COLLEGE OF ENGINEERING

ELECTRICAL ENGINEERING & COMPUTER SCIENCE

UNIVERSITY OF MICHIGAN

Linear Filters and Image Processing

EECS 598-08 Fall 2014 Instructor: Jason Corso (jjcorso)
Foundations of Computer Vision web.eecs.umich.edu/~jjcorso/t/598F14

Readings: FP 4,6.1,6.4;SZ 3
Date: 9/24/14

Materials on these slides have come from many sources in addition to myself; | am infinitely grateful to these, especially Greg Hager, Silvio Savarese, and Steve Seitz.

Topics

* Linear filters

« Scale-space and image pyramids
* Image denoising

* Representing texture by filters

De-noising Super-resolution

Salt :1 ppe m:-is

In-painting

Image Inpainting, M. Bertalmio et al. Image Inpainting, M. Bertalmio et al.

swww.iua. upf es ~mbertalmio/ restoraton hrml

Lrp: www inz.upfes ~mbertalmio restoraton. hmml
Source: Savarese Slides

Images as functions

« We can think of an image as a function, f ,from R? — R :
— f(x,y) gives the intensity at position (z, y)

— Realistically, we expect the image only to be defined over a
rectangle, with a finite range:

f:la,b] x |e,d| — [0,1]

* Acolorimage is just three functions pasted together. We
can write this as a “vector-valued” function:

(@, y)
f(x,y) — g(x,y)
(2,)

Source: Seitz and Szeliski Slides

Images as functions

Source: Seitz and Szeliski Slides

What is a digital image?

« We usually work with digital (discrete) images:
— Sample the 2D space on a regular grid
— Quantize each sample (round to nearest integer)

 If our samples are A apart, we can write this as:
fli,5] = Quantize{f(iA, jA)}
« The image can now be represented as a matrix of integer
values,

—_—

, l G2 Fg! 243 114 120 105 4 0
10 10 i G2 12 73 a4 0
10 53 1497 46 46 0 0 48
176 135 5 183 191 G 0 449
2 1 1 29 26 ar 0 Fif
0 aje! 144 147 1587 102 G2 203
255 252 0 166 1243 G2 0 a
166 G3 147 17 1 W] G949 a0

Source: Seitz and Szeliski Slides

Filtering noise

« How can we “smooth” away noise in an image?

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 100 130 110 120 110 0 0
0 0 0 110 90 100 90 100 0 0
0 0 0 130 100 90 130 110 0 0
0 0 0 120 100 130 110 120 0 0
0 0 0 90 110 80 120 100 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Source: Seitz and Szeliski Slides

Mean filtering

Flz,y]

Source: Seitz and Szeliski Slides

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0

Source: Seitz and Szeliski Slides

Mean filtering

Flz,y]

Source: Seitz and Szeliski Slides

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0
0 0 90 0 0 0 0 0 0 0
0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Cross-correlation filtering

As an equation: Assume the window is (2k+1)x(2k+1):

| s
G[W]_(Zk—l—l)Q Z Z Fli4+u,j+ v

u=—kv=—%k

We can generalize this idea by allowing different weights for
different neighboring pixels:

k k
Gli,jl= Y Y Hu,v]F[i+u,j+]

u=—kv=—=k
This is called a cross-correlation operation and written:

G=HQF

H is called the filter, kernel, or mask.

Source: Seitz and Szeliski Slides

Mean kernel

« What’s the kernel for a 3x3 mean filter?

0 0 0 0 0
0 0 0 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 90 0 90 90 90 0 0
0 0 0 90 90 90 90 90 0 0
0 0 0 0 0 0 0 0 0 0
0 0 90 0 0 0
0 0 0 0 0 0 0 0 0 0
Flz,y]

Source: Seitz and Szeliski Slides

Hlu,v]

Gaussian filtering

« A Gaussian kernel gives less weight to pixels further from
the center of the window

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 o [90 | 90 [9 [9 | 9 | o 0

0 0 o | 90| 9 [9 [9 | 9 | o 0 y > y
0 0 o [90| 9 [9 [9 | 90 | o 0 i > " ;
0 0 o [90| o [9 [9 [9 [o 0 16 1
0 0 o [90| 9 [9 [9 | 90 | o 0

0 0 0 0 0 0 0 0 0 0 H [u7 U]
0 o | 90 0 0

0 0 0 0 0 0 0 0 0 0

Flz,y]

« This kernel is an approximation of a Gaussian function:

1 u? + v?
Hlu, v] = oo ¥ <_ 202)

« What happens if you increase o ?

Source: Seitz and Szeliski Slides

Separability of the Gaussian filter

« The Gaussian function (2D) can be expressed as the
product of two one-dimensional functions in each coordinate
axis.

— They are identical functions in this case.

1 u? + v?
Hlu, v} = oo ¥ <_ 202)

1 u? 1 v?
— exp | ——— exp | ———
2mo P 2072 2o P 2072

* What are the implications for filtering?

Source: D. Lowe

IMAGE NOISE

Cameras are not perfect sensors and
Scenes never quite match our expectations

Source: G Hager Slides

Noise Models

« Noise is commonly modeled using the notion of “additive
white noise.”
— Images: I(u,v,t) = I"(u,v,t) + n(u,v,t)
— Note that n(u,v,t) is independent of n(u’ ,v" ,t") unless u’ =u,u’ =u,t’ =t.
— Typically we assume that n (noise) is independent of image location
as well --- that is, it is i.i.d

— Typically we assume the n is zero mean, that is E[n(u,V,1)]=0

« Atypical noise model is the Gaussian (or normal) distribution
parametrized by mand o .
1 (x — p)?
p(x) = exXp | =75 |

o\ 27

« This implies that no two images of the same scene are ever
identical

Source: G Hager Slides

Gaussian
Noise:
sigma=1

Source: G Hager Slides

Gaussian

Noise:
sigma=16

Source: G Hager Slides

Mean vs. Gaussian filtering

Source: Seitz and Szeliski Slides

Smoothing by Averaging

Source: G Hager, D. Kriegman Slides

Smoothing with a Gaussian

Source: G Hager, D. Kriegman Slides

The effects of smoothing
Each row shows smoothing
with gaussians of different
width; each column shows
o=1pixel different realizations of

an image of gaussian noise.

0=2 pixels

Source: G Hager, D. Kriegman Slides

Properties of Noise Processes

* Properties of temporal image noise:

Mean w(i,j) =2 I(u,v,t)/n

Standard O,; = Sart(Z (u(Le) —I(u,v,t))¥/n)
Deviation

Signal-to-noise 4 (i)

Ratio oy

Source: G Hager Slides

Image Noise

* An experiment: take several images of a static scene and
look at the pixel values

mean = 38.6
std = 2.99

Snr=38.6/2.99= 13
max snr = 255/3 = 85

Source: G Hager Slides

PROPERTIES OF TEMPORAL IMAGE NOISE

(i.e., successive images)

 If standard deviation of grey values at a pixel is s for a pixel
for a single image, then the laws of statistics states that for

independent sampling of grey values, for a temporal average
of n images, the standard deviation is:

o
Sqrt(n)

 For example, if we want to double the signal to noise ratio,
we could average 4 images.

Source: G Hager Slides

Temporal vs. Spatial Noise

It Is common to assume that:

— spatial noise in an image is consistent with the temporal image
noise

— the spatial noise is independent and identically distributed

* Thus, we can think of a neighborhood of the image itself as
approximated by an additive noise process

* Averaging is a common way to reduce noise
— instead of temporal averaging, how about spatial?

» For example, for a pixel in image | at i,
i+1 j+1

I'(i,])_1/92 21(1 7"

i'=i-1j'=

Source: G Hager Slides

Correlation and Convolution

e Correlation: G=H® F

k k
Gli,jl= Y Y Hlu,v]F[i +u,j+]

u=—k v=—%k

« Convolution: G = H x F

k k
Gli,jl= > Y |Hu,v]F[i —u,j—v]

u=—kov=—=%k% \

Impulse Response Function

Correlation and Convolution

Source: hitps://www.youtube.com/watch?v=Ma0YONjMZLI

Convolution: Shift Invariant Linear Systems

« Commutative: F'x H =H x F
— Conceptually no difference between filter and signal

* Associative: Fx(HxL)=(F«H)xL

— Often apply several filters in sequence: (((F % Hy) * Hy x H3)

— This is equivalent to applying one filter: F' x (Hy x Hy x Hs)
 Linearity / Distributes over addition:

Fx(Hy+ Hy)=(F*Hy)+ (F * Hy)
« Scalars factorout: kFF« H=F xkH = k(F x H)
« Shift-Invariance: H x* Shift(F') = Shift(H * F')
 |dentity: unit impulse 0l-01-0
Fxe=F €= 1.0|-1/-0

-0(+0|-0

Source: Savarese Slides

Convolution: Properties

. Linearity: filter(f, + £,) = filter(f,) + filter(£,)

« Shift invariance: filter (shift (f)) = shift (filter (f))

(same behavior regardless of pixel location)

* Theoretany linear shift-invariant operator can be
represented as a convolutionical result:

ource: Savarese Slides

Linear Filtering: Status Check!

original

Source: B. Freeman Slides

1.0

coefficient

0
Pixel offset

Linear filtering (warm-up slide)

coeftficient
o

0
o Pixel offset
original Filtered

(no change)

Source: B. Freeman Slides

Linear filtering

1.0

0
Pixel offset

coefficient

original

Source: B. Freeman Slides

Source: B. Freeman Slides

original

shift

1.0

0
Pixel offset

coefficient

shifted

Linear filtering

-
(OS]

%.

coefficient

0
Pixel offset

original

Source: B. Freeman Slides

Blurring

-
W

%.

coefficient

0
Pixel offset

original Blurred (filter
applied in both
dimensions).

Source: B. Freeman Slides

Blur examples

—
8 5 2.4
2
impulse =
o 0.3 I
L | L L o|—|—'—'—|—l—'—'—| i LILIL
.. 0 f.l . d
original Pixel offset ltere

Source: B. Freeman Slides

8
impulse
UL LI
original
8
edge |||
original

Source: B. Freeman Slides

Blur examples

coefficient

Pixel offset

4

coefticient

Pixel offset

0.3

—HH—

0

0.3

I_I_V_H_'_ﬂ_l

0

2.4

L

filtered

filtered

Linear filtering (warm-up slide)

2.0

0 0

original

Source: B. Freeman Slides

Linear filtering (no change)

2.0

original Filtered
(no change)

Source: B. Freeman Slides

Linear filtering

2.0

0 0

original

Source: B. Freeman Slides

(remember blurring)

-
(OS]

%.

coefficient

0
Pixel offset

original Blurred (filter
applied in both
dimensions).

Source: B. Freeman Slides

Sharpening

2.0

Sharpened

original s
original

Source: B. Freeman Slides

Sharpening

before

Source: B. Freeman Slides

What does blurring take away?

Let’'s add it back:

\‘detail

Source: Savarese Slides

Image gradient

+ How can we differentiate a digitalimage F'(z,y) ?
— Option 1: reconstruct a continuous image, f, then take gradient
— Option 2: take discrete derivative (finite difference)

B,
a_i z,y] = Flz + 1,y] — Flz,y]

How would you implement this as a cross-correlation?

Source: Seitz and Szeliski Slides

Image gradient

vf=|9L 9
ox’ Oy
It points in the direction of most rapid change in intensity

o

= [0. 5]

__f_f
—aa

The gradient direction is given by:
_ —1(9f ,0f)

+ how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

2 2
IV Al =D + (3D

Source: Seitz and Szeliski Slides

Physical causes of edges

Object boundaries
Surface normal discontinuities

1.
2.
3. Reflectance (albedo) discontinuities
4. Lighting discontinuities

Source: G Hager Slides

Object Boundaries

Source: G Hager Slides

Surface normal discontinuities

Source: G Hager Slides

Boundaries of material properties

Source: G Hager Slides

Boundaries of lighting

Source: G Hager Slides

Edge Types

Step

[\ _ Which of these do you suppose
Ridge a derivative filter detects best?

A Roof

Source: G Hager Slides

Some Other Interesting Kernels

The Roberts Operator [1 0 H

The Prewitt Operator

Source: G Hager Slides

0 -1

0

1

-1 0

11 O

-1

|

1
0
-1

Some Other Interesting Kernals

-1 -2 -1][-1 0 1]

The Sobel Operator

1 -4 1flor|l -8 1

The Laplacian Operator

A good exercise: derive the Laplacian from 1-D
derivative filters.

Note the Laplacian is rotationally symmetric!

Source: G Hager Slides

Edge is Where Change Occurs 1D

« Change is measured by derivative in 1D
— Biggest change, derivative has maximum magnitude
— Or 2nd derivative is zero.

Source: G Hager Slides

Noisy Step Edge

* Derivative is high everywhere.
* Must smooth before taking gradient.

Source: G Hager Slides

Smoothing Plus Derivatives

* One problem with differences is that they by definition
reduce the signal to noise ratio.

» Recall smoothing operators (the Gaussian!) reduce noise.

« Hence, an obvious way of getting clean images with
derivatives is to combine derivative filtering and smoothing:

e.g.
(FxG)x D, =F=x*(GxD,)

Source: G Hager Slides

The Fourier Spectrum of DOG

Derivative of a Gaussian

PS of central slice

Source: G Hager Slides

The DoG: Derivative of a Gaussian

0.4 T T T T T T T T |
Oth order

1st order
0.3 2nd order H

02

01

0.4

Properties of the DoG operator

Now, going back to the directional derivative:
- Du(f(x’y)) = fX(X,y)U1 + fy(X’y)UZ

* Now, including a Gaussian convolution, we see
— D,IG™] = D [CI*l = [u,Gy + u,G J*I = uyG*l + u, Gl
* The two components I"G, and I"G, are the image gradient

* Note the directional derivative is maximized in the direction of the gradient

« (note some authors use DoG as “Difference of Gaussian” which we’ Il run into
soon)

Source: G Hager Slides

Algorithm: Simple Edge Detection

1. Compute |, = 1,;* (G(o) *G(o)" * [1,-1;1,-1])
2. Compute |, = 1,* (G(o) *G(o)" * [1,-1;1,-1]")
3. Compute |, = sqrt(l,.* I, + 1, .* I,)

4. Threshold: | .o =1, > 7

It is interesting to note that if we wanted an edge detector for a

specific direction of edges, we can simply choose the
appropriate projection (weighting) of the component
derivatives.

Source: G Hager Slides

Limitations of Linear Operators on Impulsive Noise

Source: G Hager Slides

Nonlinear Filtering: The Median Filter

Suppose | look at the local statistics and replace each
pixel with the median of its neighbors:

Source: G Hager Slides

Median Filtering Example

filters have width 5 :

INPUT

MEDIAN

MEAN

Source: G Hager Slides

Median Filtering: Example

Original Salt and Pepper Gaussian Filter

Median Filter

Source: G Hager Slides

Non-local Means for Image Denoising

S(i) =Y Jw(d, jv(j)

" . :‘2“‘ :
By e 1 -
> - -
P 3 ! X ,'
-l .' l.
B S
g >
b
,. "v“.
. N N ;
J | w(p.ql)
=%
Ik

Similarity Between Two Locations

7

Wi
{

#

r'd
Vo
RNy
o

5
2

Typically, the Euclidean distance in w(p.92)

a Gaussian kernel.

1 €5

A
R

B a " 1)
NS o
eV SR

e

X “‘.V

TEMG S poa

D
B

N PRt Y
- 4 e T IR e
de gmt g

& 1
.-.t

Paper/Source: Buades, Coll, Morel. “A non-local algorithm for image denoising” CVPR 2005.

NL Means Weight Distribution

|
(b) (c)
- - |
| — — % %
— - '
| . T
b - * XK
i 1 1 i
b - -
I 1 1 1 ' 0
(e)

()

= B = .-

Paper/Source: Buades, Coll, Morel. “A non-local algorithm for image denoising” CVPR 2005.

NL Means Example Result

Noisy Input Gaussian Filtering Anisotropic Filtering

Total Variation Neighborhood Filtering Non-Local Means

Paper/Source: Buades, Coll, Morel. “A non-local algorithm for image denoising” CVPR 2005.

Filter Pyramids

* Recall we can always filter with G(o) for any o

* As aresult, we can think of a continuum of filtered images as
O Qgrows.

— This is referred to as the “scale space” of the images. We will
see this show up several times.

* As a related note, suppose | want to subsample images
— Subsampling reduces the highest frequencies
— Averaging reduces noise
— Pyramids are a way of doing both

Source: G Hager Slides

Gaussian Pyramid
 Algorithm:

— 1. Filter with G(o = 1)

— 2. Resample at every
other pixel

— 3. Repeat

Source: G Hager Slides

Laplacian Pyramid Algorithm

« Create a Gaussian pyramid by successive smoothing with
a Gaussian and down sampling

« Set the coarsest layer of the Laplacian pyramid to be the
coarsest layer of the Gaussian pyramid

* For each subsequent layer n+1, compute
Lin+1)=G(n+ 1) = Upsample(G(n))

Source: G Hager Slides

Laplacian of Gaussian Pyramid

Source: G Hager Slides

Laplacian of Gaussian Pyramid

upsample

Source: G Hager Slides

Understanding Convolution

« Another way to think about convolution is in terms of how it changes the
frequency distribution in the image.

» Recall the Fourier representation of a function

— F(u)= [f(x) e?iuxdx

— recall that e2r1ux = cos(2m u x) — i sin (2 u Xx)

— Also we have f(x) =/I2(u) e¥riuxduy

— F(u) = |F(u)| &' W
» a decomposition into magnitude (|F(u)|) and phase ®(u)
. IfF(u)=a+ibthen
« |F(u)] = (a2 + b2)"2 and ®(u) = atan2(a,b)

— |F(u)|*2 is the power spectrum

* Questions: what function takes many many many terms in the Fourier
expansion?

Source: G Hager, D. Kriegman Slides

Understanding Convolution

Discrete Fourler Transtorm (DFT)
N—1N-1

F[u,v] = N L L I[a: y =27 I (zutyv)

r=—0 y=0

Inverse DFT

N—-1N-1

o] = & 3 3 Pluole it
u=—0 v=0

Implemented via the “Fast Fourier Transform” algorithm (FFT)

Source: G Hager, D. Kriegman Slides

Fourier basis element

Transform is sum of orthogonal

—i27(ux+vy)

basis functions

Vector (u,

V)

e Magnitude gives frequency
e Direction gives orientation.

€
.

i (ux

u

i (20x+

o

€

vy)

Source: G Hager, D. Kriegman Slides

vy)

e

mi({o+vy)

e

—

Source: G Hager, D. Kriegman Slides

Here u and v are
larger than 1n the
previous slide.

i jix+v)

7 |
\

N
/
— —=
OU e.
o9
— =
D) T g
— — g
< B g
— .“_mu
d 01' e [a)
- &
T
< o

The Fourier “Hammer

“Power Spectrum”

Linear Combination:

Basis vectors

Source: G Hager, D. Kriegman Slides

Frequency Decomposition

All Basis Vectors

Example

N

VW

intensity ~ that frequency’ s coefficient

Source: G Hager, D. Kriegman Slides

Using Fourier Representations

Smoothing

Data Reduction: only use some of the existing frequencies

Source: G Hager, D. Kriegman Slides

Using Fourier Representations

Dominant Orientation

U 00aa QT30 C09py s

Limitations: not useful for local segmentation

Source: G Hager, D. Kriegman Slides

Phase and Magnitude

et — cost +isint

» Fourier transform of a real function is complex with real (R) and imaginary (1)
components

— difficult to plot, visualize

— instead, we can think of the phase and magnitude of the transform
 Phase is the phase of the complex transform

— p(u) = atan(I(u)/R(u))
« Magnitude is the magnitude of the complex transform

— m(u) = sart(R*(u) + I*(u))
« Curious fact

— all natural images have about the same magnitude transform

— hence, phase seems to matter, but magnitude largely doesn’ t
 Demonstration

— Take two pictures, swap the phase transforms, compute the inverse - what does the
result look like?

Source: G Hager, D. Kriegman Slides

Source: G Hager, D. Kriegman Slides

This is the
magnitude
transform
of the
cheetah pic

Source: G Hager, D. Kriegman Slides

87

e 1 gt R o I IR e O ;2:&5 5

Pt st el 5 B o e 3

BTy ?x-iﬁr&x’-‘r"”fiu'«r s 5""-{“

PRI A G PR SR
AT AR AL RN,
3

i "t‘};

This is the
phase
transform
of the
cheetah pic

rh?

,"
W 4 %

4 3,;;
E

)

: b
T

R
ey
AT

RSy
- P
L
ey,
s

L
A PN

> n.‘[o Fh J

i ¥a oY rem LY o i
'..2.‘.{‘,- d 3}‘.’-“_{0‘"' o v i J'(f.éf
Source: G Hager, D. Kriegman Slides

Source: G Hager, D. Kriegman Slides

This is the
magnitude
transform
of the
zebra pic

Source: G Hager, D. Kriegman Slides

90

)
c
)
2

Q
)]
O
e
Q

IS

Th

-
| -
O
o &
Co
O«
iS5 O

IC

Q
©
ot
Q0
)]
N

e wm’\\w\.,..

oS

%

. %

A

A

L9

>

A T 2 A
N R A

St

FH P

».uu w.

, D. Kriegman Slides

Source: G Hager,

Reconstruction
with zebra
phase, cheetah
magnitude

Source: G Hager, D. Kriegman Slides

92
h
iy |
dhx LS - <
““.."“'\ 4 \P’:‘ -
3 . V‘ A

Fa S =3 . -
P 7 A A U
AN
T » J 1 '
o/ PP g AN

Reconstruction
with cheetah
phase, zebra
magnitude

Source: G Hager, D. Kriegman Slides

-

93

The Fourier Transform and Convolution

« If Hand G are images, and F(.) represents Fourier
transform, then

F(H*G) = F(H)F(G)

* Thus, one way of thinking about the properties of a
convolution is by thinking of how it modifies the frequencies
of the image to which it is applied.

 In particular, if we look at the power spectrum, then we see
that convolving image H by G attenuates frequencies where
G has low power, and amplifies those which have high
power.

* This is referred to as the Convolution Theorem

Source: G Hager, D. Kriegman Slides

The Properties of the Box Filter

F(mean filter) =

HANS
NN\ 0y
\j\\y‘ N\A}\

MRS

Thus, the mean filter enhances low frequencies
but also has “side lobes” that admit higher frequencies

Source: G Hager, D. Kriegman Slides

Source

The Gaussian Filter: A Better Noise Reducer

|deally, we would like an averaging filter that removes (or at
least attenuates) high frequencies beyond a given range

It is not hard to show that the FT of a Gaussian is again a

Gaussian. -

— What does this imply? FT(o—a=’)_ [T e
' ¥

Note that in general, we truncate --- a good general rule is
that the width (w) of the filter is at least such that w > 5 o.
Alternatively we can just stipulate that the width of the filter
determines o (or vice-versa).

Note that in the discrete domain, we truncate the Gaussian,
thus we are still subject to ringing like the box filter.

: G Hager, D. Kriegman Slides

Smoothing by Averaging

Source: G Hager, D. Kriegman Slides

Smoothing with a Gaussian

Source: G Hager, D. Kriegman Slides

Why Not a Frequency Domain Filter?

Gabor Filters

« Fourier decompositions are a way of measuring “texture”
properties of an image, but they are global

« Gabor filters are a “local” way of getting image frequency content

.

a(x,y) = s(x,y) w(x,y) ==a “sin” and a “weight”

s(X,y) = exp(-i (21 (x u +y v)))
w(x,y) = exp(-1/2 (x*2 + y*2)/ c"2)

Now, we have several choices to make:
1. u and v defines frequency and orientation
2. 0 defines scale (or locality)

Thus, Gabor filters for texture can be computationally expensive as
we often must compute many scales, orientations, and frequencies

Source: G Hager, D. Kriegman Slides

Filtering for Texture

« The Leung-Malik (LM Filter): set of edge and bar filters plus
Gaussian and Laplacian of Gaussian

ENnNmEE= SN nnE

ENNNAEE SN 7

BeNoEE - -
e« + AEDD

/

ource: G Hager, D. Kriegman Slides

Next Lecture: Local Image Features

 Readings: FP5; SZ24.2,4.3

