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Plan

* Review Perspective Projection
« Geometric Camera Calibration

— Indirect camera calibration
« Solve for projection matrix then the parameters

— Direct camera calibration
— Multi-planes method
« Example with the Matlab Toolbox
« Catadioptric Sensing
— Different slide-deck. (See Chris Geyer’s CVPR 2003 Tutorial)

e Other calibration methods not covered
— Vanishing points-based method (see SZ)
— Self-calibration



Camera parameters

A camera is described by several parameters
« Translation T of the optical center from the origin of world coords
* Rotation R of the image plane
+ focal length f, principle point (x’, y’ ), pixel size (s,, s,)
 blue parameters are called “extrinsics,” red are “intrinsics”

Projection equation N R /
SX % 5k %k %k X
Y bt I %
X= Sy =[* * * * =HX (xcayc)
S % 3k %k %k Z
1 —%

» The projection matrix models the cumulative effect of all parameters

« Useful to decompose into a series of operations S _
identity matrix

~f 0 X1 00 0
, R.. o, [lI. T,

0 —fSy V', O 1 0 O 3x3 X 3x3 x

o o 1llo o1 ofl% 1 [0us 1

intrinsics projection rotation translation

I1

« The definitions of these parameters are not completely standardized
Source: S Seitz slides. — especially intrinsics—varies from one book to another



Projective Camera

image P
/ pinhole virtual

image

focal length: f

Source: S Savarese slides.



Projective Camera: The Normalized Image Plane

« The normalized image plane is parallel to the physical retina (e.g., ccd)
but located at unit distance ( f= 1) from the pinhole.
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P =

1
Z

T o|P=|Yy
1

\
Image Source: Forsyth and Ponce Book.

J Physical
retina
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1mage plane

Pinhole



Projective Camera: The Normalized Image Plane

* Physical pixels in the retina (e.g. ccd) may not be square, so
we have two additional scale parameters.

. X
—kfX =kf=
r=kf fZ
. Y
—IfY =1f—
y=1f fZ

* Units:
— f is a distance expressed in meters
pPxX

. . . . 1 1 .
— A pixel will have dimensions X7 where k and [ are in .

« Can replace dependent pixel parameters
a==%kf

B=1f



Projective Camera

image IR
plane
/ pinhole =7 virtual

R image
N Yy

A

focal length: f
Image center-point: ¢o

Co :szo,yo)

v&

Source: S Savarese slides.



Projective Camera

image
plane

. —1
/pinhole
‘;y Ag
® > 5
co = (zo,Yo)
L0 'l

Source: S Savarese slides.

- virtual
image

focal length: f
Image center-point: ¢o
non-square pixels: a, 8
skew angle: ¢



Projective Camera

inlage \
plane / O

X

a s _O
P=l0 g v, o
0 0 oll”
1

K has 5 degrees of freedom!

Source: S Savarese slides.

“" virtual
image

focal length: f
Image center-point: ¢o
non-square pixels: a, 8
skew angle: ¢



Projective Camera

—lo £ .
sin & :
0 0 1

K has 5 degrees of freedom!

Source: S Savarese slides.
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plane / O

|P_K N g< >‘<|

“" virtual
image

focal length: f
Image center-point: ¢o
non-square pixels: a, 8
skew angle: ¢



Projective Camera

e > W | Jw
5 P

4 ; Kk
o
| z
pan
/ pinhole " virtual
P/ image
R T focal length: f |
P = oT 1 P.,  image center-point: co
; 14x4 non-square pixels: a, 8

skew angle: ¢
rotation, translation: R, T

Source: S Savarese slides.



Projective Camera

image
plane

Internal parameters
External parameters

Source: S Savarese slides.

- virtual
image

focal length: f

Image center-point: ¢o
non-square pixels: a, 8
skew angle: ¢

rotation, translation: R, T



Properties of Pinhole Perspective Projection

« Distant objects appear smaller
 Points project to points Vanishing Point
* Lines project to lines

* Angles are n tpreserved
» Parallel lines meet!

Source: S. Savarese slides.



Projective Camera

..............................

Internal parameters
External parameters

ource: S Savarese slides.



Projective Camera

Internal parameters
External parameters



Projective Camera

= MP,
=K |R T|P,
( ozrf{ — « cot 97’{ + uorér at, — acot t, + ugt, )
15}
M = rl + vord t, + vot,
sinf ? 073 sm9 0%z
T
\ T3 2 3x4
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Goal of Calibration

Estimate intrinsic and extrinsic parameters
from 1 or multiple images

= MP,
- K|R TP,
( arr{ — « cot 97‘; + uorg at, — acot0t, + ugt, )
3 15}
M = rl + vord t, + vot,
sinf 073 sin@ ¥ 0%z
T
\ T3 L. /3% 4
a —-acotd u 1] t ] _
x Change notation:
K =lo _P R=|r T=|t,| P=P,
sin @ ° T
0 0 I T; | (PP

Source: S Savarese slides.




The Calibration Problem

bk
W
(W) Calibration rig

A\ o\

—
L~
L~
L~
L~

A\ N\

;
lW

P.... P, with known positions in [O,,i,juw
.p1, ... p, known positions in the image
Goal: compute intrinsic and extrinsic parameters

Source: S Savarese slides.

Ku]



The Calibration Problem

bk
( W) i Calibration rig
//
A Image
1L~
P
|~
1
_—
P
1 |O
A L= o
Jw
Ly
P,... P, with known positions in [O,,,i,Jw:Ky]

-p1, ... p, known positions in the image
Goal: compute intrinsic and extrinsic parameters

Source: S Savarese slides.



The Calibration Problem

Yk
W
( W) Calibration rig
//
A iImage
1 £~
-~
L~
"
L~
//
T |0
" LW -
~ J
W
Ly

How many correspondences do we need?

* M has 11 unknown < We need 11 equations < 6 correspondences would do it

Source: S Savarese slides.



The Calibration Problem

Yk
W
( W) Calibration rig

image

A\ oy

—
L~
L~
L~
L~

A\

In practice, using more than 6
correspondences enables more robust results

Source: S Savarese slides.



The Calibration Problem

bk
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Source: S Savarese slides.



The Calibration Problem

- m, P,
ul _ m, Pi
| |myP
- m, P.
P
u; = T u;(m; P)=m, P — u,(m; P)-m; P, =0
m, P.
m, P
Vi = — - Vi(m3 Pl) =1, Pi — V,-(m3 Pl-)—n'l2 Pi = ()




The Calibration Problem

[ u(m; F)-m, ;=0

vwm; B)-m, f, =0

i (m, P)=m, P =0
v.(my P)-m, P, =0

u,(my; P)-m P =0

\ v,(m; P)-m, P =0

ource: S Savarese slides



Block Matrix Multiplication

o
o

A = A Ay B -
_A21 Azz_

11 12

oY
oY

21 22 |

What is AB ?

-AllBll +A12BZI AIIBIZ +AI2BZ2-

AB =
_A21Bn + 4,8, Ay B, + Azszz_

ource: S Savarese slides.



The Calibration Problem

( known
_ unknown
—u,(my B)+m, £ =0

-v(m; F)+m, f; =0

~u,(my F)+m,; £, =0

\ 1x4 4x1
| | E. ...... v...-E X
(P 07 —uiP]) fm”")
OT P{ —’Ulp'{ def ........ 1
p 4 m = | m,
Sl = 2
P! OTT —un P 5]:: m.
\ 0 P, —uv.P, )Zn x 12 P e

urce: S Savarese slides.



Homogeneous M x N Linear Systems

M=number of equations = 2n
N=number of unknown = 11

Rectangular system (M>N)

* 0 is always a solution

 To find non-zero solution

Minimize |P m|?

under the constraint [m|? =1

Source: S Savarese slides.



The Calibration Problem

Pm =0

« How do we solve this homogenous linear system?

« Using DLT (Direct Linear Transformation) algorithm
via SVD decomposition

urce: S Savarese slides.



Source

Eigenvalues and Eigenvectors

Eigendecomposition

A
-1 )’2
A=SAS™" =8

Eigenvectors of A are S = [V \Y ]
1 N
columns of S

: S Savarese slides.

A’N




Singular Value Decomposition

O,

0,

A=UX V"' Z=

U, V = orthogonal matrix

= A o = singular value
Oi _ ] : t
A\ = eigenvalue of AtA

Source: S




Properties of SVD

* Recall the singular values of a matrix are related to its rank.
* Recall that Ax = 0 can have a nonzero x as solution only if A
IS singular.

 Finally, note that the matrix V of the SVD is an orthogonal
basis for the domain of A; in particular the zero singular
values are the basis vectors for the null space.

» Putting all this together, we see that A must have rank 7 (in
this particular case) and thus x must be a vector in this
subspace.

« Clearly, x is defined only up to scale.

Source: G Hager slides.



DLT algorithm (Direct Linear Transformation)

X. y
! Xi unknown
R

Function of measurements

urce: S Savarese slides.



The Calibration Problem

Last column of V gives m

|

M 1\/[P.epi

Why? See pag 593 of AZ 1

Source: S Savarese slides.



Clarification about SVD

*Thanks to Pat O’ Keefe!

P =U _ D _ |

mxn mxn nxn nxn
Has n orthogonal Orthogonal
columns matrix

« This is one of the possible SVD decompositions
 This is typically used for efficiency
* The classic SVD is actually:

= Umxm D mxn ZL]:(FI
/

orthogonal Orthogonal

Source: S Savarese slides.

P

mxn




Extracting Camera Parameters

------------------------------------------------------------------------------------------------------------------------

[ar] — acot Or) + ugrs : at — acot 0t + uot
B B T p
'OM R sm@r2 + vor sm@t + Vol
T ¥
s Lz
......................................................................................................................... et
A b K=10 siﬁ@ Yo
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: al bl 10 = — o T
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Source: S Savarese slides.



Theorem (Faugeras, 1993)

Let M= (A b)bea3dx4matrix and let al (i = 1,2,3) denote
the rows of the matrix A formed by the three leftmost columns of

M.

e A necessary and sufficient condition for M to be a perspective
projection matrix is that Det(.A) # 0.

e A necessary and sufficient condition for M to be a zero-skew
perspective projection matrix is that Det(4) # 0 and

(@1 X a3) - (ay x a3) = 0.

e A necessary and sufficient condition for M to be a perspective
projection matrix with zero skew and unit aspect-ratio is that

Det(A) # 0 and

{ (a1 x a3) - (as X a3) =0,
(@1 X a3) - (a1 X az) = (as X a3) - (ay X as).

Source: S Savarese slides.



Extracting Camera Parameters

------------------------------------------------------------------------------------------------------------------------

[ar] — acot Or) + ugrs : i at, — acot Ot, + uot
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Source: S Savarese slides.



Extracting Camera Parameters

------------------------------------------------------------------------------------------------------------------------

[ar] — acot Or) + ugrs : at — acot 0ty + upt i
[ T ]
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.........................................................................................................................  wetd
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Source: S Savarese slides.



Degenerate cases
A
kW

(W)

A\ N\ N\
A\ \

A\ N\

;
lW

*P.’'s cannot lie on the same plane!

* Points cannot lie on the intersection curve of two
quadric surfaces

urce: S Savarese slides.



Taking lens distortions into account

« Chromatic Aberration
« Spherical aberration

 Radial Distortion

ource: S Savarese slides.



Dealing with Radial Distortion As Well

— Caused by imperfect lenses

— Deviations are most noticeable for rays that pass through
the edge of the lens

No distortion

Pin cushion

Barrel

Source: S Savarese slides.



Issues with lenses: Radial Distortion

Pin cushion

Barrel (fisheye lens)

Source: S Savarese slides.



Radial Distortion

Click on the four extreme corners of the rectangular pattern...

50
100
150
200

250

100 200 300 400 500 600

Source: S Savarese slides.



Radial Distortion

Image magnification in(de)creases with
distance from the optical center

-

0

0

S O N~

SN | =

) 2 ) _ o 12p
d°=au’+bvi+cuv A=1=+ EEKﬁd

To model radial behavior

NS

Distortion coefficient

Polynomial function
urce: S Savarese slides.



Radial Distortion

1

|4 q, |
o L o|mMP —|"|=p, _

y) 1 Ve 1 Q_ qz
o o 1|

-q3 -

Q |S thlS 3 Iinear SyStem Of equationS?
_ - 4 A
] ql P ru P _ P
5 qd; I =q, I
V. q, P Vid; P =q, P

i B No! why?
ource: S Savarese slides.

|




General Calibration Problem

q, P . X = P
i [ar] A =@
Vi q, P, parameter
- - measurement

q; P

f( ) is nonlinear

-Newton Method
-Levenberg-Marquardt Algorithm

* [terative, starts from initial solution

» May be slow if initial solution far from real solution

« Estimated solution may be function of the initial solution
* Newton requires the computation of J, H

* Levenberg-Marquardt doesn’t require the computation of H

Source: S Savarese slides.



Source

General Calibration Problem

A possible algorithm

q, P ]

q; P,
q, P,

q; P

- X =f(P
\ f(\)

parameter
measurement

f( ) is nonlinear

1. Solve linear part of the system to find approximated solution
2. Use this solution as initial condition for the full system
3. Solve full system using Newton or L.M.

: S Savarese

slides.



Source

General Calibration Problem

Typical assumptions:

- zero-skew, square pixel

o q, P ]

U _ q; Pi

Vl. q, Pi
q; P

- X =f(P
\ f(\)

parameter
measurement

f( ) is nonlinear

Just estimate f

- U, V, = known center of the image and R, T

- no distortion

: S Savarese slides.



Radial Distortion

q, 5
q; b
9, &

45 5

_ 1
A

‘m, P

1

m, P,
m, P,

L m3 Pi -

Can estimate m, and m, and ignore the radial distortion?

Hint:

urce: S Savarese slides.



Radial Distortion

Estimating m, and m.,...

o [mE (m, P)
oo | e ™ w _mB) _mp
sV A™E v mR) m P
- m; i (m, F)

f
vim, )-u(m, £, )=0
v,(m; F)-u,(m, £, )=0 Qn=0 n=

A

-m2 -

\vn(ml P)-u,(m, P )=0

Tsai technique [87]

ource: S Savarese slides




Radial Distortion

Once that m, and m, are estimated...

L m,; P, ]
Yo ms P
Pi v.| A|m.P
- m, P,

m, is non linear function of m, m,, 4

There are some degenerate configurations for which m, and m, cannot be computed

Source: S Savarese slides.



Direct Calibration: The Algorithm

Compute image center from orthocenter
Compute the Intrinsic matrix (6.8)
Compute solution with SVD

Compute gamma and alpha

Compute R (and normalize)

. Compute f, and and T,

R A

Source: G Hager slides.



Basic Equations
CT’w — (TiUv Ty7 TZ),

"Ry = (RCC) Rya Rz),

Cp — Cwap _I_C Tw

Ryp+ T,
uw=—f

R,yp+ T
v=—f yP Y

Rzp -1 TZ




Basic Equations

Upix
Upix
U = Upix —
UV = Upix —

Source: G Hager slides.

~

Ox
Oy
Ryp + T
R.p+ 1T
Ryp + Ty
Rzp + 1




Basic Equations

w; fy(Ryp; + Ty) = U; fa(Rap; + Tx)
ui(Ryp; — Ty) — v;a(Rep; + Tz) = O

r = oaR, and w = o1
one of these for each point

\

Ai — (u2p27 WUgy — Uy Py s _vi) and A[ta S, W, 7“]’ =0

Source: G Hager slides.



Basic Equations
A; = (ugp;, ug, —vip;, —v;) and
Alt,s,w, 7]’ = Am =0
Note that m iIs defined up a scale factor!

A=UDV'" and choose m as column of V cor-
responding to the smallest singular value

Source: G Hager slides.



Properties of SVD Again

* Recall the singular values of a matrix are related to its rank.
* Recall that Ax = 0 can have a nonzero x as solution only if A is singular.

« Finally, note that the matrix V of the SVD is an orthogonal basis for the domain of
A; in particular the zero singular values are the basis vectors for the null space.

« Putting all this together, we see that A must have rank 7 (in this particular case)
and thus x must be a vector in this subspace.

« Clearly, x is defined only up to scale.

Source: G Hager slides.



Basic Equations

A; = (uip;, ug, —vip;, —v;) and
Alt,s,w, 7]’ = Am =0

|t]| = |y| gives scale factor for solution

Jw]| = |~]a

We now know R, and R, up to a sign and gamma.
R, =R, xR,

We will probably use another SVD to orthogonalize
this system (R =U D V’; set D to | and multiply).

Source: G Hager slides.



Last Details about Direct Calibration

« We still need to compute the correct sign.

— note that the denominator of the original equations must be
positive (points must be in front of the cameras)

— Thus, the numerator and the projection must disagree in sign.

— We know everything in numerator and we know the projection,
hence we can determine the sign.

« We still need to compute T, and f,

— we can formulate this as a least squares problem on those two

values using the first equation.
”L_l, — _f RxP"‘Tm N
X Rzp+Tz ’

”L_L(Rzp + Tz) — —f:c(Racp + Taf;)
fa;(R:Bp + Tzv) + ul, = —”L_LRZP
A(f2, T2) = b — (fz, T2) = (A/A)~ 1A'

Source: G Hager slides.



Self-Calibration

 Calculate the intrinsic parameters solely from point
correspondences from multiple images.

« Static scene and intrinsics are assumed.

* No expensive apparatus.

 Highly flexible but not well-established.

* Projective Geometry — image of the absolute conic.

Source: G Hager slides.



Multi-Plane Calibration

« Hybrid method: Photogrammetric and Self-Calibration.
« Uses a planar pattern imaged multiple times (inexpensive).

« Used widely in practice and there are many
Implementations.

« Based on a group of projective transformations called
homographies.

« mbe a?2dpoint[uv 1] and M be a 3d point [xy z 1] .

sim=A[R T|M

* Projectionis

Source: G Hager slides.



Planar Homographies

 First Fundamental Theorem of Projective Geometry:

— There exists a uniqgue homography that performs a change of basis
between two projective spaces of the same dimension.

s v 118 = Al o, oy X Y Z 1)
s v 18 = A[r, v, oy fJIX Y 0 1]
sju v 18 = Ay, r, X Y 1)1

sl v 117 = HXx v 17

— Projection Becomes

sm = HM
— Notice that the homography is defined up to scale (s).

Source: G Hager slides.



Computing the Intrinsics
 We know that [hl h2 h3]:SA[V1 ' l‘]

* From one homography, how many constraints on the
intrinsic parameters can we obtain?

— Extrinsics have 6 degrees of freedom.
— The homography has 8 degrees of freedom.

— Thus, we should be able to obtain 2 constraints per
homography.

 Use the constraints on the rotation matrix columns...

Source: G Hager slides.



Computing Intrinsics

 Rotation Matrix is orthonormal:

* Write the homography in terms of its columns...
h, = sdr,

Source: G Hager slides.



Computing Intrinsics

 Derive the two constraints:

Source: G Hager slides.

h, sAr,
L
;A hl 7/'1
L
;A h2 7/'2
r{rz 0
A T4, 0
rlTrl r2Tr2
A "4 h, WA T4 h,




Closed-Form Solution

I 1 _ Y VoY=t B
02 02 02
T | r 1 _ Y rmuB)) Yy
LetB—A A — o2 a3B3+B3 (X2B2 i Bl
Vo Y—u Y(VoY—uyp) v (vyy—unB)? Vg
ol sy Py )

* Notice B is symmetric, 6 parameters can be writtren as a vector b.
- From the two constraints, we have /1 IT Bh P = vl

i
vl }
[ (Vll - sz)T

« Stack up n of these for n images and build a 2n*6 system.
* Solve with SVD (yet again).
« Extrinsics “fall-out” of the result easily.

Source: G Hager slides.



Non-linear Refinement

» Closed-form solution minimized algebraic distance.
 Since full-perspective is a non-linear model
— Can include distortion parameters (radial, tangential)
— Minimize squared distance with a non-linear method.

» 2
Z 2 Hml’j _m(A7Rk7 Tk?Mj)H

Source: G Hager slides.



Example Calibration Procedure

Source: S Savarese slides.

Camera Calibration Toolbox for Matlab
J. Bouguet —[1998-2000]

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html#examples

Click on the four extreme corners of the rectangular pattern...

50
100
150
200

250

100 200 300 400 500 600



Procedure

bration

Example Cal

Calibration images

Source: S Savarese slides.



Example Calibration Procedure

Click on the four extreme comers of the rectangular pattem (first comer = ongin). . Image 1 Click on the four extreme comers of the rectangular pattem (first comer = ongin) . Image 1

50
100
150
200
20|
a0
350
400

450

100 200 300 400 500 600

Click on the four extrerne comers of the rectangular pattesn (fest corner = origin).. Image 1 Click on the four extreme comers of the rectanguise pattem (first comer = ongin). . Image 1




Example Calibration Procedure

Extracted corners

(BWel) eIBWED UI) 24

300 400 500 600
Xc (in camera frame)

200

100

Source: S Savarese slides.



Example Calibration Procedure

Image points (+) and reprojected grid points (o)

50
100

1580

100 200 300 400 500 600

Source: S Savarese slides.



Example Calibration Procedure

Reprajection error (in pixel) - To exit: right button

1 - L I 1 I 1 ! 1

4+ & + +
+ . +++
3t N L
* ¥
+
2 + ey
-+ 4 ++
1 +
=
o +
4
Ak
i+
2F N
3k
1 1 l+ 1 11 1 1 1 1
) 4 3 2 -1 0 1 2 3

Source: S Savarese slides.



Example Calibration Procedure

Extrinsic parameters

-200

Switch to world-centered view I

Source: S Savarese slides.



Example Calibration Procedure

Extrinsic parameters

700
600 -
500 .-
M~ 30 \
200 i
100 -

Id

Wwor

world
Switch to camera-centered view |

Source: S Savarese slides.



Next Lecture: Photometric and Radiometric Aspects

 Reading: FP 2, 3;SZ2.2, 2.3



