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From dense motion to tracking

F. Pernici: http://www.youtube.com/watch?v=yTvEzWg1cwO




From dense motion to tracking

Von Hardenburg ACM PUI 2001




From tracking to ...

The VOICE of Mind’s Eye
Video On an Index Card Engine

Demo Video for SUNY Buffalo’s Mind’'s Eye Effort

Pl. Jason Corso |jcorso@buffalo.edu

Funded under contract W911NF-10-2-0062



Plan

« Parametric Motion Estimation

— From optical flow per pixel/block toward a motion model of
certain regions or patches in the video.

» Tracking and Filtering

« Motion Segmentation
— Interesting topic but not exactly tracking...



Motion models
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Source: Szeliski



Example: Affine Motion

u(x,y) =a, +a,X+a;y . Substituting into the B.C. Equation:
v(x,y)=a, +ax+a.y

Ix(alﬁ[gix+ﬁt33s)0!| I, (a, +asx+ay)+1, =0

Each pixel provides 1 linear constraint in 6 global unknowns

Least Squares Minimization (over all pixels):

2

Err(a) = zl:[x(az1 +a,x+ay)+1 ,(a, +a5x+a6y)+]t]




Tracking with a motion model

« Two views presumed in temporal sequence...track or
analyze spatio-temporal gradient

('xi9yi). 1o
X,y
( ly).

o O

- Sparse or dense in first
frame

« Search in second frame

* Motion models expressed in
terms of position change



Tracking with a motion model
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Tracking with a motion model

« Two views presumed in temporal sequence...track or
analyze spatio-temporal gradient
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Tracking with a motion model

« Two views presumed in temporal sequence...track or
analyze spatio-temporal gradient

(U, V)
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Tracking with a motion model

« Two views presumed in temporal sequence...track or
analyze spatio-temporal gradient

(U, V)

/’

\

u(x,y)=a, +a,x+a,y

v(x,y)=a, +ax+a.y

7

Affine motion model:

Uu; a, d, d
= +
1Z a, d a,
- Sparse or dense in first

frame
« Search in second frame

X

Vi

* Motion models expressed in

terms of position change



Other 2D Motion Models

Quadratic — instantaneous

2
e . U=4q,+4,xX+q;y+q;xX +qgxy
approximation to planar motion

V=g, +qsX+qgy+ ;X0 +qgy°

h, +h h
' | T HX+ LY

Ch+hox+hyy

Projective — exact planar motion = hy +hsx +hgy

B h, + hyx + hyy

and

! !

u=x-x, v=y'-y

Source: Szeliski




3D Motion Models

Global parameters:

Local Parameter:

ﬁnstantaneous camera motion:

~

Q,.Q,.Q,.T,.,T,.T,

Z(x,y)

u =

V=

—xyQ, +(1+x)Q, —1Q, + (T, -T,x)/Z
~1+yH)Q, +0Q, —xQ, +(T, -T,x)/Z

Source: Szeliski

/ e hx+hy+h, +yt
" Homography+Epipole N h.x+hyy+ hy + yt,
hx+hy+h +yt
- ol bt =
Global parameters: [/ 9 AN hox+hy+h + 7L,
kLocal Parameter: v(x,¥) ) land: u=x'—x, v=y—y
Residual Planar Parallax Motion N " 4
Uu=x"-x= (t,x—t,)
Global parameters: l,t,,1, MAE
: W Y
Local Parameter: v=y —Xx= t,y—t
7(x,») ) |v=Y 1”%(a;y )




Discrete Search vs. Gradient Based

« Consider image | translated by u«,,v,

]O(Xay) =](x9y)
L (x+uy,y+vy)=1(x,y)+n,(x,y)

E(u,v) =Y (I(x,y)=1,(x+u,y+v))’

= E([(x,y)—l(x—uo +1,Y =V +V) =1 (x, )’

* The discrete search method simply searches for the best
estimate.

« The gradient method linearizes the intensity function and
solves for the estimate



Correlation and SSD

* For larger displacements, do template matching
— Define a small area around a pixel as the template

— Match the template against each pixel within a search area in
next image.

— Use a match measure such as correlation, normalized
correlation, or sum-of-squares difference

— Choose the maximum (or minimum) as the match
— Sub-pixel estimate (Lucas-Kanade)



Shi-Tomasi feature tracker

Find good features (min eigenvalue of 2x2 Hessian)

Use Lucas-Kanade to track with pure translation

Fit affine motion model (registration) with first feature patch
Terminate tracks whose dissimilarity gets too large

Start new tracks when needed

o &~ Wb~



Tracking results

Source: Szeliski

Figure 1: Three frame details from Woody Allen’s
Manhattan. The details are from the 1st, 11th, and
21st frames of a subsequence from the movie.

SESSE
|

Figure 2: The traffic sign windows from frames
1,6,11,16,21 as tracked (top), and warped by the com-
puted deformation matrices (bottom).




Tracking - dissimilarity
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Figure 3: Pure translation (dashed) and affine motion
(solid) dissimilarity measures for the window sequence

of figure 1 (plusses) and 4 (circles).

Source: Szeliski



Tracking results

Figure 13: Labels of some of the features in figure 11.
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Figure 14: Six sample features through six sample

frames.

Source: Szeliski
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Figure 15: Affine motion dissimilarity for the features
in figure 11. Notice the good discrimination between
good and bad features. Dashed plots indicate aliasing
(see text).

Features 24 and 60 deserve a special discussion, and



Shi-Tomasi Feature Extraction Example

Source: https://www.youtube.com/watch?v=jKW2y5NhO_k



Points As Constraints in Tracking

i




Filtering for Tracking



Tracking scenarios

* Follow a point

* Follow a template

* Follow a changing template

» Follow all the elements of a moving person, fit a model to it.



It can get very challenging...

www.SparkPeople.com

Method: Yang and Ramanan. “Articulated Pose Estimation with Flexible Mixtures-of-Parts.” CVPR 2011.



Things to consider in tracking

What are the dynamics of the thing being tracked?
How is it observed?



Three main issues in tracking

e Prediction: we have seen y,,...,y,_; — what state does this set of mea-
surements predict for the ¢’th frame? to solve this problem, we need to obtain
a representation of P(X;|Yo=vg,---, Yi-1 =Y, _1)-

e Data association: Some of the measurements obtained from the i-th frame
may tell us about the object’s state. Typically, we use P(X;|Yo =vyg,..., Y i1 =
y,_1) to identify these measurements.

e Correction: now that we have y, — the relevant measurements — we need
to compute a representation of P(X;|Yo=1vg,..., Y =Y;).

Source: Darrell



Simplifying Assumptions

e Only the immediate past matters: formally, we require
P(X;|Xq,...,X;-1) = P(X;|X;_1)

This assumption hugely simplifies the design of algorithms, as we shall see;
furthermore, it isn’t terribly restrictive if we're clever about interpreting X;
as we shall show in the next section.

¢ Measurements depend only on the current state: we assume that Y,
is conditionally independent of all other measurements given X,;. This means
that

PY;Y; . . Y;X;,)=PY;X:,)P(Y;,...,YiX;)

Again, this isn’t a particularly restrictive or controversial assumption, but it
yields important simplifications.

Source: Darrell



Kalman filter graphical model and corresponding
factorized joint probability

P(X), X5, X5, 15, V5, V3) =
P(x))P(y, | x)P(x, | %)) P(y, | %) P(xy | X)) P(y5 | X5)



Tracking as induction

« Make a measurement starting in the 0t frame

 Then: assume you have an estimate at the ith frame, after
the measurement step.

« Show that you can do prediction for the i+1th frame, and
measurement for the i+1th frame.

N

Time Update Measurement Update
(“Predict”) (“Correct”)

(



Base case

Firstly, we assume that we have P(X)

P(X0]Y0 :yo) _ P(yO‘XO)P(XO)

P(y,)



Prediction step

Prediction

Prediction involves representing

P(X.,;|y0, x -:y-i—l)

given
P(Xi-1|Yyg,-- - Yi1)-

Our independence assumptions make it possible to write

P(X»i.|y0.-.---.~yzi—1) - /P(Xiax'i—lly()a--'syi—l)dXi—l

/P(Xilxi—lay()w"'*yi—l)P(-X‘i—lly()a'--'.y-i.—l)dXi—l

- [ PXIXP iy v )X

Source: Darrell



Update step

Correction

Correction involves obtaining a representation of

P(X;lygs---»Y;)

given
P(Xilyo,-- - Yi—1)

Our independence assumptions make it possible to write

P(Xi7y0>°'°ayz')

_ P(yi|X7jay07"-ayi—l)P(XilyOa”'7yi—1)P(yOa°-°>yz’—1)
P(yOa'“)yi)
P(yO""’y’é—l)

P(y7;|Xi)P(Xz’|?!0a Y1)
J P(y;| X:)P(Xilyg, - -, y;_1)d X

Source: Darrell



The Kalman Filter

« Key ideas:

— Linear models interact uniquely well with Gaussian noise -
make the prior Gaussian, everything else Gaussian and the
calculations are easy

— Gaussians are really easy to represent: once you know the
mean and covariance, you're done



Recall the three main issues in tracking

e Prediction: we have seen y,,...,y,_; — what state does this set of mea-
surements predict for the ¢’th frame? to solve this problem, we need to obtain
a representation of P(X;|Yo=vyg,---, Yic1 =Y;_1)-

e Data association: Some of the measurements obtained from the i-th frame
may tell us about the object’s state. Typically, we use P(X;|Yo =vyg,..., Y i1 =
y,_1) to identify these measurements.

e Correction: now that we have y, — the relevant measurements — we need
to compute a representation of P(X;|Yo=1vg,..., Y =Y;).

(lgnore data association for now)

Source: Darrell



The Kalman Filter

Time Update Measurement Update
(“Predict’™) (“Correct™)

[figure from http://www.cs.unc.edu/~welch/kalman/kalmanintro.html]

Source: Darrell



The Kalman Filter in 1D

« Dynamic Model

T; ~ .7\'"((111171'.—1»‘7?1,)

2

T

« Notation yi ~ N(m;z;, 0

mean of P(X;|yo....,yi—1) as X, — Predicted mean
—

mean of P(X;|yo,...,y;) as X, <« Corrected mean

the standard deviation of P(X; |y, ...,yi—1) as o,

of P(Xilyo, ... ¥i) as o,

Source: Darrell



The Kalman Filter

Time Update Measurement Update
(“Predict’™) (*Correct”)



Prediction for 1D Kalman filter

« The new state is obtained by

o T; ~ .»'\"((1,:.'1:1-_1,(73 )
— multiplying old state by known constant "

— adding zero-mean noise

« Therefore, predicted mean for new state is
— constant times mean for old state
 Old variance is normal random variable

— variance is multiplied by square of constant

— and variance of noise 1s added.



Dynamic Model:
x; ~ Nidizi_1,04;)
yi ~ Nimizi, om,)

Start Assumptions: T, and o, are known
0 0
Update Equations: Prediction

—t
T; = diT;_,
- _ /. 2 ‘A ot 2
O'l \If ad T ( d;O'z_ 1 )

Source: Darrell




The Kalman Filter

Time Update Measurement Update
(“Predict’™) (*Correct”)



Measurement update for 1D Kalman filter

— ) —\2
ot — T, O, +miYi(o; )°
"' Oon; + M (07 )?

Notice:
— if measurement noise is small,
we rely mainly on the measurement,
— if it's large, mainly on the prediction
— o does not depend on 'y



Dynamic Model:
x; ~ Nidizi_1,04;)
yi ~ Nimizi, om,)

Start Assumptions: T; and o, are known
Update Equations: Prediction

Z; d‘ﬁj 1
— a2 gt 2
a; \/ %4, ( d"al—l ) Time Update Measurement Update
(“Predict”) (“Correct™)

;—\2
Fmyilo; )

-
(3]

D
of, +mi(o; )?

+ } Om, (07 )?

9
—
.a“
3w
3
b
Q

Source: Darrel



Unscented Kalman Filter
Initialize Model

Croated by

CNE PSU 2013 ToddDurant.com

Source: https://www.youtube.com/watch?v=uiegHFgmkyE



KF Example Application

Source: https://www.youtube.com/watch?v=Y3TzhXYFOLg



Kalman filter for computing an on-line
average

« What Kalman filter parameters and initial conditions
should we pick so that the optimal estimate for x at
each iteration is just the average of all the
observations seen so far?



odel:

x; ~ Nidixi_1,04;)
y; ~ N(m;zx;, Om; )

ptions: T, and o5 are known
itions: Prediction

T, = 4T,

- _ +
X 0 yO Yo TV

o; =\/04 (dio |)? ! 2
v Vo + Y + y, +
) 0 | YotV )Y
wtions: Clorrection xl' y 0 _— 0 1 2
2 3
3 T, 02 +muyilo; )?
. ;
! ok, +mi(o; )?

gource: Barrell



What happens if the x dynamics are given a
non-zero variance?



» Model:

Ty ~ }\rl: d-gil?i—lq ad: \

yi ~ Nimzi, om,)

umptions: T, and o, are known

Jquations: Prediction

T, = dT;

.

9
—

gource: Barrell

Yo

Yo

Vo +2),
3

3

Yo +2y,
3

Yo +2y,+5y,

8



Linear dynamic models

* Alinear dynamic model has the form

\
X; = N(Di—lxi—l;zdi )

)

[ m}

N(MX

« This is much, much more general than it looks, and
extremely powerful



Examples of linear state space models
N(Dl IXl 1’2

.+ Drifting points y,=NMx,:5, )
— assume that the new position of the point is the old one, plus
noise

D = Identity

cic.nist.gov/lipman/sciviz/iimages/random3.gif
http://www.grunch.net/synergetics/images/
Source: Darrell random3.jpg



. \
Constant velocity x,=N(D_x,_;:Z,

)

[ m}

« We have =N (Mx
u =u,_ +Av,_ +¢
Vi=V,_ +G;

— (the Greek letters denote noise terms)
« Stack (u, v) into a single state vector

(1) ~lo T o

i D Xi-1

— which is the form we had above
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Source: Darrell




. \
Constant acceleration x,=N(D_x,_;:Z,
y, = N(MX )

- We have =t + AW, +¢ )
v.=v,_ +Afa, | +¢,

a,=a;_+§&

— (the Greek letters denote noise terms)
« Stack (u, v) into a single state vector

() (1 A0 fu)

vi =10 1 Atr]|v + noise
a). \O 0 1)\a/. |

X.
' D, Xi-1

— which is the form we had above
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ar * . ¥
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Constant
Acceleration
Model

Source: Darrell



\
Periodic motion X; = N(Di-lxi-l;zdi ,
y, = N(Mixl.;Zmi]

Assume we have a point, moving on a line with a periodic
movement defined with a differential eq:

d’p
ez ~ P

du (0 1Y\ o
dt~ \ =1 0 "

with state defined as stacked position and velocity u=(p, v)

can be defined as



\
Periodic motion X; = N(Di—lxi—vzdi )

)
=NMx; 2
dt  \ —1 0 "

Take discrete approximation....(e.g., forward Euler integration
with At stepsize.)

du
U; = Uj_ At—
1+ 7t

= WU;—1 T AtSUZ_l

(1 Aty
S\ —AE 1 !

X._
i D|_1 i-1



n-D

Generalization to n-D is straightforward but more complex.



n-D

Generalization to n-D is straightforward but more complex.

N

Time Update Measurement Update
(*Predict’™) (*Correct”)

N

Source: Darrell



n-D Prediction

Generalization to n-D is straightforward but more complex.

N

Time Update Measurement Update
(*Predict™) (*Correct”)

Prediction: v

« Multiply estimate at prior time with forward model:

= — Tyt
T, =Dz,

* Propagate covariance through model and add new noise:



n-D Correction

Generalization to n-D is straightforward but more complex.

-

Time Update Measurement Update
(*Predict™) (*Correct”)

Correction: ‘\_/

« Update a priori estimate with measurement to form a
posteriori

Source: Darrell



n-D correction

Find linear filter on innovations

Tz =%, +K;|y; — MiT; |

i —

which minimizes a posteriori error covariance:

e}

K is the Kalman Gain matrix. A solution is

E

Ko =2y ME M ME 45,



Kalman Gain Matrix

T, =%, + K|y, — MiT; |

=8 MEIME ME + 2]

As measurement becomes more reliable, K weights
residual more heavily,

lim K, =M™

s —0

As prior covariance approaches 0, measurements are
ignored:

lim K. =0

37 —0



Dynamic Model:

xi ~ N(Diwi_1, X4, )

y; ~ NiMizi, X, )

Start Assumptions: T, and ¥ are known
Update Equations: Prediction

_ —t
z, =Dz, ,
- — - +

Update Equations: Correction

Ki = Sy MT (M MT 0,7

Source: Darrell
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Constant Velocity Model



Source: Darrell
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30 I | | I
This is figure 17.3 of Forsyth and Ponce. The notation is a bit involved, but is logical. We
plot the true state as open circles, measurements as x’s, predicted means as *’s
with three stapa lard deviation bars, corrected means as +’s with three |
standard deviatjon bars.
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The *-s give T; , +-s give Z,", vertical bars are 3 standard deviation bars
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The o-s give state, x-s measurement.
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The *-s give &, , +-s give @, vertical bars are 3 standard deviation bars



Smoothing

* |dea
— We don’t have the best estimate of state - what about the
future?
— Run two filters, one moving forward, the other backward in
time.

— Now combine state estimates

« The crucial point here is that we can obtain a smoothed estimate
by viewing the backward filter’s prediction as yet another
measurement for the forward filter



Forward estimates.

[
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0 _ 2 4 6 8 10 12 14 16 18 20
The o-s give state, x-s measurement.

_|_

The *-s give &, , +-s give @, vertical bars are 3 standard deviation bars



Backward estimates.

20 | I I I I I | | I

g
1. Hﬁwﬂ

1 1 | | | | | 1 1 |
-0 2 4 6 8 10 12 14 16 18 20
The o-s give state, x-s measurement.

_I_

7

The *-s give &, , +-s give @, vertical bars are 3 standard deviation bars



Combined forward-backward estimates.
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The *-s give &, , +-s give @, vertical bars are 3 standard deviation bars



2-D constant velocity example from Kevin Murphy’s Matlab toolbox

14,
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10}
Gt
>~ bt
41
21
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e : . ,
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arrell s [figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.htmi]
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2-D constant velocity example from Kevin Murphy’s Matlab toolbox

« MSE of filtered estimate is 4.9; of smoothed estimate. 3.2.

* Not only is the smoothed estimate better, but we know that it is
better, as illustrated by the smaller uncertainty ellipses

* Note how the smoothed ellipses are larger at the ends,
because these points have seen less data.

« Also, note how rapidly the filtered ellipses reach their steady-
state (“Ricatti”) values.

[figure from http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html]

Source: Darrell



Linear Filtering Resources

« Kalman filter homepage
http://www.cs.unc.edu/~welch/kalman/
(kalman filter demo applet)

» Kevin Murphy’s Matlab toolbox:
http://www.ai.mit.edu/~murphyk/Software/Kalman/kalman.html
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Motion segmentation

 How do we represent the motion in this scene?

Source; Szeliski, Savarese



Motion segmentation

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

« Break image sequence into “layers” each of which
has a coherent (affine) motion

Source; Szeliski, Savarese



What are layers?

« Each layer is defined by an alpha mask and an affine motion

model
e S \
— —
> — = -
a) L— (b)
Moving Hand Background
(c)

Frame 1 Frame 2 Frame 3

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

Source; Szeliski, Savarese




Affine motion
u(x,y)=a, +a,x+a,y
v(x,y)=a, +ax+a.y

« Substituting into the brightness constancy
equation:

[.ou+l, v+, =0

Source; Szeliski, Savarese



Affine motion
u(x,y)=a, +a,x+a,y
v(x,y)=a, +ax+a.y

« Substituting into the brightness constancy
equation:

[ (a,+a,x+ay)+1 (a, +asx+agy)+1, =0

- Each pixel provides 1 linear constraint in
6 unknowns

- If we have at least 6 pixels in a neighborhood,
a,... ag can be found by least squares minimization:

Err(a) = z[lx(a1 +a,x+a,y)+1 (a, +a5x+a6y)+]t:| 2

Source; Szeliski, Savarese



How do we estimate the layers?

. 1. Obtain a set of initial affine motion hypotheses

—  Divide the image into blocks and estimate affine motion parameters in each
block by least squares
. Eliminate hypotheses with high residual error

2. Map into motion parameter space

3. Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a
smaller set of hypotheses to describe all the motions in the scene




How do we estimate the layers?

. 1. Obtain a set of initial affine motion hypotheses

—  Divide the image into blocks and estimate affine motion parameters in each
block by least squares
. Eliminate hypotheses with high residual error

2. Map into motion parameter space

3. Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a
smaller set of hypotheses to describe all the motions in the scene

4. Assign each pixel to best hypothesis --- iterate
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How do we estimate the layers?

1. Obtain a set of initial affine motion hypotheses

— Divide the image into blocks and estimate affine motion parameters in each block by
least squares

Eliminate hypotheses with high residual error
« Map into motion parameter space

« Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller
set of hypotheses to describe all the motions in the scene

2. lterate until convergence:

*Assign each pixel to best hypothesis
—Pixels with high residual error remain unassigned

-Perform region filtering to enforce spatial constraints
‘Re-estimate affine motions in each region
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Example result
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J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.
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Motion and Tracking in Omnidirectional Video




Next Lecture: Structure from Motion

 Readings: FP 8; SZ7



