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Plan

* What is Clustering? Challenges in Clustering
 Clustering (for Segmentation)

— K-Means

— GMMs (and Expectation-Maximization)

— Mean-Shift
« Other uses of clustering in vision

— Texture and Textons

— Quantization

— Bag of Words



What is Clustering?

* What is clustering?
— Grouping of “objects” into meaningful categories

— QGiven a representation of N objects, find k clusters based on a
suitable measure of similarity.

« Data Clustering is useful in and beyond Computer Vision
— Segmentation as clustering (today)
— Texture modeling
— Quantization
— Beyond
« Data exploration

« Compression
* Natural classification

« Evidently important: Google Scholar tells us that more than
1500 papers get published on clustering a year!

Source: A. K. Jain and R. C. Dubes. Alg. for Clustering Data, Prentice Hall, 1988.



Feature Space

» Every token is identified by a set of salient visual
characteristics. For example:

— Position

— Color

— Texture

— Motion vector

— Size, orientation (if token is larger than a pixel)

Slide credit: Christopher Rasmussen
Source: Savarese slides.



Feature Space

Source: Savarese slides.

Source: K. Grauman



Feature space:
each token is represented by a point




Token similarity is thus measured by distance
between points (“feature vectors”) in feature space

\/(p1 —q1)? + (P2 —@)*+ -+ (Pn—@n)* = \ Z(p,- — q;)2.

Source: Savarese slides.



Cluster together tokens with high similarity

Source: Savarese slides.
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E.g.: Topic Discovery

* 800,000 scientific papers clustered into 776 topics based on how
often the papers were cited together by authors of other papers
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Source: Map of Science, Nature 2006.



Formal Definition of Clustering

« Given a set of N data samples D) = x1, x9, ..., xin a d-dimensional
feature space, D is partitioned into a number of disjoint subsets Dj:

k
D:UDj where D;UD; =0 Vi#}j
j=1

where the points in each subset are similar to each other according to
the given similarity function.

« A partition is denoted by
m = (Dl,DQ,...,Dk)

and clustering is then formulated as

7 = arg min f ()

for f (-) that captures the desired cluster properties.



Plan

* What is Clustering? Challenges in Clustering
 Clustering (for Segmentation)

— K-Means

— GMMs (and Expectation-Maximization)

— Mean-Shift
« Other uses of clustering in vision

— Texture and Textons

— Quantization

— Bag of Words

14



K-Means Clustering
1. Randomly initialize p1, o, ..., e

2. Repeat until no change in p;:

(a) Classify N samples according to nearest p;

(b) Recompute p;

Data Point

Source: D. Aurthor, S. Vassilivitskii. “k-Means++: The Advantages of Careful Seeding”.



K-Means Clustering
1. Randomly initialize p1, o, ..., e

2. Repeat until no change in p;:

(a) Classify N samples according to nearest p;

(b) Recompute p;

Cluster center

First choose k arbitrary centers

Source: D. Aurthor, S. Vassilivitskii. “k-Means++: The Advantages of Careful Seeding”.



K-Means Clustering
1. Randomly initialize p1, o, ..., e

2. Repeat until no change in u;:

(a) Classify N samples according to nearest p;

(b) Recompute p;

Cluster boundary

Assign points to closest centers

Source: D. Aurthor, S. Vassilivitskii. “k-Means++: The Advantages of Careful Seeding”.



K-Means Clustering
1. Randomly initialize p1, o, ..., e

2. Repeat until no change in u;:

(a) Classify N samples according to nearest p;

(b) Recompute p;

Recompute centers

Source: D. Aurthor, S. Vassilivitskii. “k-Means++: The Advantages of Careful Seeding”.



K-Means Clustering
1. Randomly initialize p1, o, ..., e

2. Repeat until no change in u;:

(a) Classify N samples according to nearest p;

(b) Recompute p;

|

Assign points to closest centers

Source: D. Aurthor, S. Vassilivitskii. “k-Means++: The Advantages of Careful Seeding”.



K-Means Clustering
1. Randomly initialize p1, o, ..., e

2. Repeat until no change in u;:

(a) Classify N samples according to nearest p;

(b) Recompute p;

 _

Recompute centers

Source: D. Aurthor, S. Vassilivitskii. “k-Means++: The Advantages of Careful Seeding”.



K-Means Clustering
1. Randomly initialize p1, o, ..., e

2. Repeat until no change in u;:

(a) Classify N samples according to nearest p;

(b) Recompute p;

Assign points to closest centers

Source: D. Aurthor, S. Vassilivitskii. “k-Means++: The Advantages of Careful Seeding”.



K-Means Clustering
1. Randomly initialize p1, o, ..., e

2. Repeat until no change in u;:

(a) Classify N samples according to nearest p;

(b) Recompute p;

Recompute centers

Source: D. Aurthor, S. Vassilivitskii. “k-Means++: The Advantages of Careful Seeding”.



K-Means Clustering
1. Randomly initialize p1, o, ..., e

2. Repeat until no change in u;:

(a) Classify N samples according to nearest p;

(b) Recompute p;

Points already assigned to nearest
centers: Algorithm ends

Source: D. Aurthor, S. Vassilivitskii. “k-Means++: The Advantages of Careful Seeding”.



K-Means++ Clustering

e Choose starting centers iteratively.

e Let D(x) be the distance from z to the nearest existing center, take x as new
center with probability oc D(z)?.

e Repeat until no change in u;:

— Classify N samples according to nearest y;

— Recompute p;

Source: D. Aurthor, S. Vassilivitskii. “k-Means++: The Advantages of Careful Seeding”.
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Source: Savarese slides.




K-Means pros and cons

 Pros
> > lp — ¢l

_ Slmple and faSt clusters 17 points p in cluster 2
— (Always) converges to a local minimum of the error function
— Available implementations (e.g., in Matlab)

Cons

_ A (@]
—Need to pick K @ 00
—Sensitive to initialization O (@)

—Only finds “spherical”
IDE

clusters
—Sensitive to outliers

Source: Savarese slides.



Choosing Exemplars (Medoids)

* like k-means, but means must be data points

» Algorithms:
— greedy k-means
— affinity propagation (Frey & Dueck 2007)
— medoid shift (Sheikh et al. 2007)

e Scene Summarization

Ao ;

Source: Seitz slides.
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User’s Dilemma

What is a cluster?

How to define pair-wise similarity?

Which features? Which normalizations scheme?
How many clusters?

Which clustering method?

Are the discovered clusters and partitioning valid?
Does the data have any clustering tendency?

NS O

Source: R. Dubes and A. K. Jain. “Clustering Techniques: User’s Dilemma” PR 1976.



Cluster Similarity?

« Compact Clusters

— Within-cluster distance < between-cluster connectivity
« Connected Clusters

— Within-cluster connectivity > between-cluster connectivity
 l|deal cluster: compact and isolated.
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Source: R. Dubes and A. K. Jain. “Clustering Techniques: User’s Dilemma” PR 1976.



Representation; what features?

* There is no universal representation.
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Good Representations

* A good representation leads to compact and isolated

clusters.
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How should the features be weighted?

« Two different meaningful groupings produced by different
weighting schemes.

Mammals Predators
Vs. Vs.
Birds '"'T'“«" Non-

.U'” Predators
Owl .
Hau.ll«:',
Large weight on Large weight on
appearance features activity features

http://www.ofai.at/~elias.pampalk/kdd03/animals/

Source: R. Dubes and A. K. Jain. “Clustering Techniques: User’s Dilemma” PR 1976.



How do we decide on the number of clusters?

 These samples are generated by 6 independent classes.

Input K=2

k=5 k=6

K=6

Source: R. Dubes and A. K. Jain. “Clustering Techniques: User’s Dilemma” PR 1976.



Cluster Validity

 Clustering algorithms find clusters, even if there are no
natural clusters in the data!
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Choosing a Clustering Method

5T ? b

 Which is best?

15 Data points FORGY ISODATA
WISH CLUSTER Complete Link JP

Source: R. Dubes and A. K. Jain. “Clustering Techniques: User’s Dilemma” PR 1976.



Choosing a Clustering Method

« Depends on problem/data.
« Each algorithm imposes some structure.

GMM: k=3 GMM: k=2

Spectral: k=3 Spectral: k=2

Source: R. Dubes and A. K. Jain. “Clustering Techniques: User’s Dilemma” PR 1976.
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Probabilistic clustering

« Basic questions
— what’s the probability that a point x is in cluster m?
— what’ s the shape of each cluster?

« K-means doesn’t answer these questions

« Basic idea

— instead of treating the data as a bunch of points, assume that
they are all generated by sampling a continuous function

— This function is called a generative model
 defined by a vector of parameters 6

Source: Seitz slides.



Gaussian Mixture Models

Recall the Gaussian distribution

1
(2m)4/2| 3| 1/2

exp [—l(x — ) ' 27 (x — p)

N(z|p, X) = >

It forms the basis for the mixture of Gaussians density
The Gaussian mixture is linear superposition of Gaussians:

p(x) = > TN (x|, Zi)
k=1

The 7 are non-negative scalars called mixing coefficients
and they govern the relative importance between the various
Gaussians in the mixture density. >~ 7, =1



05

p(x)

05




GMM: Introducing Latent Variables

« Define a K-dimensional binary random variable z

« z has a 1-of-K representation such that a particular element
2 is 1 and all of the others are zero. Hence:

2k € {0, 1}

sz:1

k

* The marginal distribution over z is specified in terms of the
mixing coefficients:
p(zr =1) = my

And recall that 0 < 7, <1 and ), mx =1



GMM: Introducing Latent Variables

« Since z has a 1-of-K representation, we can also write the

distribution as
K
k=1

« The conditional distribution of x given z is a Gaussian:
p(x|zp = 1) = (X!uk, )

X’Z HN X’“’ka )



GMM: Introducing Latent Variables

« We are interested in the marginal distribution of x

= Z | TN (%, )™

K
= 3 N (g Si)

* S0, given our latent variable z , the marginal distribution of x
is a Gaussian mixture.

« |If we have N observations, x1,...,Xy, then because of our
chosen representation, if follows that we have a latent
variable z,,for each observed data point x,,.



Component Responsibility Term

We need to also express the conditional probability of z
given x .

Denote this conditional P(zx = 1|X) as v(zk)
Via Bayes’ theorem:

p(zx = Dp(x|2, = 1)
S p(z = 1)p(x|z; = 1)
N, S

S N (x|, B5)

View 7 as the prior probability ofz;, = 1 and the quantity
v(zx) as the corresponding posterior probability after
observing x.

v(zr ) is also the responsibility that component k takes for x

v(2k) =




Sampling from the GMM

« To sample from the GMM, we can first generate a value for z
from the marginal distribution p(z). Denote this sample z .

« Then, sample from the conditional distribution p(x|z) .

* The figure below-left shows samples from a three-mixture
and colors the samples based on the component (z). The
figure below-middle shows samples from the marginal »(x)
and ignores z . On the right, we show the 7(zx) for each
sampled point, colored accordingly.
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Maximume-Likelihood Fitting

Suppose we have a set of N observations {x1,...,xy } that we wish to model with
a GMM.

Consider this data set as an N x d matrix X in which the n" row is given by x.

Similarly, the corresponding latent variables define an N x K matrix Z with rows
T

Z, .

The log-likelihood of the corresponding GMM is given by

N K
lnp(X‘ﬂ-v H, E) — Z In Z WkN(X“J’ka Ek)
n=1 k=1

Ultimately, we want to find the values of the parameters =, ., 32 that maximize this
function.

However, maximizing the log-likelihood terms for GMMs is much more complicated
than for the case of a single Gaussian. Why?

The difficulty arises from the sum over £ inside of the log-term. The log function no
longer acts directly on the Gaussian, and no closed-form solution is available.



Singularities with GMM Fitting

There is a significant problem when we apply MLE to estimate GMM parameters.

Consider simply covariances defined by X, = o71.

Suppose that one of the components of the mixture model, j, has its mean p,
exactly equal to one of the data points so that pu; = x,, for some n.

This term contributes

1
(2m)/2)a;

N (Xn|Xn, 032'1) —

Consider the limit 0; — 0 to see that this term goes to infinity and hence the log-
likelihood will also go to infinity.

Thus, the maximization of the log-likelihood function is not a well posed problem
because such a singularity will occur whenever one of the components collapses
to a single, specific data point.



Singularities with GMM Fitting

p(z)




Expectation-Maximization

 External PDF slides
e em fitting gmm.pdf




Problems with EM

1. Local minima
k-means is NP-hard even with k=2

2. Need to know number of segments
solutions: AIC, BIC, Dirichlet process mixture

3. Need to choose generative model

Source: Seitz slides.



Applications of EM

« Turns out this is useful for all sorts of problems
— any clustering problem
— any model estimation problem
— missing data problems
— finding outliers
— segmentation problems
« segmentation based on color

e segmentation based on motion
» foreground/background separation

Source: Seitz slides.



EM demo

« http://Ilcn.epfl.ch/tutorial/english/gaussian/html/index.html

Source: Seitz slides.
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Finding Modes in a Histogram

12 T
b +

10+ —

8 — —

T 0L

-4 -2 0 2

« How Many Modes Are There?
— Easy to see, hard to compute

Source: Seitz slides.




Mean Shift [Comaniciu & Meer]

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

#* -+

12| T T !l | | T T |
Segmented "landscape 1" Segmented "landscape 2"

LU 1l |
6

L 11

-4 -2 0 2 4

» |terative Mode Search

Initialize random seed, and window W

Calculate center of gravity (the “mean”) of W: > zH(x)
Translate the search window to the mean reW
Repeat Step 2 until convergence

b=

Source: Seitz slides.



Mean-shift for image segmentation

« Useful to take into account spatial information
— instead of (R, G, B), runin (R, G, B, x, y) space

— D. Comaniciu, P. Meer, Mean shift analysis and applications, 7th International
Conference on Computer Vision, Kerkyra, Greece, September 1999, 1197-1203.
 http://www.caip.rutgers.edu/riul/research/papers/pdf/spatmsft.pdf

More Exam pleS: http://www.caip.rutgers.edu/~comanici/segm_images.html

Source: Seitz slides.



Mean shift algorithm

Fukunaga, Keinosuke; Larry D. Hostetler (January 1975). "The Estimation of the Gradient of a Density Function, with
Applications in Pattern Recognition". IEEE Transactions on Information Theory (IEEE) 21 (1): 32—40

* The mean shift algorithm seeks a mode or local maximum
of density of a given distribution

— Choose a search window (width and location)

— Compute the mean of the data in the search window
— Center the search window at the new mean location
— Repeat until convergence

Source: Savarese slides.



Mean Shift

® ° [ Window }

Center of
o mass
o
o &
o
o
o
o
Mean Shift
o vector

Slide by Y. Ukrainitz & B. Sarel



Mean Shift
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Mean Shift
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Mean Shift
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Mean Shift

o :
d
® o o ° [ window }
¢ Py ¢ ¢ o Center of
o
mass
o
o &
o
o
o
o
° ° ® ® ® Mean Shift
o vector

Slide by Y. Ukrainitz & B. Sarel



Mean Shift
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Mean Shift
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Computing The Mean Shift

Simple Mean Shift procedure:

- Compute mean shift vector

Translate the Kernel window by m(x)

n

>

X-X,

Xig(‘

h

2)

n

3

X-X,
h

2)

1x




Multimodal distributions

100 T T T T T T T

Slide by Y. Ukrainitz & B. Sarel
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Real Modality Analysis

- Tessellate the space ‘Merge windows that end up near the
with windows same “peak” or model

Source: Savarese slides.



Attraction basin

 Attraction basin: the region for which all trajectories lead to
the same mode

« Cluster: all data points in the attraction basin of a mode

Slide by Y. Ukrainitz & B. Sarel



Attraction basin
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Segmentation by Mean Shift

. Find features (color, gradients, texture, etc)

. Initialize windows at individual pixel locations

«  Perform mean shift for each window until convergence
Merge windows that end up near the same “peak” or mode

100

7100

o o o
o~ = o
L]

NORMALIZED DENSITY
8 <
\/

Source: Savarese slides.



Mean shift segmentation results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Source: Savarese slides.



Source: Savarese slides.



Mean shift pros and cons

* Pros
— Does not assume spherical clusters
— Just a single parameter (window size)
— Finds variable number of modes
— Robust to outliers

e Cons

— QOutput depends on window size
— Computationally expensive
— Does not scale well with dimension of feature space

Source: Savarese slides.
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Source: Martin, Fowlkes, Malik NIPS 2002 slides.

Texture Feature

e Texture Gradient TG(x,y,r,0)

— 2 difference of texton histograms

— Textons are vector-quantized filter outputs

NIPS Vancouver 2002 UC Berkeley Vision Group http://www.cs.berkeley.edu/projects/vision



Source: Martin, Fowlkes, Malik NIPS 2002 slides.

P, Images |

NIPS Vancouver 2002

UC Berkeley Vision Group

http://www.cs.berkeley.edu/projects/vision
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Source: Martin, Fowlkes, Malik NIPS 2002 slides.

P, Images Il

il
[:

1
il

| e
- il

NIPS Vancouver 2002

UC Berkeley Vision Group

http://www.cs.berkeley.edu/projects/vision
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Source: Martin, Fowlkes, Malik NIPS 2002 slides.

Images 111

Py

Canny

Human

S

U

MM

2

Image
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http://www.cs.berkeley.edu/projects/vision

UC Berkeley Vision Group

NIPS Vancouver 2002



The (Very Common) Bag-of-Features Pipeline

Source: materials adapted from Laptev’s CVPR 2008 slides.

! ‘1 Space-Time
31 - =) |Patch
“ o » Descriptors

Histogram of Visual Words

=

—

Space-Time Features

Multi-channel
Classifier

« Examples include Schuldt et al. ICPR 2004, Niebles et al.
IJCV 2008, and many works building on this basic idea.




Next Lecture: Model-Fitting and Contours

 Readings: FP 10; SZ 4.3, 5.1



