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Topics 

•  Linear filters!
•  Scale-space and image pyramids!
•  Image denoising!
•  Representing texture by filters!
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Super-resolution!De-noising!

In-painting!

Source: Savarese Slides!
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Images as functions 
•  We can think of an image as a function,   ,from                : 

–                gives the intensity at position !
–  Realistically, we expect the image only to be defined over a 

rectangle, with a finite range:!

•  A color image is just three functions pasted together.  We 
can write this as a “vector-valued” function: !

Source: Seitz and Szeliski Slides!
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Images as functions 

Source: Seitz and Szeliski Slides!
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What is a digital image? 

•  We usually work with digital (discrete) images:!
–  Sample the 2D space on a regular grid!
–  Quantize each sample (round to nearest integer)!

•  If our samples are    apart, we can write this as:!

•  The image can now be represented as a matrix of integer 
values!

Source: Seitz and Szeliski Slides!
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Filtering noise 

•  How can we “smooth” away noise in an image?!

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 100 130 110 120 110 0 0 

0 0 0 110 90 100 90 100 0 0 

0 0 0 130 100 90 130 110 0 0 

0 0 0 120 100 130 110 120 0 0 

0 0 0 90 110 80 120 100 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

Source: Seitz and Szeliski Slides!
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Mean filtering 
0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

Source: Seitz and Szeliski Slides!
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Source: Seitz and Szeliski Slides!
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Mean filtering 
0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 10 20 30 30 30 20 10 

0 20 40 60 60 60 40 20 

0 30 60 90 90 90 60 30 

0 30 50 80 80 90 60 30 

0 30 50 80 80 90 60 30 

0 20 30 50 50 60 40 20 

10 20 30 30 30 30 20 10 

10 10 10 0 0 0 0 0 

Source: Seitz and Szeliski Slides!
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Cross-correlation filtering 

•  As an equation:  Assume the window is (2k+1)x(2k+1):!

•  We can generalize this idea by allowing different weights for 
different neighboring pixels: 

•  This is called a cross-correlation operation and written: 

•  H is called the filter, kernel, or mask. 

Source: Seitz and Szeliski Slides!
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Mean kernel 

•  What’s the kernel for a 3x3 mean filter?!
0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

Source: Seitz and Szeliski Slides!
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Gaussian filtering 

•  A Gaussian kernel gives less weight to pixels further from 
the center of the window!

•  This kernel is an approximation of a Gaussian function:!

•  What happens if you increase σ ? !

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

1 2 1 

2 4 2 

1 2 1 

Source: Seitz and Szeliski Slides!
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Separability of the Gaussian filter 

•  The Gaussian function (2D) can be expressed as the 
product of two one-dimensional functions in each coordinate 
axis.!
–  They are identical functions in this case.!

•  What are the implications for filtering?!

Source: D. Lowe 
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IMAGE  NOISE  

Cameras are not perfect sensors and 
Scenes never quite match our expectations 

Source: G Hager Slides!
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Noise Models 

•  Noise is commonly modeled using the notion of “additive 
white noise.” 
–  Images: I(u,v,t) = I*(u,v,t) + n(u,v,t)  
–  Note that n(u,v,t) is independent of n(u’,v’,t’) unless u’=u,u’=u,t’=t. 
–  Typically we assume that n (noise) is independent of image location 

as well --- that is, it is i.i.d 
–  Typically we assume the n is zero mean, that is E[n(u,v,t)]=0 

•  A typical noise model is the Gaussian (or normal) distribution 
parametrized by π and σ 

•  This implies that no two images of the same scene are ever 
identical 

Source: G Hager Slides!
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Gaussian	


Noise:	


sigma=1	



Source: G Hager Slides!
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Gaussian 
Noise:  
sigma=16	



Source: G Hager Slides!
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Mean vs. Gaussian filtering 

Source: Seitz and Szeliski Slides!
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Smoothing by Averaging 

Kernel: 

Source: G Hager, D. Kriegman Slides!
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Smoothing with a Gaussian 

Kernel: 

Source: G Hager, D. Kriegman Slides!
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The effects of smoothing 	


Each row shows smoothing	


with gaussians of different	


width; each column shows	


different realizations of 	


an image of gaussian noise.	


	



Source: G Hager, D. Kriegman Slides!
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Properties of Noise Processes 

•  Properties of temporal image noise: 

Mean   µ(i,j)  = Σ I(u,v,t)/n 

Standard 
Deviation 

σi,j  =  Sqrt( Σ ( µ(ι,ϕ) – I(u,v,t) )2/n  )        

Signal-to-noise 
  Ratio σi,j 

µ (i,j)!

Source: G Hager Slides!
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Image Noise 

•  An experiment: take several images of a static scene and 
look at the pixel values 

mean = 38.6 
std = 2.99 
 
Snr = 38.6/2.99 ≈ 13 
max snr = 255/3 ≈ 85 

Source: G Hager Slides!
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PROPERTIES OF TEMPORAL IMAGE  NOISE  

(i.e., successive images) 

•  If standard deviation of grey values at a pixel is  s  for a pixel 
for a single image, then the laws of statistics states that for 
independent sampling of grey values, for a temporal average 
of  n  images, the standard deviation is:!

•  For example, if we want to double the signal to noise ratio, 
we could average 4 images.!

Sqrt(n) 
σ 

Source: G Hager Slides!
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Temporal vs. Spatial Noise 

•  It is common to assume that: 
–  spatial noise in an image is consistent with the temporal image 

noise 
–  the spatial noise is independent and identically distributed 
 

•  Thus, we can think of a neighborhood of the image itself as 
approximated by an additive noise process 

•  Averaging is a common way to reduce noise 
–  instead of temporal averaging, how about spatial? 

•  For example, for a pixel in image I at i,j 
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Source: G Hager Slides!
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Correlation and Convolution 

•  Correlation:!

•  Convolution:!
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Impulse Response Function!



Correlation and Convolution 
28 

Source:  https://www.youtube.com/watch?v=Ma0YONjMZLI!



Convolution: Shift Invariant Linear Systems 

•  Commutative: !
–  Conceptually no difference between filter and signal!

•  Associative: !
–  Often apply several filters in sequence: !
–  This is equivalent to applying one filter:!

•  Linearity / Distributes over addition:!
!
•  Scalars factor out:!
•  Shift-Invariance:!
•  Identity: unit impulse !

!
• 0!• 0!• 0!
• 0!• 1!• 0!
• 0!• 0!• 0!

Source: Savarese Slides!
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Convolution: Properties 

•  Linearity: filter(f1 + f2 ) = filter(f1) + filter(f2)!

•  Shift invariance: filter (shift (f )) = shift (filter (f ))!
   (same behavior regardless of pixel location)!
!

•  Theoretany linear shift-invariant operator can be 
represented as a convolutionical result:!

Source: Savarese Slides!
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Source: B. Freeman Slides!

Linear Filtering: Status Check! 
31 



Source: B. Freeman Slides!
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Source: B. Freeman Slides!
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Source: B. Freeman Slides!
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Source: B. Freeman Slides!
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Source: B. Freeman Slides!
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Source: B. Freeman Slides!
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Source: B. Freeman Slides!
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Source: B. Freeman Slides!
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Source: B. Freeman Slides!
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Source: B. Freeman Slides!
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Source: B. Freeman Slides!
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Source: B. Freeman Slides!
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Source: B. Freeman Slides!
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What does blurring take away? 

original smoothed (5x5) 

– 

detail 

= 

sharpened 

= 

•  Let’s add it back:!

original detail 

+ a 

Source: Savarese Slides!
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Image gradient  

•  How can we differentiate a digital image             ?!
–  Option 1:  reconstruct a continuous image,  , then take gradient!
–  Option 2:  take discrete derivative (finite difference)!

The 
ima

How would you implement this as a cross-correlation? 

Source: Seitz and Szeliski Slides!

46 



Image gradient 
 

 

It points in the direction of most rapid change in intensity 

The gradient direction is given by: 

 

w  how does this relate to the direction of the edge? 
 

The edge strength is given by the gradient magnitude 

Source: Seitz and Szeliski Slides!

47 



Physical causes of edges 

1.  Object boundaries 
2.  Surface normal discontinuities 
3.  Reflectance (albedo) discontinuities 
4.  Lighting discontinuities  

Source: G Hager Slides!
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Object Boundaries!

Source: G Hager Slides!
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Surface normal discontinuities 

Source: G Hager Slides!

50 



Boundaries of material properties 

Source: G Hager Slides!
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Boundaries of lighting 

Source: G Hager Slides!
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Edge Types 

Step 

Ridge 

Roof 

Which of these do you suppose!
a derivative filter detects best?!

Source: G Hager Slides!
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Some Other Interesting Kernels 
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The Prewitt Operator 

Source: G Hager Slides!
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Some Other Interesting Kernals 
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The Laplacian Operator 

A good exercise: derive the Laplacian from 1-D  
derivative filters. 
 
Note the Laplacian is rotationally symmetric! 
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Source: G Hager Slides!
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Edge is Where Change Occurs 1D 

•  Change is measured by derivative in 1D 
–  Biggest change, derivative has maximum magnitude 
–  Or 2nd derivative is zero. 

Source: G Hager Slides!
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Noisy Step Edge 

•  Derivative is high everywhere. 
•  Must smooth before taking gradient. 

Source: G Hager Slides!
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Smoothing Plus Derivatives 

•  One problem with differences is that they by definition 
reduce the signal to noise ratio. 

•  Recall smoothing operators (the Gaussian!) reduce noise. 

•  Hence, an obvious way of getting clean images with 
derivatives is to combine derivative filtering and smoothing: 
e.g. 

 

Source: G Hager Slides!
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The Fourier Spectrum of DOG 

Derivative of a Gaussian 

PS of central slice 

Source: G Hager Slides!
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The DoG: Derivative of a Gaussian 
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Properties of the DoG operator 
•  Now, going back to the directional derivative: 

–  Du(f(x,y)) = fx(x,y)u1 +  fy(x,y)u2  

•  Now, including a Gaussian convolution, we see 

–  Du[G*I] = Du[G]*I = [u1Gx + u2Gy]*I = u1Gy*I + u2Gx*I 

•  The two components I*Gx and I*Gy are the image gradient 

•  Note the directional derivative is maximized in the direction of the gradient 

•  (note some authors use DoG as “Difference of Gaussian” which we’ll run into 
soon ....) 

Source: G Hager Slides!
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Algorithm: Simple Edge Detection 

 
1. Compute Ix = Ig* (G(σ) *G(σ)’ * [1,-1;1,-1]) 

2. Compute Iy = Ig* (G(σ) *G(σ)’ * [1,-1;1,-1]’) 

3. Compute Imag = sqrt(Ix.* Ix + Iy .* Iy) 

4. Threshold: Ires = Imag > τ 

 

It is interesting to note that if we wanted an edge detector for a 
specific direction of edges, we can simply choose the 
appropriate projection (weighting) of the component 
derivatives. 

 

 
Source: G Hager Slides!
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Example 

sigma = 5 

sigma = 1 sigma = 2 

Source: G Hager Slides!
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Limitations of Linear Operators on Impulsive Noise 

Source: G Hager Slides!
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Nonlinear Filtering: The Median Filter 

Suppose I look at the local statistics and replace each 
pixel with the median of its neighbors: 

Source: G Hager Slides!
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filters have width 5 :  

Median Filtering Example 

Source: G Hager Slides!
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Median Filtering: Example 

Salt and Pepper Original Gaussian Filter 

Median Filter 
Source: G Hager Slides!
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Non-local Means for Image Denoising 
68 

Paper/Source:  Buades, Coll, Morel.  “A non-local algorithm for image denoising”   CVPR 2005. !

Similarity Between Two Locations!
!
Typically, the Euclidean distance in  
   a Gaussian kernel.!



NL Means Weight Distribution 
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Paper/Source:  Buades, Coll, Morel.  “A non-local algorithm for image denoising”   CVPR 2005. !



NL Means Example Result 
70 

Noisy Input! Gaussian Filtering! Anisotropic Filtering!

Total Variation! Neighborhood Filtering! Non-Local Means!
Paper/Source:  Buades, Coll, Morel.  “A non-local algorithm for image denoising”   CVPR 2005. !



Filter Pyramids 

•  Recall we can always filter with         for any 	



•  As a result, we can think of a continuum of filtered images as 
σ  grows. 
–  This is referred to as the “scale space” of the images. We will 

see this show up several times. 

•  As a related note, suppose I want to subsample images 
–  Subsampling reduces the highest frequencies 
–  Averaging reduces noise 
–  Pyramids are a way of doing both 

Source: G Hager Slides!
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Gaussian Pyramid 

•  Algorithm: 

–  1. Filter with 
–  2. Resample at every 

other pixel 
–  3. Repeat 

Source: G Hager Slides!
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Laplacian Pyramid Algorithm 

•  Create a Gaussian pyramid by successive smoothing with 
a Gaussian and down sampling 

•  Set the coarsest layer of the Laplacian pyramid to be the 
coarsest layer of the Gaussian pyramid 

•  For each subsequent layer n+1, compute 

Source: G Hager Slides!
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Laplacian of Gaussian Pyramid 

Source: G Hager Slides!
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Laplacian of Gaussian Pyramid 

upsample 

Source: G Hager Slides!
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Understanding Convolution 
•  Another way to think about convolution is in terms of how it changes the 

frequency distribution in the image. 

•  Recall the Fourier representation of a function 

–  F(u) =    f(x) e-2π i u x dx 
–  recall that e-2π i u x = cos(2π u x) – i sin (2 π u x) 
–  Also we have f(x) =  F(u) e2π i u x du 
–  F(u) = |F(u)| ei Φ(u) 

•  a decomposition into magnitude (|F(u)|) and phase Φ(u) 
•  If F(u) = a + i b then 
•  |F(u)| = (a2 + b2)1/2 and Φ(u) = atan2(a,b) 

–  |F(u)|^2 is the power spectrum 

•  Questions: what function takes many many many terms in the Fourier 
expansion? 

Source: G Hager, D. Kriegman Slides!
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Understanding Convolution 

Discrete Fourier Transform (DFT) 	



Inverse DFT	



Implemented via the “Fast Fourier Transform” algorithm (FFT)	



Source: G Hager, D. Kriegman Slides!
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Fourier basis element  
 
 
Transform is sum of orthogonal 
basis functions 
 
Vector (u,v) 
•  Magnitude gives frequency 
•  Direction gives orientation.  

€ 

e−i2π ux+vy( )

Source: G Hager, D. Kriegman Slides!
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Here u and v are 
larger than in the 
previous slide.	



Source: G Hager, D. Kriegman Slides!
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And larger still...	



Source: G Hager, D. Kriegman Slides!
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Basis vectors	



Linear Combination:	



The Fourier “Hammer”	



“Power Spectrum”	



Source: G Hager, D. Kriegman Slides!
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Frequency Decomposition	


All Basis Vectors	



Example	



...	



...	



...	



...	

 ...	

 ...	



intensity ~ that frequency’s coefficient	



Source: G Hager, D. Kriegman Slides!
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Using Fourier Representations	


Smoothing	



Data Reduction:  only use some of the existing frequencies	



Source: G Hager, D. Kriegman Slides!
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Using Fourier Representations	



Limitations: not useful for local segmentation	



Dominant Orientation	



Source: G Hager, D. Kriegman Slides!
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Phase and Magnitude 

 
•  Fourier transform of a real function is complex with real (R) and imaginary (I) 

components 
–  difficult to plot, visualize 
–  instead, we can think of the phase and magnitude of the transform 

•  Phase is the phase of the complex transform  
–  p(u) = atan(I(u)/R(u)) 

•  Magnitude is the magnitude of the complex transform  
–  m(u) = sqrt(R2(u) + I2(u))  

•  Curious fact 
–  all natural images have about the same magnitude transform 
–  hence, phase seems to matter, but magnitude largely doesn’t 

•  Demonstration 
–  Take two pictures, swap the phase transforms, compute the inverse - what does the 

result look like? 

Source: G Hager, D. Kriegman Slides!
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Source: G Hager, D. Kriegman Slides!
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This is the 
magnitude 
transform 
of the 
cheetah pic 

Source: G Hager, D. Kriegman Slides!
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This is the 
phase 
transform 
of the 
cheetah pic 

Source: G Hager, D. Kriegman Slides!
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Source: G Hager, D. Kriegman Slides!
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This is the 
magnitude 
transform 
of the 
zebra pic 

Source: G Hager, D. Kriegman Slides!
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This is the 
phase 
transform 
of the 
zebra pic 

Source: G Hager, D. Kriegman Slides!
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Reconstruction 
with zebra 
phase, cheetah 
magnitude 

Source: G Hager, D. Kriegman Slides!
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Reconstruction 
with cheetah 
phase, zebra 
magnitude 

Source: G Hager, D. Kriegman Slides!
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The Fourier Transform and Convolution 

•  If H and G are images, and F(.) represents Fourier 
transform, then 

•  Thus, one way of thinking about the properties of a 
convolution is by thinking of how it modifies the frequencies 
of the image to which it is applied. 

•  In particular, if we look at the power spectrum, then we see 
that convolving image H by G attenuates frequencies where 
G has low power, and amplifies those which have high 
power. 

•  This is referred to as the Convolution Theorem  

F(H*G) = F(H)F(G) 

Source: G Hager, D. Kriegman Slides!
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The Properties of the Box Filter 

F(mean filter) = 

Thus, the mean filter enhances low frequencies 
but also has “side lobes” that admit higher frequencies 

Source: G Hager, D. Kriegman Slides!
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The Gaussian Filter: A Better Noise Reducer 
•  Ideally, we would like an averaging filter that removes (or at 

least attenuates) high frequencies beyond a given range 

•  It is not hard to show that the FT of a Gaussian is again a 
Gaussian. 
–  What does this imply?      FT(             ) =  

•  Note that in general, we truncate --- a good general rule is 
that the width (w) of the filter is at least such that w > 5 σ.  
Alternatively we can just stipulate that the width of the filter 
determines σ (or vice-versa). 

•  Note that in the discrete domain, we truncate the Gaussian, 
thus we are still subject to ringing like the box filter. 

Source: G Hager, D. Kriegman Slides!
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Smoothing by Averaging 

Kernel: 

Source: G Hager, D. Kriegman Slides!

97 



Smoothing with a Gaussian 

Kernel: 

Source: G Hager, D. Kriegman Slides!
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Why Not a Frequency Domain Filter? 
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Gabor Filters 

•  Fourier decompositions are a way of measuring “texture” 
properties of an image, but they are global 

•  Gabor filters are a “local” way of getting image frequency content 

g(x,y) = s(x,y) w(x,y)   == a “sin” and a “weight” 
 
 s(x,y) = exp(-i (2 π (x u + y v))) 
w(x,y) = exp(-1/2 (x^2 + y^2)/ σ^2) 
 
Now, we have several choices to make: 

 1. u and v defines frequency and orientation 
     2. σ defines scale (or locality) 
 
Thus, Gabor filters for texture can be computationally expensive as 

we often must compute many scales, orientations, and frequencies 

Source: G Hager, D. Kriegman Slides!
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Filtering for Texture 

•  The Leung-Malik (LM Filter): set of edge and bar filters plus 
Gaussian and Laplacian of Gaussian 

Source: G Hager, D. Kriegman Slides!
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Next Lecture: Local Image Features 

•  Readings:   FP 5;  SZ 4.2, 4.3   !
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