
Motion and Optical Flow 

Instructor: Jason Corso (jjcorso)!
web.eecs.umich.edu/~jjcorso/t/598F14!

!

Materials on these slides have come from many sources in addition to myself.  !
Many are adaptations from Savarese, Lazebnik, Darrell, Hager, Pollefeys, Seitz, Szeliski, Saenko and Grauman.  !
Individual slides reference specific sources when possible.!

EECS 598-08 Fall 2014!
Foundations of Computer Vision!
!

Readings:  FP 10.6; SZ 8; TV 8!
Date:  10/15/14!
!
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https://www.youtube.com/watch?v=BDtvjKMl30w!
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https://www.youtube.com/watch?v=5rR_9YIcg_s!



Plan 

•  Motion Field!
•  Patch-based / Direct  

       Motion Estimation!
•  (Next: Feature Tracking)!
•  (Next: Layered Motion  
!          Models) 
 
 
 
!

•  External Resource:!
–  Mubarak Shah’s lecture on optical flow!

•  http://www.youtube.com/watch?v=5VyLAH8BhF8!
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Video 

•  A video is a sequence of frames captured over time 
•  Now our image data is a function of space  

(x, y) and time (t) 

Slide adapted from K. Grauman.!
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Motion field 

•  The motion field is the projection of the 3D scene motion into 
the image 

Slide adapted from K. Grauman; images from Russel and Norvig.!
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Motion Field & Optical Flow Field 

•  Motion Field = Real world 3D motion !
•  Optical Flow Field = Projection of the motion field onto the 

2d image!

3D motion vector 

2D optical 
flow vector 

( )vu,u =!

CCD 

Slide adapted from Savarese.!
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Motion field and parallax 
•  P(t) is a moving 3D point 
•  Velocity of scene point: V = 

dP/dt 
•  p(t) = (x(t),y(t)) is the 

projection of P in the image 
•  Apparent velocity v in the 

image: given by components 
vx = dx/dt and vy = dy/dt 

•  These components are 
known as the motion field of 
the image p(t) 

p(t+dt) 

P(t) 
P(t+dt) 

V 

v 

Slide adapted from K. Grauman.!
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Motion field and parallax 

p(t) 
p(t+dt) 

P(t) 
P(t+dt) 

V 

v 
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To find image velocity v, differentiate  
p with respect to t (using quotient rule): 

Z
xVVfv zx

x
−

=
Z

yVVf
v zy
y

−
=

Image motion is a function of both the 3D motion (V) and the  
depth of the 3D point (Z)!

Quotient rule:  
D(f/g) = (g f’ – g’f)/g^2 
 

Slide adapted from K. Grauman.!
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Motion field and parallax 

•  Pure translation: V is constant everywhere 
 
 
 Z

xVVfv zx
x

−
=

Z
yVVf

v zy
y

−
=

),(1 0 pvv zVZ
−=

( )yx VfVf ,0 =v

Slide adapted from K. Grauman.!
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Motion field and parallax 

•  Pure translation: V is constant everywhere 
 
 
 
 

•  Vz is nonzero:  
–  Every motion vector points toward (or away from) v0,  

the vanishing point of the translation direction 

),(1 0 pvv zVZ
−=

( )yx VfVf ,0 =v

Slide adapted from K. Grauman.!
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Motion field and parallax 

•  Pure translation: V is constant everywhere 
 
 
 
 

•  Vz is nonzero:  
–  Every motion vector points toward (or away from) v0,  

the vanishing point of the translation direction 
•  Vz is zero:  

–  Motion is parallel to the image plane, all the motion vectors are 
parallel 

•  The length of the motion vectors is inversely proportional to 
the depth Z 

),(1 0 pvv zVZ
−=

( )yx VfVf ,0 =v

Slide adapted from K. Grauman.!
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Motion parallax 

•  http://psych.hanover.edu/KRANTZ/MotionParallax/
MotionParallax.html 

Slide adapted from K. Grauman.!
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Figure from Michael Black, Ph.D. Thesis 

Length of flow 
vectors inversely 
proportional to 
depth Z of 3d 
point 

points closer to the camera move more 
quickly across the image plane 

Motion field + camera motion 

Slide adapted from K. Grauman.!
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Motion field + camera motion 

Zoom out! Zoom in! Pan right to left!

Slide adapted from Savarese and Grauman.!

Forward motion! Rotation! Horizontal 
translation!

Closer objects appear 
to move faster!!!
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Motion estimation techniques 
•  Feature-based methods 

–  Extract visual features (corners, textured areas) and track 
them over multiple frames 

–  Sparse motion fields, but more robust tracking 
–  Suitable when image motion is large (10s of pixels) 

•  Direct methods 
–  Directly recover image motion at each pixel from spatio-

temporal image brightness variations 
–  Dense motion fields, but sensitive to appearance variations 
–  Suitable for video and when image motion is small  

 

Slide adapted from K. Grauman.!
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Optical flow 

•  Definition: optical flow is the apparent motion of brightness 
patterns in the image 

•  Ideally, optical flow would be the same as the motion field 
•  Have to be careful: apparent motion can be caused by 

lighting changes without any actual motion 

Slide adapted from K. Grauman, Zelnik-Manor, Savarese.!

Where did each pixel in image 1 go to in image 2!
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Motion Field & Optical Flow Field 

•  Motion Field = Real world 3D motion !
•  Optical Flow Field = Projection of the motion field onto the 

2d image!

3D motion vector 

2D optical 
flow vector 

( )vu,u =!

CCD 

Slide adapted from Savarese.!
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Optical Flow 

Pierre Kornprobst's Demo !

Slide adapted from Savarese.!
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When does it break? 

The screen is 
stationary yet 
displays 
motion!

Homogeneous 
objects generate 
zero optical flow.!

Fixed sphere. 
Changing light 
source.!

Non-rigid texture 
motion!

Slide adapted from Savarese.!
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Apparent motion ~= motion field 

Figure from Horn book 
Slide adapted from K. Grauman.!
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The Optical Flow Field 

Still, in many cases it does work….!

•  Goal: 
Find for each pixel a velocity vector     
which says:!
–  How quickly is the pixel moving across the image!
–  In which direction it is moving!

( )vu,u =!

Slide adapted from Savarese.!
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Estimating optical flow 

•  Given two subsequent frames, estimate the apparent motion 
field between them. 

•  Key assumptions!
•  Brightness constancy:  projection of the same point looks the 

same in every frame!
•  Small motion:  points do not move very far!
•  Spatial coherence: points move like their neighbors!

I(x,y,t–1) I(x,y,t) 

Slide adapted from K. Grauman.!
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Brightness constancy 

Slide adapted from K. Grauman, T. Darrell, R. Szeliski.!

Figure by Michael Black 
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•  Brightness Constancy Equation: 

),()1,,( ),,(),( tyxyx vyuxItyxI ++=−

),(),(),,()1,,( yxvIyxuItyxItyxI yx ⋅+⋅+≈−

Can be written as:!

The brightness constancy constraint 

I(x,y,t–1) I(x,y,t) 

0≈+⋅+⋅ tyx IvIuISo,!
Slide adapted from K. Grauman.!
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The brightness constancy constraint 

•  How many equations and unknowns per pixel? 
–  One equation, two unknowns 

•  Intuitively, what does this constraint mean?!

•  The component of the flow perpendicular to the 
gradient (i.e., parallel to the edge) is unknown!

0=+⋅+⋅ tyx IvIuI

0),( =+⋅∇ tIvuI

Slide adapted from K. Grauman.!
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The brightness constancy constraint 

•  How many equations and unknowns per pixel? 
–  One equation, two unknowns 

•  Intuitively, what does this constraint mean?!

•  The component of the flow perpendicular to the 
gradient (i.e., parallel to the edge) is unknown!

0=+⋅+⋅ tyx IvIuI

0)','( =⋅∇ vuI

edge 

(u,v) 

(u’,v’) 

gradient 

(u+u’,v+v’) 

If (u, v) satisfies the equation,  
so does (u+u’, v+v’) if !

0),( =+⋅∇ tIvuI

Slide adapted from K. Grauman.!
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The aperture problem 

Perceived motion 

Slide adapted from K. Grauman.!
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The aperture problem 

Actual motion 

Slide adapted from K. Grauman.!
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The barber pole illusion 

http://en.wikipedia.org/wiki/Barberpole_illusion!
Slide adapted from K. Grauman.!
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The barber pole illusion 

http://en.wikipedia.org/wiki/Barberpole_illusion!
Slide adapted from K. Grauman.!
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The barber pole illusion 

http://en.wikipedia.org/wiki/Barberpole_illusion!
Slide adapted from K. Grauman.!
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Lucas-Kanade: Solving the aperture problem (grayscale image) 

•  How to get more equations for a pixel? 
•  Spatial coherence constraint:  pretend the pixel’s 

neighbors have the same (u,v) 
–  If we use a 5x5 window, that gives us 25 equations per pixel 

Slide adapted from Seitz, Grauman.!
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Lucas-Kanade: Solving the aperture problem 
Prob:  we have more equations than unknowns 

•  The summations are over all pixels in the K x K window!
•  This technique was first proposed by Lucas & Kanade (1981)!

Solution:  solve least squares problem!
•  minimum least squares solution given by solution (in d) of:!

Slide adapted from Seitz, Grauman.!
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Conditions for solvability 

When is this solvable?!
•  ATA should be invertible !
•  ATA should not be too small!

–  eigenvalues λ1 and λ2 of ATA should not be too small!
•  ATA should be well-conditioned!

–    λ1/ λ2 should not be too large (λ1 = larger eigenvalue)!

Slide adapted from Seitz, Grauman.!

Look Familiar?!
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Conditions for solvability 

λ1 

λ2 

“Corner” 
λ1 and λ2 are large, 
 λ1 ~ λ2; 
E increases in all 
directions 

λ1 and λ2 are small; 
E is almost constant 
in all directions 

“Edge”  
λ1 >> λ2 

“Edge”  
λ2 >> λ1 

“Flat” 
region 

Classification of 
image points using 
eigenvalues of M:!

Source: Kokkinos, Saverese.!
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Edge 

–  gradients very large or very small!
–  large λ1, small λ2!

Slide adapted from Seitz, Grauman.!
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Low-texture region 

–  gradients have small magnitude!
–  small λ1, small λ2!

Slide adapted from Seitz, Grauman.!
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High-texture region 

–  gradients are different, large magnitudes!
–  large λ1, large λ2!

Slide adapted from Seitz, Grauman.!
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Can we measure optical flow reliability? 

•  Can we measure “quality” of optical flow in regions from just 
a single image?!

•  High Quality / Good features to track:!
•  - Harris corners (guarantee small error sensitivity)!

•  Poor Quality / Bad features to track:!
•  - Image points when either λ1 or λ2  (or both) is small (i.e., edges or 

uniform textured regions)!

Slide adapted from Savarese.!

41 



Iterative Refinement 

•  Estimate velocity at each pixel using one iteration of Lucas 
and Kanade estimation!

•  Warp one image toward the other using the estimated flow 
field!
(easier said than done)!

•  Refine estimate by repeating the process!

Slide adapted from Szeliski.!
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Optical Flow: Iterative Estimation 

x!x0!

Initial guess:  
Estimate: 

estimate 
update 

(using d for displacement here instead of u) 

Slide adapted from Szeliski.!
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Optical Flow: Iterative Estimation 

x!x0!

estimate 
update 

Initial guess:  
Estimate: 

Slide adapted from Szeliski.!
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Optical Flow: Iterative Estimation 

x!x0!

Initial guess:  
Estimate: 
Initial guess:  
Estimate: 

estimate 
update 

Slide adapted from Szeliski.!
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Optical Flow: Iterative Estimation 

x!x0!

Slide adapted from Szeliski.!
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Optical Flow: Iterative Estimation 

•  Some Implementation Issues:!
–  Warping is not easy (ensure that errors in warping are smaller 

than the estimate refinement)!
–  Warp one image, take derivatives of the other so you don’t 

need to re-compute the gradient after each iteration.!
–  Often useful to low-pass filter the images before motion 

estimation (for better derivative estimation, and linear 
approximations to image intensity)!

Slide adapted from Szeliski.!
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Optical Flow: Aliasing 

Temporal aliasing causes ambiguities in optical flow because 
images can have many pixels with the same intensity. 
I.e., how do we know which ‘correspondence’ is correct?  

nearest match is correct 
(no aliasing) 

nearest match is incorrect 
(aliasing) 

To overcome aliasing: coarse-to-fine estimation. 

actual shift 

estimated shift 

Slide adapted from Szeliski.!
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Limits of the gradient method 

Fails when intensity structure in window is poor!
Fails when the displacement is large (typical operating 

range is motion of 1 pixel)!
Linearization of brightness is suitable only for small 

displacements!
•  Also, brightness is not strictly constant in images!

actually less problematic than it appears, since we can pre-
filter images to make them look similar!

Slide adapted from Szeliski.!
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image I!image J!

a!
Jw!warp! refine!

a! aΔ !
+!

Pyramid of image J! Pyramid of image I!

image I!image J! u=10 pixels!

u=5 pixels!

u=2.5 pixels!

u=1.25 pixels!

Coarse-to-Fine Estimation 

Slide adapted from Szeliski.!
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J! Jw! I!warp! refine!
ina
!

a!Δ
+!

J! Jw! I!warp! refine!

a!

a!Δ+!

J!

pyramid !
construction!

J! Jw! I!warp! refine!

a!Δ+!

I!

pyramid !
construction!

outa
!

Coarse-to-Fine Estimation 

Slide adapted from Szeliski.!
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Applications of Optical Flow 



Egomotion Estimation on the Railway 
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Applications to Segmentation 

•  Background subtraction 
–  A static camera is observing a scene 
–  Goal: separate the static background from the moving 

foreground 

How to come up 
with background 
frame estimate 
without access 
to “empty” 
scene? 

Slide adapted from K. Grauman.!
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Applications to Segmentation 

•  Background subtraction 
•  Shot boundary detection 

–  Commercial video is usually composed of shots or sequences 
showing the same objects or scene 

–  Goal: segment video into shots for summarization and 
browsing (each shot can be represented by a single keyframe 
in a user interface) 

–  Difference from background subtraction: the camera is not 
necessarily stationary 

Slide adapted from K. Grauman.!
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Applications to Segmentation 

•  Background subtraction 
•  Shot boundary detection 

–  For each frame 
•  Compute the distance between the current frame and the 

previous one 
–  Pixel-by-pixel differences 
–  Differences of color histograms 
–  Block comparison 

•  If the distance is greater than some threshold, classify the frame 
as a shot boundary 

Slide adapted from K. Grauman.!
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Applications To Segmentation 

•  Background subtraction 
•  Shot boundary detection 
•  Motion segmentation 

–  Segment the video into multiple coherently moving objects 

Slide adapted from K. Grauman.!
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Motion and perceptual organization 

•  Sometimes, motion is the only cue 

Slide adapted from K. Grauman.!
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Motion and perceptual organization 

•  Sometimes, motion is foremost cue 

Slide adapted from K. Grauman.!
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Motion and perceptual organization 

•  Even “impoverished” motion data can evoke a strong 
percept 

Slide adapted from K. Grauman.!

Sources: Maas 1971 with Johansson; downloaded from Youtube.!
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Uses of motion 
•  Estimating 3D structure 
•  Segmenting objects based on motion cues 
•  Learning dynamical models 
•  Recognizing events and activities 
•  Improving video quality (motion stabilization) 

Slide adapted from K. Grauman.!
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Crowd Analysis 
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http://www.vision.eecs.ucf.edu/projects/sali/CrowdSegmentation/Mecca_flowfield.wmv!



Aerial Vehicle Target Tracking 
63 

https://www.youtube.com/watch?v=C95bngCOv9Q!



A Camera Mouse 

•  Video interface: use feature tracking as mouse replacement 

•  User clicks on the feature to 
be tracked !
•  Take the 15x15 pixel square 
of the feature !
•  In the next image do a 
search to find the 15x15 region 
with the highest correlation !
•  Move the mouse pointer 
accordingly !
•  Repeat in the background 
every 1/30th of a second !
!James Gips and Margrit Betke 

http://www.bc.edu/schools/csom/eagleeyes/ 
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A Camera Mouse 

•  Specialized software for communication, games 

James Gips and Margrit Betke 
http://www.bc.edu/schools/csom/eagleeyes/ 
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Optical Flow for Games! 
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https://www.youtube.com/watch?v=E7h4OaTtCzY!



Motion Paint: an example use of optical flow 

http://www.fxguide.com/article333.html 

Use optical flow to track brush strokes, in order to 
animate them to follow underlying scene motion. 
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Motion Paint: an example use of optical flow 

https://www.youtube.com/watch?v=S5S_ABFcF_4!



Next Lecture: Tracking 

•  Readings:   FP 10.6; SZ 8; TV 8!
–  Global, Parametric Motion Models.!
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