference specific sources.!

EECS 598-08 Fall 2014!
Foundations of Computer Vision!
!

Readings: FP 11; SZ 8!
Date: 10/20/14!
!

From dense motion to tracking
2

F. Pernici: http://www.youtube.com/watch?v=yTvEzWg1cw0!

From dense motion to tracking
3

Von Hardenburg ACM PUI 2001!

From tracking to …
4

Plan

•  Parametric Motion Estimation!
–  From optical flow per pixel/block toward a motion model of

certain regions or patches in the video.!

•  Tracking and Filtering!

•  Motion Segmentation!
–  Interesting topic but not exactly tracking…!

5

Motion models

Translation

2 unknowns

Affine

6 unknowns

Perspective

8 unknowns

3D rotation

3 unknowns

Source: Szeliski!

6

0)()(654321 ≈++++++ tyx IyaxaaIyaxaaI

•  Substituting into the B.C. Equation:!
yaxaayxv
yaxaayxu

654

321

),(
),(

++=

++=

Each pixel provides 1 linear constraint in 6 global unknowns!

0≈+⋅+⋅ tyx IvIuI

[] 2∑ ++++++= tyx IyaxaaIyaxaaIaErr)()()(654321
!

Least Squares Minimization (over all pixels):

Example: Affine Motion

Source: Szeliski!

7

•  Two views presumed in temporal sequence…track or
analyze spatio-temporal gradient!

),(ii yx),(ii yx ʹ′ʹ′

•  Sparse or dense in first
frame!
•  Search in second frame!
•  Motion models expressed in
terms of position change!

Source: Szeliski!

Tracking with a motion model
8

•  Two views presumed in temporal sequence…track or
analyze spatio-temporal gradient!

),(ii yx),(ii yx ʹ′ʹ′

•  Sparse or dense in first
frame!
•  Search in second frame!
•  Motion models expressed in
terms of position change!

Source: Szeliski!

Tracking with a motion model
9

•  Two views presumed in temporal sequence…track or
analyze spatio-temporal gradient!

),(ii yx

•  Sparse or dense in first
frame!
•  Search in second frame!
•  Motion models expressed in
terms of position change!

(ui,vi)!

Source: Szeliski!

Tracking with a motion model
10

•  Two views presumed in temporal sequence…track or
analyze spatio-temporal gradient!

•  Sparse or dense in first
frame!
•  Search in second frame!
•  Motion models expressed in
terms of position change!

(ui,vi)!

Source: Szeliski!

Tracking with a motion model
11

•  Two views presumed in temporal sequence…track or
analyze spatio-temporal gradient!

•  Sparse or dense in first
frame!
•  Search in second frame!
•  Motion models expressed in
terms of position change!

(ui,vi)!

yaxaayxv
yaxaayxu

654

321

),(
),(

++=

++=

⎥
⎦

⎤
⎢
⎣

⎡
+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

4

1

65

32

a
a

y
x

aa
aa

v
u

i

i

i

i

Affine motion model:!

Source: Szeliski!

Tracking with a motion model
12

Quadratic – instantaneous
approximation to planar motion ! 2

87654

8
2

7321

yqxyqyqxqqv
xyqxqyqxqqu

++++=

++++=

yyvxxu

yhxhh
yhxhhy

yhxhh
yhxhhx

−=−=

++

++
=

++

++
=

','
and

'

'

987

654

987

321

Projective – exact planar motion!

Other 2D Motion Models

Source: Szeliski!

13

ZxTTxxyyv
ZxTTyxxyu

ZYZYX

ZXZYX

)()1(

)()1(
2

2

−+Ω−Ω+Ω+−=

−+Ω−Ω++Ω−=

yyvxxu
thyhxh
thyhxhy

thyhxh
thyhxhx

−=−=

+++

+++
=

+++

+++
=

',' :and

'

'

3987

1654

3987

1321

γ
γ

γ
γ

)(
1

)(
1

23
3

13
3

tyt
t

xyv

txt
t

xxu

w

w

−
+

=−=

−
+

=−=

γ
γ

γ
γ

Local Parameter: !
ZYXZYX TTT ,,,,, ΩΩΩ

),(yxZ

Instantaneous camera motion:!

Global parameters: !

 Global parameters: ! 32191 ,,,,, ttthh …
),(yxγ

Homography+Epipole!

Local Parameter:!

Residual Planar Parallax Motion!

 Global parameters: ! 321 ,, ttt

),(yxγLocal Parameter:!

3D Motion Models

Source: Szeliski!

14

Discrete Search vs. Gradient Based

•  Consider image I translated by!

!
•  The discrete search method simply searches for the best

estimate.!
•  The gradient method linearizes the intensity function and

solves for the estimate!

2
1

,
00

2

,
1

)),(),(),((

)),(),((),(

yxvvyuuxIyxI

vyuxIyxIvuE

yx

yx

η−+−+−−=

++−=

∑

∑

00 ,vu

),(),(),(
),(),(

1001

0

yxyxIvyuxI
yxIyxI

η+=++

=

Source: Szeliski!

15

Correlation and SSD

•  For larger displacements, do template matching!
–  Define a small area around a pixel as the template!
–  Match the template against each pixel within a search area in

next image.!
–  Use a match measure such as correlation, normalized

correlation, or sum-of-squares difference!
–  Choose the maximum (or minimum) as the match!
–  Sub-pixel estimate (Lucas-Kanade)!

Source: Szeliski!

16

Shi-Tomasi feature tracker

1.  Find good features (min eigenvalue of 2×2 Hessian)!
2.  Use Lucas-Kanade to track with pure translation!
3.  Fit affine motion model (registration) with first feature patch!
4.  Terminate tracks whose dissimilarity gets too large!
5.  Start new tracks when needed!

Source: Szeliski!

17

Tracking results

Source: Szeliski!

18

Tracking - dissimilarity

Source: Szeliski!

19

Tracking results

Source: Szeliski!

20

Shi-Tomasi Feature Extraction Example
21

Source: https://www.youtube.com/watch?v=jKW2y5NhO_k!

Points As Constraints in Tracking
22

Filtering for Tracking

23

Tracking scenarios

•  Follow a point!
•  Follow a template!
•  Follow a changing template!
•  Follow all the elements of a moving person, fit a model to it.!

24

Source: Darrell!

It can get very challenging…

Method: Yang and Ramanan. “Articulated Pose Estimation with Flexible Mixtures-of-Parts.” CVPR 2011.!

26

What are the dynamics of the thing being tracked?!
How is it observed?!
!

Things to consider in tracking

Source: Darrell!

27

Three main issues in tracking

Source: Darrell!

28

Simplifying Assumptions

Source: Darrell!

29

Kalman filter graphical model and corresponding
factorized joint probability

x1! x2! x3!

y1! y2! y3!

)|()|()|()|()|()(
),,,,,(

33232212111

321321

xyPxxPxyPxxPxyPxP
yyyxxxP =

Source: Darrell!

30

Tracking as induction

•  Make a measurement starting in the 0th frame!
•  Then: assume you have an estimate at the ith frame, after

the measurement step.!
•  Show that you can do prediction for the i+1th frame, and

measurement for the i+1th frame.!

Source: Darrell!

31

Base case

Source: Darrell!

32

Prediction step

given!

Source: Darrell!

33

Update step

given!

Source: Darrell!

34

The Kalman Filter

•  Key ideas: !
–  Linear models interact uniquely well with Gaussian noise -

make the prior Gaussian, everything else Gaussian and the
calculations are easy!

–  Gaussians are really easy to represent: once you know the
mean and covariance, you’re done!

!

Source: Darrell!

35

Recall the three main issues in tracking

(Ignore data association for now)!

Source: Darrell!

36

The Kalman Filter

[figure from http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html]!
Source: Darrell!

37

The Kalman Filter in 1D

•  Dynamic Model!

•  Notation!

Predicted mean	

Corrected mean	

Source: Darrell!

38

The Kalman Filter

Source: Darrell!

39

Prediction for 1D Kalman filter

•  The new state is obtained by!
–  multiplying old state by known constant!
–  adding zero-mean noise!

•  Therefore, predicted mean for new state is!
–  constant times mean for old state!

•  Old variance is normal random variable!
–  variance is multiplied by square of constant	

–  and variance of noise is added.!

Source: Darrell!

40

Source: Darrell!

41

The Kalman Filter

Source: Darrell!

42

Measurement update for 1D Kalman filter

Notice:!
–  if measurement noise is small, !
we rely mainly on the measurement,!
–  if it’s large, mainly on the prediction!
–  σ does not depend on y!

Source: Darrell!

43

Source: Darrell!

44

Source: https://www.youtube.com/watch?v=uiegHFqmkyE!

KF Example Application
45

Source: https://www.youtube.com/watch?v=Y3TzhXYF0Lg!

46

Kalman filter for computing an on-line
average

•  What Kalman filter parameters and initial conditions
should we pick so that the optimal estimate for x at
each iteration is just the average of all the
observations seen so far?!

Source: Darrell!

47

Iteration 0 1 2!

∞== −−
00 0 σx

+

−

+

−

i

i

i

i

x
x

σ

σ

0

∞

1,0,1,1 ====
ii mdii md σσ

Kalman filter model!

Initial conditions!

0y

1!

0y

1

2
10 yy +

2
1

2
10 yy +

2
1

3
210 yyy ++

3
1

Source: Darrell!

48

What happens if the x dynamics are given a
non-zero variance?

Source: Darrell!

49

Iteration 0 1 2!

∞== −−
00 0 σx

+

−

+

−

i

i

i

i

x
x

σ

σ

0

∞

0y

1,1,1,1 ====
ii mdii md σσ

Kalman filter model!

Initial conditions!

1!

0y

2

3
2 10 yy +

3
2

3
5

8
52 210 yyy ++

8
5

3
2 10 yy +

Source: Darrell!

50

Linear dynamic models

•  A linear dynamic model has the form!

•  This is much, much more general than it looks, and
extremely powerful!

€

yi = N Mixi;Σmi()

€

xi = N Di−1xi−1;Σdi()

Source: Darrell!

51

Examples of linear state space models

•  Drifting points!
–  assume that the new position of the point is the old one, plus

noise!
 D = Identity!

!

€

yi = N Mixi;Σmi()

€

xi = N Di−1xi−1;Σdi()

cic.nist.gov/lipman/sciviz/images/random3.gif !
http://www.grunch.net/synergetics/images/
random3.jpg!Source: Darrell!

52

 Constant velocity

•  We have!

–  (the Greek letters denote noise terms)!
•  Stack (u, v) into a single state vector!

–  which is the form we had above!

€

ui = ui−1 + Δtvi−1 + εi
vi = vi−1 + ςi

€

u
v
⎛
⎝
⎜
⎞
⎠
⎟
i

=
1 Δt
0 1
⎛
⎝
⎜

⎞
⎠
⎟
u
v
⎛
⎝
⎜
⎞
⎠
⎟
i−1

+ noise

€

yi = N Mixi;Σmi()

€

xi = N Di−1xi−1;Σdi()

Di-1! xi-1!xi!

Source: Darrell!

53

position!

position!

Constant!
Velocity!
Model!

velocity!

time!

measurement,position!

time!

Source: Darrell!

54

 Constant acceleration

•  We have!

–  (the Greek letters denote noise terms)!
•  Stack (u, v) into a single state vector!

–  which is the form we had above!

€

ui = ui−1 + Δtvi−1 + ε i
vi = vi−1 + Δtai−1 +ς i
ai = ai−1 + ξi

€

u
v
a

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
i

=

1 Δt 0
0 1 Δt
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

u
v
a

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
i−1

+ noise

€

yi = N Mixi;Σmi()

€

xi = N Di−1xi−1;Σdi()

Di-1! xi-1!xi!

Source: Darrell!

55

time!

position!

position!

velocity!

Constant!
Acceleration!
Model!

Source: Darrell!

56

Assume we have a point, moving on a line with a periodic
movement defined with a differential eq:

can be defined as

with state defined as stacked position and velocity u=(p, v)
!

Periodic motion

€

yi = N Mixi;Σmi()

€

xi = N Di−1xi−1;Σdi()

Source: Darrell!

57

Take discrete approximation….(e.g., forward Euler integration

with Δt stepsize.)

Periodic motion

€

yi = N Mixi;Σmi()

€

xi = N Di−1xi−1;Σdi()

Di-1!
xi-1!xi!

Source: Darrell!

58

n-D

Generalization to n-D is straightforward but more complex.!
!
!
!
!
!

Source: Darrell!

59

n-D

Generalization to n-D is straightforward but more complex.!
!
!
!
!
!

Source: Darrell!

Generalization to n-D is straightforward but more complex.!
!
!
!
!
Prediction:!
•  Multiply estimate at prior time with forward model:!

•  Propagate covariance through model and add new noise:!
!
!

60

n-D Prediction

Source: Darrell!

Generalization to n-D is straightforward but more complex.!
!
!
!
!
Correction:!
•  Update a priori estimate with measurement to form a

posteriori!
!
!

61

n-D Correction

Source: Darrell!

62

n-D correction

Find linear filter on innovations !
!
!
!
which minimizes a posteriori error covariance:!
!
!
!
K is the Kalman Gain matrix. A solution is!
!

() ()⎥⎦
⎤

⎢⎣
⎡ −− ++ xxxxE

T

Source: Darrell!

63

As measurement becomes more reliable, K weights
residual more heavily, !

!
!
!

As prior covariance approaches 0, measurements are
ignored:!

Kalman Gain Matrix

1

0
lim −

→Σ
=MKi

m

0lim
0

=
→Σ−

iK
i

Source: Darrell!

64

Source: Darrell!

65

position!
po

si
tio

n!

Constant Velocity Model!

ve
lo

ci
ty
!

time!

Source: Darrell!

66

po
si

tio
n!

time!
Source: Darrell!

67

po
si

tio
n!

time!

This is figure 17.3 of Forsyth and Ponce. The notation is a bit involved, but is logical. We!
plot the true state as open circles, measurements as x’s, predicted means as *’s!
with three standard deviation bars, corrected means as +’s with three !
standard deviation bars.!

68

The o-s give state, x-s measurement.!

po
si

tio
n!

time!

69

Smoothing

•  Idea!
–  We don’t have the best estimate of state - what about the

future?!
–  Run two filters, one moving forward, the other backward in

time.!
–  Now combine state estimates!

•  The crucial point here is that we can obtain a smoothed estimate
by viewing the backward filter’s prediction as yet another
measurement for the forward filter!

Source: Darrell!

70

po
si

tio
n!

time!

Forward estimates.!

The o-s give state, x-s measurement.!

71

po
si

tio
n!

time!The o-s give state, x-s measurement.!

Backward estimates.!

72

po
si

tio
n!

time!The o-s give state, x-s measurement.!

Combined forward-backward estimates.!

73

[figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html]!

2-D constant velocity example from Kevin Murphy’s Matlab toolbox

Source: Darrell!

74

2-D constant velocity example from Kevin Murphy’s Matlab toolbox!
•  MSE of filtered estimate is 4.9; of smoothed estimate. 3.2. !
•  Not only is the smoothed estimate better, but we know that it is

better, as illustrated by the smaller uncertainty ellipses!
•  Note how the smoothed ellipses are larger at the ends,

because these points have seen less data. !
•  Also, note how rapidly the filtered ellipses reach their steady-

state (“Ricatti”) values. !
[figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html]!

Source: Darrell!

75

•  Kalman filter homepage!
http://www.cs.unc.edu/~welch/kalman/!
(kalman filter demo applet)!

•  Kevin Murphy’s Matlab toolbox:!
http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html!

Linear Filtering Resources

Source: Darrell!

76

Motion segmentation
•  How do we represent the motion in this scene?!

Source; Szeliski, Savarese!

77

•  Break image sequence into “layers” each of which
has a coherent (affine) motion!

Motion segmentation
J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.!

Source; Szeliski, Savarese!

78

What are layers?

•  Each layer is defined by an alpha mask and an affine motion
model!

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.!
Source; Szeliski, Savarese!

79

•  Substituting into the brightness constancy
equation:!

yaxaayxv
yaxaayxu

654

321

),(
),(

++=

++=

0≈+⋅+⋅ tyx IvIuI

Affine motion

Source; Szeliski, Savarese!

80

0)()(654321 ≈++++++ tyx IyaxaaIyaxaaI

•  Substituting into the brightness constancy
equation:!

yaxaayxv
yaxaayxu

654

321

),(
),(

++=

++=

•  Each pixel provides 1 linear constraint in  
 6 unknowns!

[] 2∑ ++++++= tyx IyaxaaIyaxaaIaErr)()()(654321
!

•  If we have at least 6 pixels in a neighborhood, !
 a1… a6 can be found by least squares minimization:!

Affine motion

Source; Szeliski, Savarese!

81

How do we estimate the layers?
•  1. Obtain a set of initial affine motion hypotheses!

–  Divide the image into blocks and estimate affine motion parameters in each
block by least squares!
•  Eliminate hypotheses with high residual error!

2. Map into motion parameter space!
3. Perform k-means clustering on affine motion parameters!

– Merge clusters that are close and retain the largest clusters to obtain a
smaller set of hypotheses to describe all the motions in the scene!

a1!

a6!

a2!

Source; Szeliski, Savarese!

82

How do we estimate the layers?
•  1. Obtain a set of initial affine motion hypotheses!

–  Divide the image into blocks and estimate affine motion parameters in each
block by least squares!
•  Eliminate hypotheses with high residual error!

2. Map into motion parameter space!
3. Perform k-means clustering on affine motion parameters!

– Merge clusters that are close and retain the largest clusters to obtain a
smaller set of hypotheses to describe all the motions in the scene!

4. Assign each pixel to best hypothesis --- iterate!

Source; Szeliski, Savarese!

83

How do we estimate the layers?

1.  Obtain a set of initial affine motion hypotheses!
–  Divide the image into blocks and estimate affine motion parameters in each block by

least squares!
•  Eliminate hypotheses with high residual error!

•  Map into motion parameter space!
•  Perform k-means clustering on affine motion parameters!

– Merge clusters that are close and retain the largest clusters to obtain a smaller
set of hypotheses to describe all the motions in the scene!

2. Iterate until convergence:!
• Assign each pixel to best hypothesis!

– Pixels with high residual error remain unassigned!
• Perform region filtering to enforce spatial constraints!
• Re-estimate affine motions in each region!

Source; Szeliski, Savarese!

84

Example result

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.
Source; Szeliski, Savarese!

85

86

Motion and Tracking in Omnidirectional Video
87

Next Lecture: Structure from Motion

•  Readings: FP 8; SZ 7 !

88

