
Segmentation and Clustering 
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Materials on these slides have come from many sources in addition to myself; individual slides reference specific sources.!
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Plan 

•  Motivation for segmentation!
•  Gestalt Psychology / human perception for segmentation!
•  Piecewise Constant/Smooth Models!
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Some motivation; what do you see? 

Method: Laptev.  “On Space-Time Interest Points.” IJCV 64(2/3):107-123. 2005.!
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Some motivation; what do you see? 

Sources: Maas 1971 with Johansson; downloaded from Youtube.!
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Some motivation; what do you see? 

Method: Supervoxel segment boundaries. Xu and Corso CVPR 2012.!
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Segmentation: Toward a Representation with Rich Semantics? 
6 
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Background 
Images!
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Background 
Segmentation and Classification!



Segmentation: A Complementary “Feature”? 

•  Want to establish a representation that is suitable for rich 
understanding in images and video.!
–  Points, trajectories and other features may be limited.!
–  Cannot provide spatial or spatiotemporal boundaries.!
–  Superpixels, supervoxels.!

•  Discuss an evaluation of methods in space-time 
segmentation.!

•  Present details of two key methods:!
–  Segmentation by Weighted Aggregation.!
–  Graph-based Hierarchical Segmentation.!
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General ideas 

•  Tokens!
– whatever we need to group (pixels, points, 

surface elements, etc., etc.)!
•  Bottom up segmentation!

–  tokens belong together because they are locally 
coherent!

•  Top down segmentation!
–  tokens belong together because they lie on the 

same visual entity (object, scene…)!
 > These two are not mutually exclusive!

Source: S. Savarese slides.!
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What is Segmentation? 

•  Grouping image elements that “belong together” !

–  Partitioning!
•  Divide into regions/sequences with coherent internal 

properties!
–  Grouping !

•  Identify sets of coherent tokens in image!

Source: S. Savarese, C. Rasmussen, S. Seitz slides.!
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What makes a good spatial segmentation method? 

•  Rationale for oversegmentation!
–  Pixels are not natural elements in images.!
–  The number of pixels is very high.!

•  Spatial uniformity – prefers compact and uniformly shaped 
superpixels.!
–  Embeds basic Gestalt principles of continuity, closure, etc.!

•  Spatial boundary preservation – as superpixel boundaries 
should align with perceptual boundaries when present and 
should be stable when they are not.!

•  Computation – the overall computational cost for a 
particular application should be reduced via superpixels.!

•  Performance – the overall performance of a method should 
be increased.!

•  Parsimony – The above properties should be maintained 
with as few superpixels as possible.!
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Gestalt Principles of Visual Perception 

We organize pieces into patterns,!
!

!construct wholes out of parts,!
!

! !and find meaning where there was none before...!

Source for this section: C. Cumbie-Jones (http://webspace.ringling.edu/~ccjones/curricula/07-08/seqdesign/Gestalt.ppt) and !
                                      B. Schrank (http://lmc.gatech.edu/~bschrank/2720/)!
In this section, specific sources are not given per slide since this may impact the visual gestalt of the slide!!
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What is a Gestalt? 

'Gestalt' means 'pattern' in German.!
A gestalt is a configuration, pattern, or organized field having 
specific properties that cannot be derived from the summation of 
its component parts.!

A gestalt is a unified whole.!

Source: B. Schrank slides.!
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Gestalt Psychology is the theory or doctrine that physiological 
or psychological phenomena do not occur through the 
summation of individual elements, as reflexes or sensations, 
but through gestalts functioning separately or interrelatedly.!

What is Gestalt Psychology? 

Source: B. Schrank slides.!
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What is your gestalt of the images above? What is the 
meaning beyond random circles?!

What is Gestalt Psychology? 

Source: B. Schrank slides.!
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Although we may not be aware of it consciously, because we tend to 
relate what we see to our own bodily reactions to situations in space, 
shapes appear to fall or be pulled by gravitational forces, appear to 
lean over, to fly, to move fast or slow, to be trapped or be free.!

-Sausmarez!

What is Gestalt Psychology? 

Source: B. Schrank slides.!
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Gestalt Principles of Visual Perception 

We impose visual organization on stimuli!

W.E. Hill, 1915! German postcard, 1880!

Source: C Cumbie-Jones slides.!
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Gestalts are Constructed from Nature and Nurture 

Architecture and our rectangular world has had a 
dramatic Influence on our Interpretation of Lines.!

Source: B. Schrank slides.!
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Gestalts are Constructed from Nature and Nurture 

Even more physically wired Gestalts are prevalent, such as 
how we tend to naturally 'fill in' lacunas...!

Source: B. Schrank slides.!
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Gestalts are Constructed from Nature and Nurture 

Even more foundational Gestalts are prevalent, such as 
how we tend to naturally 'fill in' lacunas.!

Source: B. Schrank slides.!
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Gestalt is also subtle...!

Source: B. Schrank slides.!
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Do you feel the quiet desire for the cube to be complete and neat?!

Source: B. Schrank slides.!
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Some examples of Visual Gestalt 

•  Equivocation!
•  Continuance!
•  Closure!
•  Common Fate!
•  Constancy!
•  Similarity!
•  Proximity!

Source: B. Schrank slides.!
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Equivocation 

Equivocation is perceptual ambiguity.!
!
!
!
!
!
For example,!
Do you see the parts?!
(The radial of arrows)!
!
Or the whole?!
(The spiked wheel or sun)!

Source: B. Schrank slides.!
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Equivocation in the Necker Cube oscillates the closest 
plane between the two planes facing the viewer.!

Source: B. Schrank slides.!
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Equivocation in the Necker Cube oscillates the closest 
plane between the two planes facing the viewer.!

Source: B. Schrank slides.!
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Continuance 

We tend to connect similar phenomena, psychologically constructing a 
timeline through them as a sequence...!

Source: B. Schrank slides.!

30 



Continuance 

Source: B. Schrank slides.!
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Continuance 

Source: B. Schrank slides.!
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Continuance... Is it the same circle? 

Source: B. Schrank slides.!

33 



Continuance... Is it the same circle? 

Source: B. Schrank slides.!
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Continuance...  

Source: B. Schrank slides.!
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Continuance... Is that circle approaching us? 

Source: B. Schrank slides.!
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Continuance... Is that circle approaching us? 

Source: B. Schrank slides.!
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Continuance... Is that circle approaching us? 

Source: B. Schrank slides.!
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Continuance... Is that circle approaching us? 

Source: B. Schrank slides.!
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Continuance... Is that circle approaching us? 

Source: B. Schrank slides.!
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Continuance... Is that circle approaching us? 
41 



Continuance... Is that circle approaching us? 
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Continuance (cont'd) 

What do you see?!

Source: B. Schrank slides.!
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Continuance of Line 

This looks like two overlapping lines...!

Source: B. Schrank slides.!
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Not two curved triangles touching points...!

Source: B. Schrank slides.!
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Beware of Unintended Continuance 

Source: B. Schrank slides.!
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Beware of Unintended Continuance 

Source: B. Schrank slides.!
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However, blending images through continuance can be beautiful...!

Source: B. Schrank slides.!
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Source: B. Schrank slides.!
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Source: B. Schrank slides.!
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Closure 

Closure is the tendency to psychologically complete an 
incomplete picture or element.!

Source: B. Schrank slides.!
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Closure is most effective with recognizable shapes 
and images. 

Source: B. Schrank slides.!
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Closure is most effective with recognizable shapes 
and images. 

Source: B. Schrank slides.!

The Kanisza triangle as figure-ground illusory contours !
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Closure is most effective with recognizable shapes 
and images. 

Source: B. Schrank slides.!
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Closure is most effective with recognizable shapes 
and images. 

Source: B. Schrank slides.!
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Gestalt Principles of Visual Perception 

Law of Closure!

Source: C Cumbie-Jones slides.!
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Grouping 

We ascribe a group relationship to elements in a visual field based on 
various attributes they have in common.!

Source: B. Schrank slides.!
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Grouping through Proximity 

Source: C Cumbie-Jones slides.!
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Grouping through Similarity 

Source: C Cumbie-Jones slides.!
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Grouping through Orientation 

Source: B. Schrank slides.!
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Grouping by color can outweigh alignment: 

Source: B. Schrank slides.!
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Common Fate 

Parts of the visual field exhibiting the same motion are grouped together.!

Source: B. Schrank slides.!
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Common Fate 

Source: B. Schrank slides.!
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Common Fate 

Source: B. Schrank slides.!
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Common Fate 

Strong Common Fate!

Weak Common Fate!
Different Colors and Shape!
Patternized Spacing!
!
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A form tends to preserve its proper shape, size and color... An object is 
perceived correctly as to the size or intensity within a wide range of 
actual stimulus variations. An automobile seen at a distance of 100 
yards does not appear smaller than one seen at 20 yards even though 
there is a greater disparity in the size of the retinal image.!

-Fryer!

Source: B. Schrank slides.!

Scale 
Constancy 
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Scale 
Constancy 

A form tends to preserve its proper shape, size and color... An object is 
perceived correctly as to the size or intensity within a wide range of 
actual stimulus variations. An automobile seen at a distance of 100 
yards does not appear smaller than one seen at 20 yards even though 
there is a greater disparity in the size of the retinal image.!

-Fryer!

Source: B. Schrank slides.!
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Recall… 

Reversing scale constancy to 
retain context. The figures are 
actually the same measurement.!

Source: B. Schrank slides.!
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Color Constancy 

A lawn is seen as the same shade of green, even though part of it lies 
in bright sunshine and part in shadow.!

-Fryer!

Source: B. Schrank slides.!
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The impressionists tried to reverse 
this gestalt and paint what they see 
before their mind makes sense of 
it, stripping away the richness of 
reality (of course, squinting helps). 

Source: B. Schrank slides.!

70 



a Composition is a combination of elements to make a 
unified whole.!

Source: B. Schrank slides.!
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Figure/Ground 

A form tends to be a figure set upon the ground, and a figure-ground 
dichotomy is fundamental to all perception.!

-Fryer!

Source: B. Schrank slides.!
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Reversible Figure/Ground Relationship 

Source: C Cumbie-Jones slides.!
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Reversible Figure/Ground Relationship 

!
Can be affected by the 
principle of smallness:  !
Smaller areas tend to be seen 
as figures against a larger 
background. !

Source: C Cumbie-Jones slides.!
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Figure-Ground Equivocation 

Tessellation – interlocking 
figure/ground!

M.C. Escher!

Source: C Cumbie-Jones slides.!
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Figure-Ground Equivocation 

Source: B. Schrank slides.!
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Early Segmentation Models 



Piece-Wise Constant Models (image restoration)  

I!

p 

L!

observed noisy image I! image labeling  L!
(restored intensities)!

Source: Y. Boykov slides.!
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Piecewise Smooth Models  

I!

p 

L!
How to compute L from I ?!

observed noisy image I! image labeling  L!
(restored intensities)!

Source: Y. Boykov slides.!
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Piecewise Smooth Models 

•  Mumford-Shah Model (1989)!
•  Recall the functional view of an image:!
•  Consider a decomposition of the domain of the image into a 

set of regions                             such that !

•  Let     represent the boundary between regions in !
•  Assumptions:!

–      varies smoothly within each!
–      changes rapidly and is discontinuous across boundaries!

•  Seek some approximation     of     that observes our 
assumptions and yet best matches the original image         !
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Mumford-Shah 

•  How could you describe the type of images you’d expect to 
find being outputted in     ?!

81 

Goodness of Fit! Smoothness in the 
approximation!

Boundary smoothness!



Mumford-Shah Example Results 
82 

Source: Z. Kato slides.!



Piecewise Constant Mumford-Shah 

•  Assuming regions are constant rather than smooth!
–  E.g., stereo disparities typical case!
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Discretized Versions: Markov Random Fields 

•  Explicitly instantiate a graph-lattice!
•  Set up same energy functionals (constant or smooth)!
•  “Weak String/Membrane Models”!

•  See Geman & Geman 1984 for example.!
–  And take my course in the spring.!

84 

Graph Lattice!
Edge Presence Variable (binary)!



Example 
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Source: Z. Kato slides.!



Discrete / Graph-Based Models 

•  Minimum Spanning Forest Method!
•  Intelligent Scissors!
•  Min-cut!
•  Normalized cut!
•  Segmentation by Weighted Aggregation!
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Setting up the problem 

•  Treat the image as a graph 

Graph 
•  node for every pixel p 
•  link between every adjacent pair of pixels, p,q 
•  cost c for each link 

Note:  each link has a cost 

p 

q 
c 

Source: S. Seitz slides.!
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Basic Minimum Spanning Forest Method 
•  Use the minimum spanning tree method of Felzenszwalb and 

Huttenlocher IJCV 2004.!

Stage 1: Make a graph connecting nearest voxels; use similarity for edge weights.!Stage 2: Proceed by iteratively adding edges with best similarity satisfying               .!Stage 3: Construct segments by extracting minimum spanning trees.!
Edge weight is computed by!
!
!
!
Where        is a feature function.  We 
strictly use RGB color as the feature.!

E(S1|V) = ⌧
X

s2S1

X

e2MST(s)

w(e) +
X

s,t2S1

min
e2hs,ti

w(e)
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Efficient Graph-Based Image Segmentation Pedro F. Felzenszwalb and Daniel P. Huttenlocher 
International Journal of Computer Vision, Volume 59, Number 2, September 2004 !

superpixel!
C++ implementation!
http://people.cs.uchicago.edu/~pff/segment!

Efficient Graph-Based Image Segmentation 

Source: S. Savarese slides.!
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Intelligent Scissors [Mortensen 95] 

•  Approach answers a basic question 
–  Q:  how to find a path from seed to mouse that follows object 

boundary as closely as possible? 

Source: S. Seitz slides.!
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Intelligent Scissors 
•  Basic Idea 

–  Define edge score for each pixel 
•  edge pixels have low cost 

–  Find lowest cost path from seed to mouse 

seed 

mouse 

Questions 
•  How to define costs? 
•  How to find the path? 

Source: S. Seitz slides.!
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Path Search (basic idea) 

•  Graph Search Algorithm 
–  Computes minimum cost path from seed to all other pixels 

Source: S. Seitz slides.!
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How does this really work? 

•  Treat the image as a graph 

Want to hug image edges:  how to define cost of a link? 

p 

q 
c 

•  the link should follow the intensity edge 
– want intensity to change rapidly ┴  to the link 

•   c ≈ - |difference of intensity ┴ to link| 

Source: S. Seitz slides.!
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Defining the costs 

p 

q 
c 

The 
imag
e 
cann

•  c can be computed using a cross-correlation filter 
–  assume it is centered at p 

•  Also typically scale c by its length 
–  set c = (max-|filter response|) 

•  where max = maximum |filter response| over all pixels in the image 
Source: S. Seitz slides.!
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Defining the costs 

p 

q 
c 1 

-1 

The 
imag
e 
cann

w 
-1 -1 

1 1 

The 
image 
cannot 
be 

•  c can be computed using a cross-correlation filter 
–  assume it is centered at p 

•  Also typically scale c by its length 
–  set c = (max-|filter response|) 

•  where max = maximum |filter response| over all pixels in the image 
Source: S. Seitz slides.!
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Dijkstra’s shortest path algorithm 

0 
5 
3 1 

3 3 

4 
9 

2 

Algorithm 
1.  init node costs to ∞, set p = seed point, cost(p) = 0 
2.  expand p as follows: 

for each of p’s neighbors q that are not expanded 
»  set cost(q) = min( cost(p) + cpq,  cost(q) ) 

link cost 

Source: S. Seitz slides.!
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Dijkstra’s shortest path algorithm 

4 

1 0 

5 

3 

3 2 3 

9 

Algorithm 
1.  init node costs to ∞, set p = seed point, cost(p) = 0 
2.  expand p as follows: 

for each of p’s neighbors q that are not expanded 
»  set cost(q) = min( cost(p) + cpq,  cost(q) ) 

»  if q’s cost changed, make q point back to p 
»  put q on the ACTIVE list   (if not already there) 

5 
3 1 

3 3 

4 
9 

2 

1 1 

Source: S. Seitz slides.!
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Dijkstra’s shortest path algorithm 
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Algorithm 
1.  init node costs to ∞, set p = seed point, cost(p) = 0 
2.  expand p as follows: 

for each of p’s neighbors q that are not expanded 
»  set cost(q) = min( cost(p) + cpq,  cost(q) ) 

»  if q’s cost changed, make q point back to p 
»  put q on the ACTIVE list   (if not already there) 

3.  set r = node with minimum cost on the ACTIVE list 
4.  repeat Step 2 for p = r 

Source: S. Seitz slides.!
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Dijkstra’s shortest path algorithm 
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Algorithm 
1.  init node costs to ∞, set p = seed point, cost(p) = 0 
2.  expand p as follows: 

for each of p’s neighbors q that are not expanded 
»  set cost(q) = min( cost(p) + cpq,  cost(q) ) 

»  if q’s cost changed, make q point back to p 
»  put q on the ACTIVE list   (if not already there) 

3.  set r = node with minimum cost on the ACTIVE list 
4.  repeat Step 2 for p = r 

Source: S. Seitz slides.!
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Dijkstra’s shortest path algorithm 

•  Properties 
–  It computes the minimum cost path from the seed to every 

node in the graph.  This set of minimum paths is represented 
as a tree 

–  Running time, with N pixels: 
•  O(N2) time if you use an active list 
•  O(N log N) if you use an active priority queue (heap) 
•  takes fraction of a second for a typical (640x480) image 

–  Once this tree is computed once, we can extract the optimal 
path from any point to the seed in O(N) time. 

•  it runs in real time as the mouse moves 
–  What happens when the user specifies a new seed? 

Source: S. Seitz slides.!
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Segmentation by min (s-t) cut [Boykov 2001] 

•  Graph 
–  node for each pixel, link between pixels 
–  specify a few pixels as foreground and background 

•  create an infinite cost link from each bg pixel to the “t” node 
•  create an infinite cost link from each fg pixel to the “s” node 

–  compute min cut that separates s from t 
–  how to define link cost between neighboring pixels? 

t s 

min cut 

Source: S. Seitz slides.!
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Grabcut    [Rother et al., SIGGRAPH 2004] 

Source: S. Seitz slides.!
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Is user-input required? 

•  Our visual system is proof that automatic methods are 
possible 
–  classical image segmentation methods are automatic 

•  Argument for user-directed methods? 
–  only user knows desired scale/object of interest 

Source: S. Seitz slides.!
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q 

Automatic graph cut [Shi & Malik] 

•  Fully-connected graph 
–  node for every pixel 
–  link between every pair of pixels, p,q 
–  cost cpq for each link 

•  cpq measures similarity 
–  similarity is inversely proportional to difference in color and 

position 

p 

Cpq 

c 

Source: S. Seitz slides.!
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Segmentation by Graph Cuts 

•  Break Graph into Segments 
–  Delete links that cross between segments 
–  Easiest to break links that have low cost (similarity) 

•  similar pixels should be in the same segments 
•  dissimilar pixels should be in different segments 

w 

A B C 

Source: S. Seitz slides.!
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Cuts in a graph 

•  Link Cut 
–  set of links whose removal makes a graph disconnected 
–  cost of a cut: 

A B 

Find minimum cut 
•  gives you a segmentation 

Source: S. Seitz slides.!
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But min cut is not always the best cut... 

Source: S. Seitz slides.!
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Cuts in a graph 

A B 

Normalized Cut 
•  a cut penalizes large segments 
•  fix by normalizing for size of segments 

•  volume(A) = sum of costs of all edges that touch A 

Source: S. Seitz slides.!
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Interpretation as a Dynamical System 

•  Treat the links as springs and shake the system 
–  elasticity proportional to cost 
–  vibration “modes” correspond to segments 

•  can compute these by solving an eigenvector problem 
•  http://www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf  

Source: S. Seitz slides.!
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Interpretation as a Dynamical System 

•  Treat the links as springs and shake the system 
–  elasticity proportional to cost 
–  vibration “modes” correspond to segments 

•  can compute these by solving an eigenvector problem 
•  http://www.cis.upenn.edu/~jshi/papers/pami_ncut.pdf  

Source: S. Seitz slides.!
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Color Image Segmentation Examples 

Source: S. Seitz slides.!
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Segmentation by Weighted Aggregation Set-Up 

•  Define the problem on a graph:!
–  Edges are sparse, to neighbors.!
–  Each pixel / voxel is a node.!

•  Augment nodes, for  !
–  statistics:  !
–  class label:!

•  Define affinity between!

–  where     is some non-negative 
distance function and     are some 
predetermined values.  !

•  Regions are defined by cuts.!____!
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SWA Region Saliency 

•  Define a region saliency 
measure.!

•  Low          means good 
saliency:!
–  Low affinity on boundary.!
–  High affinity in interior.!

•  Criterion is based on the 
normalized cut criterion (Shi & 
Malik)!
–  Affinities at the pixel scale 

only.!
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Segmentation by Weighted Aggregation 
•  Invented in natural image domain by Sharon et al. (CVPR 2000, 2001, Nature 2006).!
•  Used in medical imaging Akselrod-Ballrin (CVPR 2006), Corso et al. (MICCAI 2006, TMI 2008)!
•  Extended to videos Xu and Corso (CVPR 2012, ECCV 2012)!
•  Efficient, multiscale process inspired by Algebraic Multigrid optimization.!
•  Results in a pyramid of recursively coarsened graphs that capture multiscale properties of the 

data.!
•  Affinities are calculated at each level of the graph.!
•  Statistics in each graph node are agglomerated up the hierarchy.!
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Segmentation by Weighted Aggregation 

•  Finest layer induced by pixel/voxel lattice!
–  4/6-neighbor connectivity!
–  Node properties      set according to multimodal image intensities.!
–  Affinities initialized by L1-distance:!

•  Superscripts on graph denotes level  
in a pyramid of graphs.!
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Segmentation by Weighted Aggregation 
•  Select a representative set of nodes satisfying!

–  i.e., all nodes in finer level have strong affinity to nodes in coarser.!
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Segmentation by Weighted Aggregation 
•  Select a representative set of nodes satisfying!

–  i.e., all nodes in finer level have strong affinity to nodes in coarser.!
•  Begin to define the graph!
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Segmentation by Weighted Aggregation 
•  Compute interpolation weights between coarse and fine levels!
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Segmentation by Weighted Aggregation 
•  Compute interpolation weights between coarse and fine levels!

•  Accumulate statistics at the coarse level!
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Segmentation by Weighted Aggregation 
•  Interpolate affinity from finer levels!
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Segmentation by Weighted Aggregation 
•  Interpolate affinity from finer levels.!

•  Use coarse affinity to modulate the interpolated affinity.!
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Segmentation by Weighted Aggregation 

•  Repeat ...!
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Bayesian Affinities 

•  Standard affinity calculation is based on simple features, 
such as the L1-distance of intensities as in the example.!

•  Affinity can be extended using metric learning!
–  LMNN [Weinberger et al. NIPS05], ITML [Davis et al. ICML07],  

RFD [Xiong et al. KDD12]!
•  Or Bayesian view of affinity [Corso, Yuille TMI 2008]!

–  Introduce a binary grouping random variable          .!

Model Specific Measurement Node Likelihoods Class Prior

P (Xuv|su, sv) =
�

mu

�

mv

P (Xuv|su, sv,mu,mv)P (mu,mv|su, sv) ,

�
�

mu

�

mv

P (Xuv|su, sv,mu,mv)P (su, sv|mu,mv)P (mu,mv) ,

=
�

mu

�

mv

P (Xuv|su, sv,mu,mv)P (su|mu)P (sv|mv)P (mu,mv) .
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Example on Synthetic Grayscale Image 
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Example of the Segmentation Pyramid 

4 5 6 

7 8 9 

10 11 12 

Caudate!

Putamen!

Ventricle!
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Example of the Segmentation Pyramid 

5 

8 7 

6 

Hippocampus!
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Next Lecture: Model-Fitting and Contours 

•  Readings:   FP  10;  SZ 4.3, 5.1  !
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