

# Geometrical Primitives, Transformations and Image Formation

#### EECS 598-08 Fall 2014 Foundations of Computer Vision

http://web.eecs.umich.edu/~jjcorso/t/598F14

Instructor: Jason Corso jjcorso@eecs.umich.edu

Materials on these slides have come from many sources in addition to myself; I am infinitely grateful to these, especially Greg Hager and Silvio Savarese.

### Plan

- Geometric Primitives
  - Points, Lines in 2D and 3D
  - Transformations in 2D and 3D
- Basic Image Formation
- Camera Parameters
- Lens Distortion

• 2D points: pixel coordinates

$$\mathbf{x} = \begin{bmatrix} x & y \end{bmatrix}^\mathsf{T} \in \mathbb{R}^2$$

- Using homogeneous coordinates
  - Vectors differing by scale are equivalent.

– When the last element  $\tilde{w} = 0$  , call it an *ideal point*.

• 2D lines with homogeneous coordinates

$$\tilde{\boldsymbol{l}} = \begin{bmatrix} a & b & c \end{bmatrix}^{\mathsf{T}}$$
$$\overline{\mathbf{x}}^{\mathsf{T}}\tilde{\boldsymbol{l}} = ax + by + c = 0$$

Normalized coordinates normal vector  $\bullet$  $\boldsymbol{l} = \begin{bmatrix} \hat{n}_x & \hat{n}_y & d \end{bmatrix}^\mathsf{T} = \begin{bmatrix} \boldsymbol{\hat{n}}^\mathsf{T} d \end{bmatrix}^\mathsf{T} \quad \text{s.t.} \quad \|\boldsymbol{\hat{n}}\| = 1$ Polar coordinates ullet $\boldsymbol{l} = (\theta, d)$  $= \begin{bmatrix} \cos \theta & \sin \theta & d \end{bmatrix}$ х

• Intersection of two lines

$$ilde{\mathbf{x}} = ilde{m{l}}_1 imes ilde{m{l}}_2$$

• Line connecting two points

$$ilde{m{l}} = ilde{{f x}}_1 imes ilde{{f x}}_2$$

• 3D points

$$\mathbf{X} = \begin{bmatrix} X & Y & Z \end{bmatrix}^{\mathsf{T}} \in \mathbb{R}^{3}$$
$$\tilde{\mathbf{X}} = \begin{bmatrix} \tilde{X} & \tilde{Y} & \tilde{Z} & \tilde{W} \end{bmatrix}^{\mathsf{T}} \in \mathbb{P}^{3}$$
$$\tilde{\mathbf{X}} = \begin{bmatrix} \tilde{X} & \tilde{Y} & \tilde{Z} & 1 \end{bmatrix}^{\mathsf{T}} = \tilde{W}\overline{\mathbf{X}}$$

• 3D planes

$$\tilde{\mathbf{M}} = \begin{bmatrix} A & B & C & D \end{bmatrix}^{\mathsf{T}}$$

$$\overline{\mathbf{X}}^{\mathsf{T}} \tilde{\mathbf{M}} = AX + BY + CZ + D = 0$$

$$\mathbf{M} = \begin{bmatrix} \hat{N}_X & \hat{N}_Y & \hat{N}_Z & D \end{bmatrix}^{\mathsf{T}} \text{ when } \|\hat{\mathbf{N}}\| = 1$$

• Spherical coordinates  

$$-\hat{N}$$
 can be written as a function

of two angles  $( heta,\phi)$  .

$$\mathbf{\hat{N}} = \begin{bmatrix} \cos\theta\sin\phi & \sin\theta\cos\phi & \sin\phi \end{bmatrix}^{\mathsf{T}}$$

'n

m

- 3D lines
  - Consider two points on the line  $(\mathbf{P},\mathbf{Q})$  .

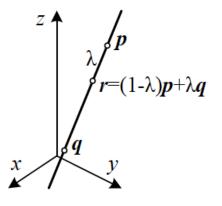
$$\boldsymbol{R} = (1 - \lambda) \mathbf{P} + \lambda \mathbf{Q}$$

– For the case of homogeneous coordinates:

$$\tilde{\boldsymbol{R}} = \mu \tilde{\mathbf{P}} + \lambda \tilde{\mathbf{Q}}$$

- When the second point is at infinity,

$$\tilde{\mathbf{Q}} = \begin{bmatrix} \hat{V}_x & \hat{V}_y & \hat{V}_z & 0 \end{bmatrix}^\mathsf{T}$$
$$\boldsymbol{R} = \mathbf{P} + \lambda \tilde{\mathbf{Q}}$$



The image on this slides is sourced from the Szeliski book.

# **Geometric Transformations**

- 2D translation  $\label{eq:stars} \textbf{Identity matrix} \\ \mathbf{x}' = \begin{bmatrix} \mathcal{I}^{\textbf{t}} & \mathbf{t} \end{bmatrix} \overline{\mathbf{x}}$ 

$$\overline{\mathbf{x}}' = \begin{bmatrix} \mathcal{I} & \mathbf{t} \\ \mathbf{0}^\mathsf{T} & \mathbf{1} \end{bmatrix} \overline{\mathbf{x}}$$

- 2D rotation and translation
  - 2D rigid body or Euclidean transformation

Rotation matrix

$$\mathbf{x}' = \begin{bmatrix} \mathcal{R} & \mathbf{t} \end{bmatrix} \overline{\mathbf{x}}$$
$$\mathcal{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \qquad \overline{\mathbf{x}}' = \begin{bmatrix} \mathcal{R} & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} \overline{\mathbf{x}}$$
$$\mathcal{R}\mathcal{R}^{\mathsf{T}} = \mathcal{I}$$
$$|\mathcal{R}| = 1$$

# **Geometric Transformations**

• 2D scaled rotation or similarity transform

$$\overline{\mathbf{x}}' = \begin{bmatrix} s\mathcal{R} & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{bmatrix} \overline{\mathbf{x}} = \begin{bmatrix} a & -b & t_x \\ b & a & t_y \\ 0 & 0 & 1 \end{bmatrix} \overline{\mathbf{x}}$$

- Constraint  $a^2 + b^2 = 1$  is not enforced.

• 2D affine transformation

$$\overline{\mathbf{x}}' = \mathcal{A}\overline{\mathbf{x}} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \overline{\mathbf{x}}$$

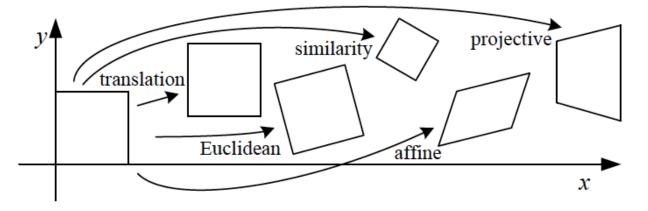
# **Geometric Transformations**

• 2D projective, also called the homography

$$\tilde{\mathbf{x}}' = \tilde{\mathcal{H}}\tilde{\mathbf{x}} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \tilde{\mathbf{x}}$$

- Projective matrix  $\tilde{\mathcal{H}}$  is defined up to scale.
- Inhomogeneous results are computed after homogeneous operation.

# **Hierarchy of 2D Planar Transformations**



| Transformation    | Matrix                                                                        | # DoF | Preserves      | Icon       |
|-------------------|-------------------------------------------------------------------------------|-------|----------------|------------|
| translation       | $\left[ egin{array}{c c} I & t \end{array}  ight]_{2 	imes 3}$                | 2     | orientation    |            |
| rigid (Euclidean) | $\left[ egin{array}{c c} R & t \end{array}  ight]_{2 	imes 3}$                | 3     | lengths        | $\bigcirc$ |
| similarity        | $\left[ \begin{array}{c c} s oldsymbol{R} & t \end{array}  ight]_{2 	imes 3}$ | 4     | angles         | $\Diamond$ |
| affine            | $\left[ egin{array}{c} A \end{array}  ight]_{2	imes 3}$                       | 6     | parallelism    |            |
| projective        | $\left[ egin{array}{c} 	ilde{m{H}} \end{array}  ight]_{3	imes 3}$             | 8     | straight lines |            |

The images on this slides are sourced from the Szeliski book.

# **Hierarchy of 3D Coordinate Transformations**

| Transformation    | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # DoF | Preserves      | Icon       |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|------------|
| translation       | $\left[ egin{array}{c c} I & t \end{array}  ight]_{3 	imes 4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3     | orientation    |            |
| rigid (Euclidean) | $\left[ egin{array}{c c} m{R} & t \end{array}  ight]_{3 	imes 4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6     | lengths        | $\bigcirc$ |
| similarity        | $\left[ \begin{array}{c c} s oldsymbol{R} & t \end{array}  ight]_{3 	imes 4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7     | angles         | $\bigcirc$ |
| affine            | $\left[ egin{array}{c} egin{arr$ | 12    | parallelism    |            |
| projective        | $\left[ egin{array}{c} 	ilde{oldsymbol{H}} \end{array}  ight]_{4	imes 4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15    | straight lines |            |

# **Projective Geometry**

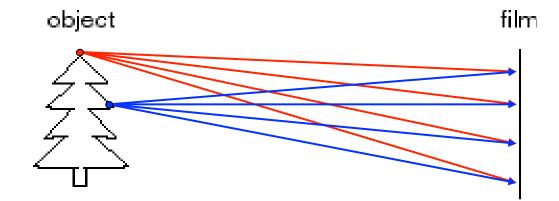
 These geometry basics are but the surface of an area important to computer vision called projective geometry.

|                            | Euclidean | similarity | affine | projective |
|----------------------------|-----------|------------|--------|------------|
| Transformations            |           |            |        |            |
| rotation                   | X         | Х          | Х      | Х          |
| translation                | X         | Х          | Х      | Х          |
| uniform scaling            |           | Х          | Х      | Х          |
| nonuniform scaling         |           |            | Х      | Х          |
| shear                      |           |            | Х      | Х          |
| perspective projection     |           |            |        | Х          |
| composition of projections |           |            |        | Х          |
| Invariants                 |           |            |        |            |
| length                     | X         |            |        |            |
| angle                      | X         | Х          |        |            |
| ratio of lengths           | X         | Х          |        |            |
| parallelism                | X         | Х          | Х      |            |
| incidence                  | X         | Х          | Х      | X          |
| cross ratio                | X         | Х          | Х      | Х          |

 Further reading: "An Introduction to Projective Geometry" by Stan Birchfield.



• Getting light to the sensor.



• What does this image look like?

Source: S. Savarese, GD Hager and S Seitz slides.

# Light through a pinhole

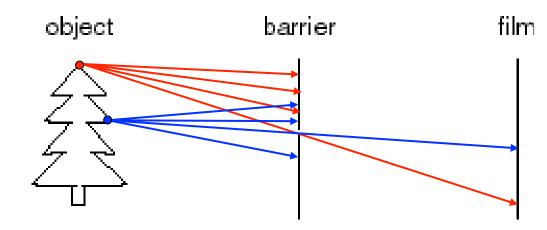
- Place a barrier in front of the film.
- Let a small pinhole of light through.
  - aperture

| Sole d   | Chanium Armo (h                                |                                          |            |
|----------|------------------------------------------------|------------------------------------------|------------|
| 15 4.4   | chiguinum Anno (h<br>Die 24: Januar<br>Lonanij |                                          |            |
|          |                                                | Į.                                       | annu conte |
| <b>3</b> |                                                |                                          | B          |
|          | 1 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1         | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 100        |
|          |                                                | LA                                       | mint       |

 R1 - Constraints and a second sec second sec

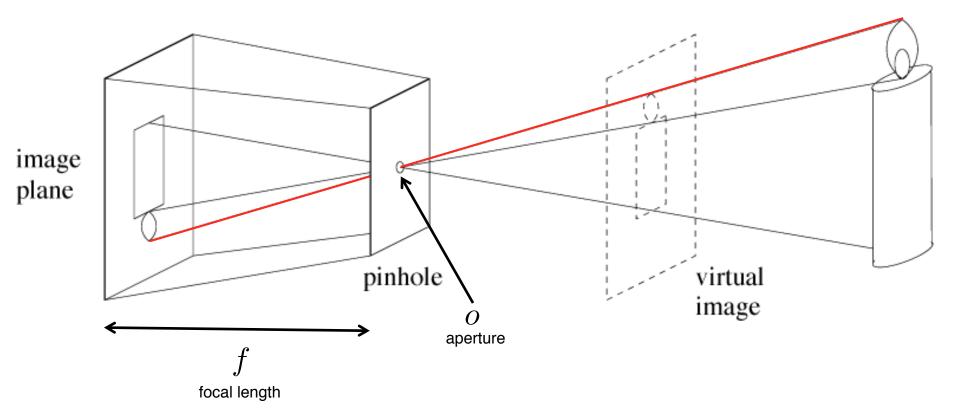
Leonardo da Vinci (1452-1519): Camera Obscura

observauimus, inuenimuso; deficere paulo plus o dex-

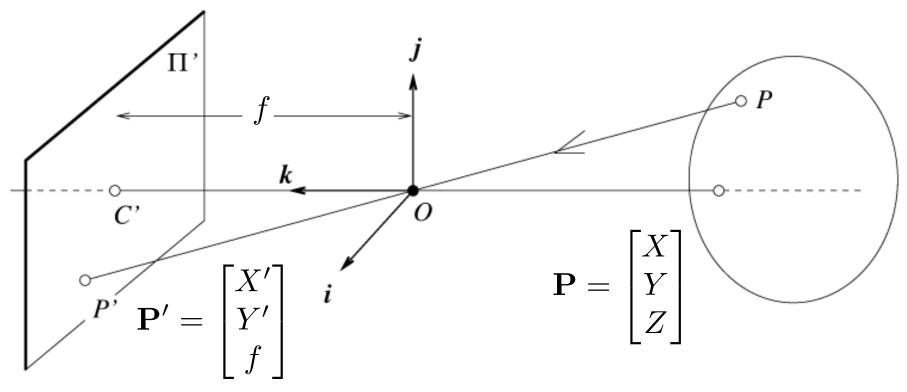


# Light through a pinhole

- Pinhole: box with a small hole in it.
  - Abstract model that does indeed work in practice.



#### Pinhole, or Central, Perspective



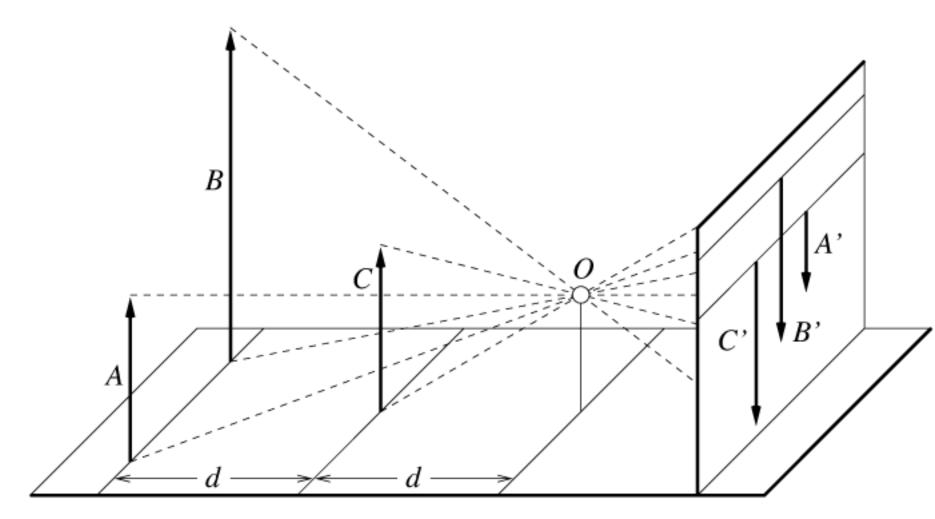
• Points P, O, P' are collinear.

$$\overrightarrow{OP'} = \lambda \overrightarrow{OP} \longrightarrow \lambda = \frac{X'}{X} = \frac{Y'}{Y} = \frac{f}{Z}$$

• Therefore, we have  $X' = f \frac{X}{Z}$  and  $Y' = f \frac{Y}{Z}$ .

# **Properties of Pinhole Perspective Projection**

• Distant objects appear smaller



# **Properties of Pinhole Perspective Projection**

- Points project to points
- Lines project to lines

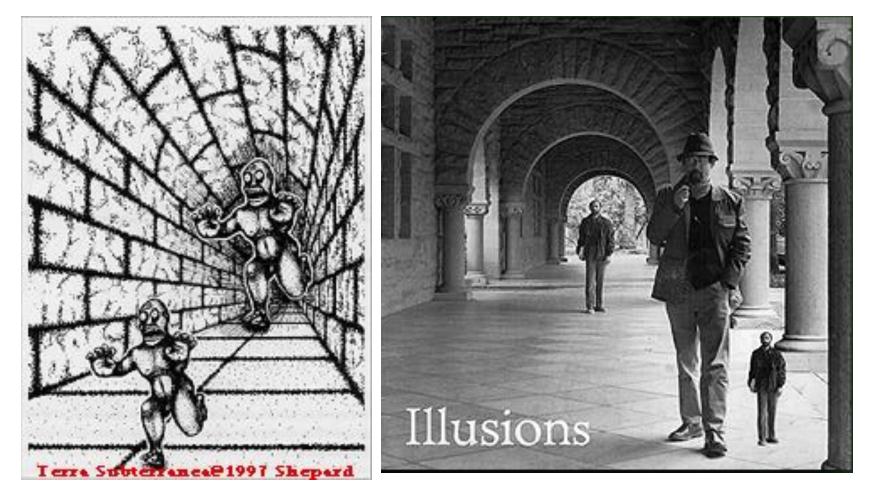
Vanishing Point



- Angles are not preserved.
- Parallel lines meet!

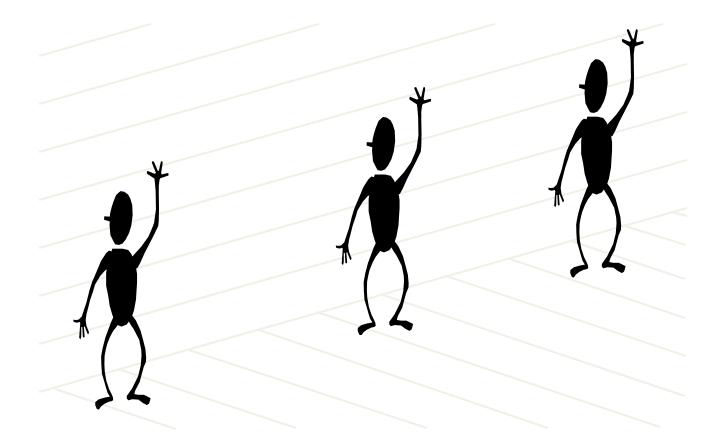
Source: S. Savarese slides.

# Fun with vanishing points



Source: S. Seitz slides.

### **Perspective cues**

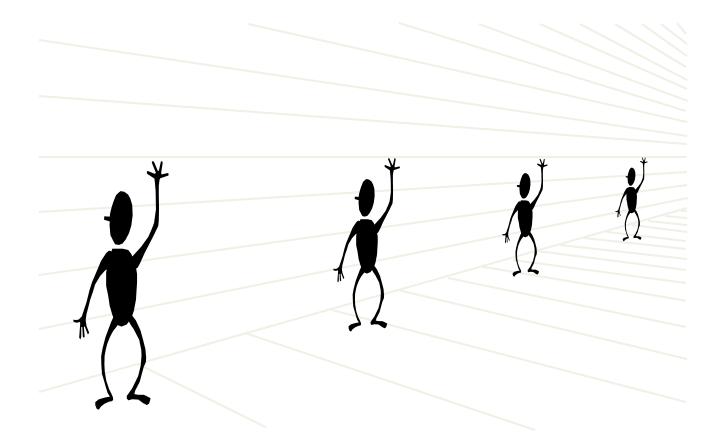


### **Perspective cues**



Source: S. Seitz slides.

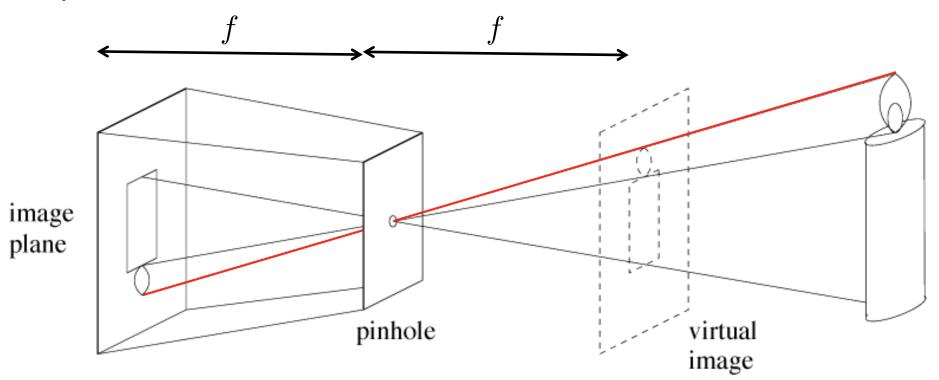
### **Perspective cues**



Source: S. Seitz slides.

# Pinhole, or Central, Perspective

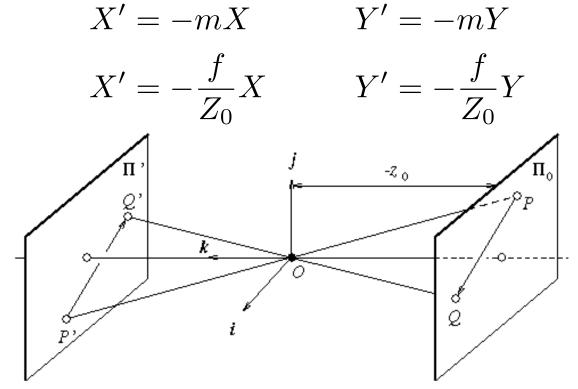
 It is common to draw the image plane in front of the focal point.



Source: D. Forsyth, S. Savarese slides.

### **Weak Perspective**

- A coarser approximation to image formation is called weak perspective, or scaled orthography.
- Consider a fronto-parallel plane  $\Pi_0$  defined by  $Z = Z_0$ .
- Rewrite projection equations for any point in  $\Pi_0$



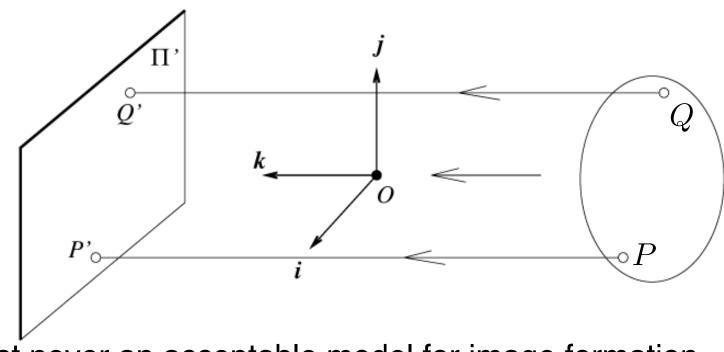
Source: D. Forsyth, S. Savarese slides.

# **Orthographic Projections**

• Further, when the camera will be at a fixed distance from the scene, we can further normalize the coordinates.

– Make 
$$m = -1$$

- Then 
$$X' = X$$
 and  $Y' = Y$ 



• Almost never an acceptable model for image formation.

# **Projection Matrices**

• Can formulate the perspective projections as matrix operations with homogeneous coordinates.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{1}{d} & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ -\frac{z}{f} \end{bmatrix} \implies \begin{bmatrix} -f\frac{X}{Z} & -f\frac{Y}{Z} \end{bmatrix}^{\mathsf{T}}$$

- Why are homogeneous coordinates necessary here?
- Can also formulate as a 4x4 projection.

### **Projection Matrices**

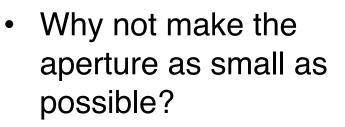
• How does scaling affect the projection?

$$s \begin{bmatrix} X & Y & Z & 1 \end{bmatrix}^{\mathsf{T}}$$

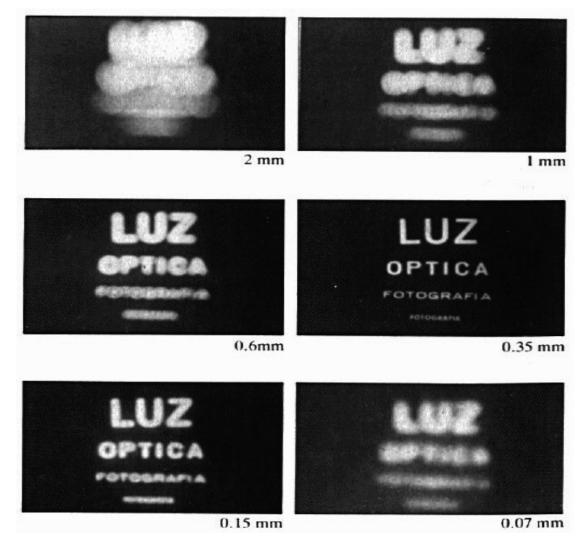
$$\begin{bmatrix} s & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} = \begin{bmatrix} sX \\ sY \\ -z \end{bmatrix} \implies \begin{bmatrix} -s\frac{X}{Z} & -s\frac{Y}{Z} \end{bmatrix}^{\mathsf{T}}$$

# **Role of aperture size**

• When aperture is big, what happens?

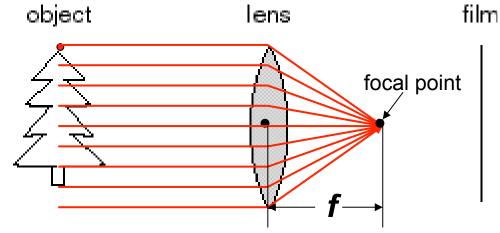


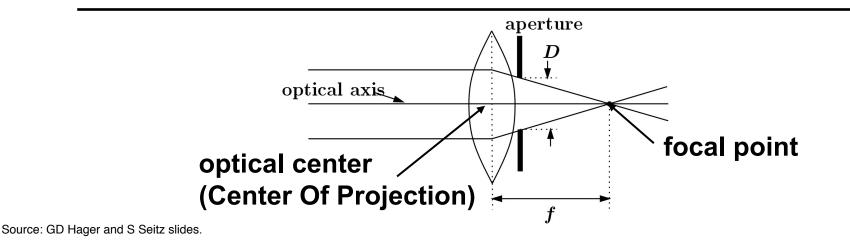
- Not enough light gets through.
- Diffraction.



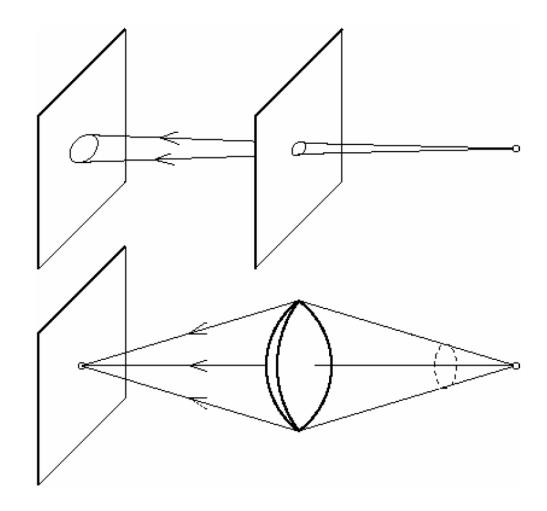
# Adding a lens

- A lens focuses the light onto the film/CCD.
- Rays passing through the center are not deviated.
- All parallel rays converge to one point on a plane located at the focal length f.

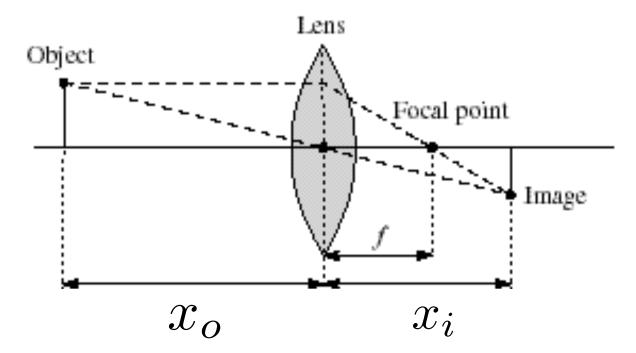




### Pinhole vs. lens

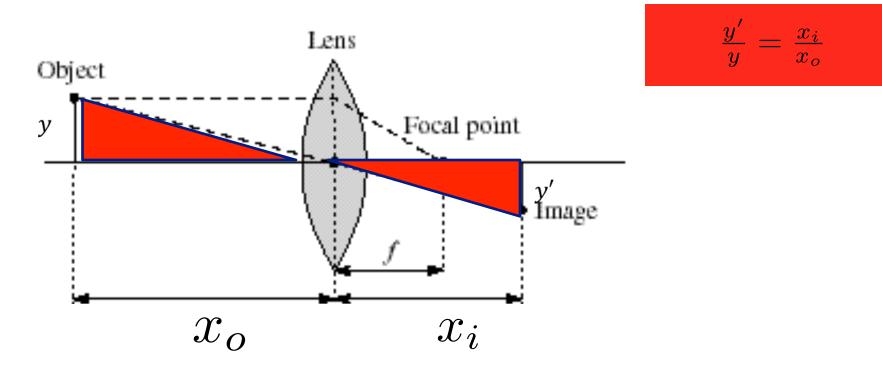


# **Thin lens equation**



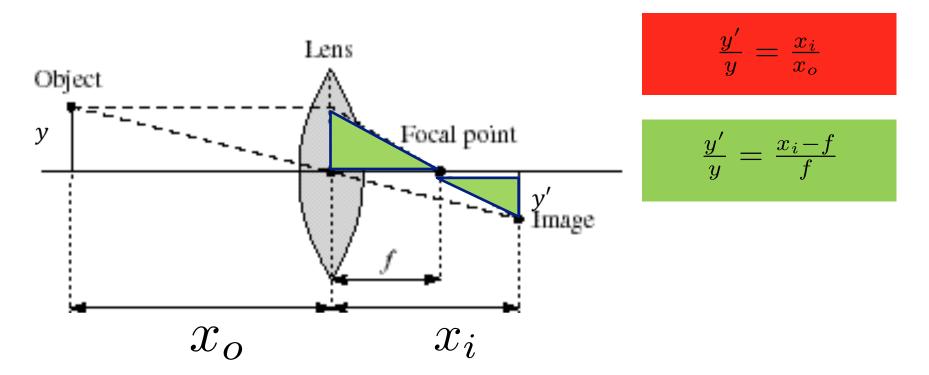
 How to relate distance of object from optical center (x<sub>o</sub>) to the distance at which it will be in focus (x<sub>i</sub>), given focal length f?

# **Thin lens equation**



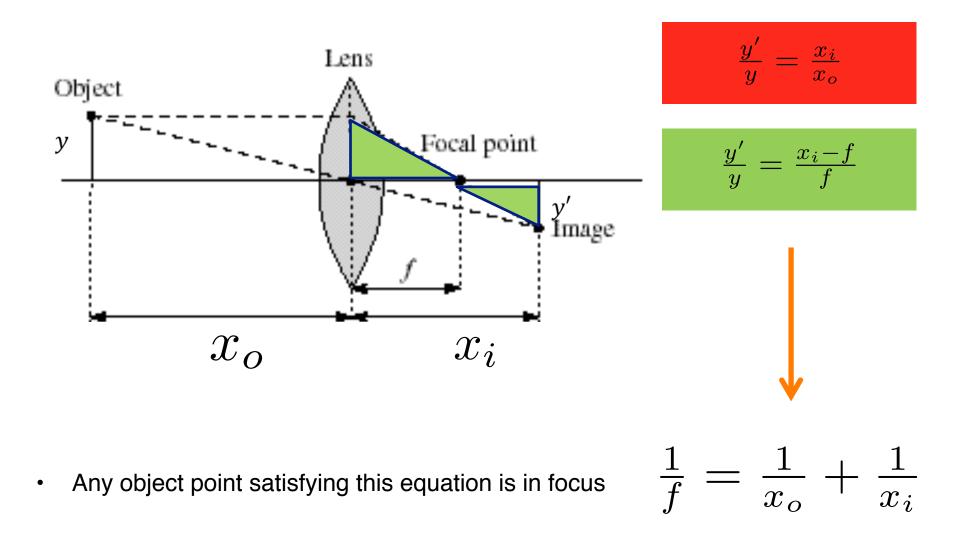
 How to relate distance of object from optical center (x<sub>o</sub>) to the distance at which it will be in focus (x<sub>i</sub>), given focal length f?

# **Thin lens equation**



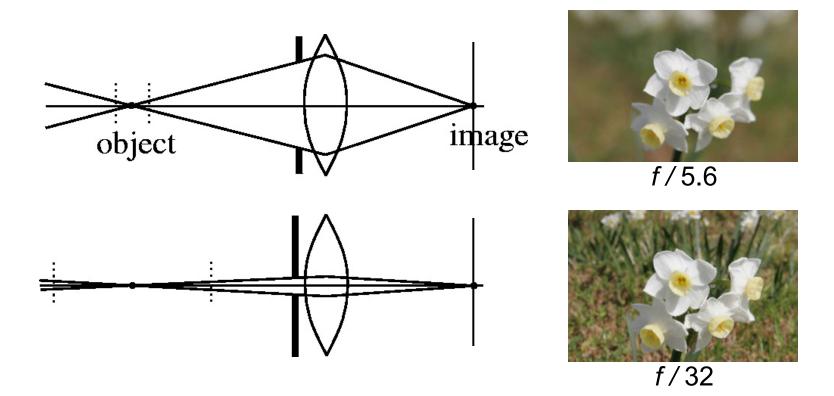
 How to relate distance of object from optical center (x<sub>o</sub>) to the distance at which it will be in focus (x<sub>i</sub>), given focal length f?

# **Thin lens equation**



Source: GD Hager and S Seitz slides.

# **Depth of field**



- Changing the aperture size affects depth of field
  - A smaller aperture increases the range in which the object is approximately in focus

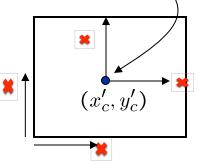
Flower images from Wikipedia <u>http://en.wikipedia.org/wiki/Depth\_of\_field</u>

### **Camera parameters**

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x'<sub>c</sub>, y'<sub>c</sub>), pixel size (s<sub>x</sub>, s<sub>y</sub>)
- blue parameters are called "extrinsics," red are "intrinsics"

**Projection equation** 



- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

identity matrix

$$\mathbf{\Pi} = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$
  
intrinsics projection rotation translation

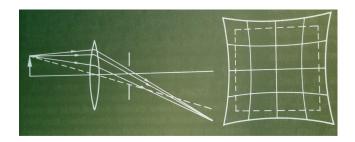
• The definitions of these parameters are **not** completely standardized

Source: S Seitz slides.

- especially intrinsics—varies from one book to another

# **Radial Distortion**

Pin Cushion

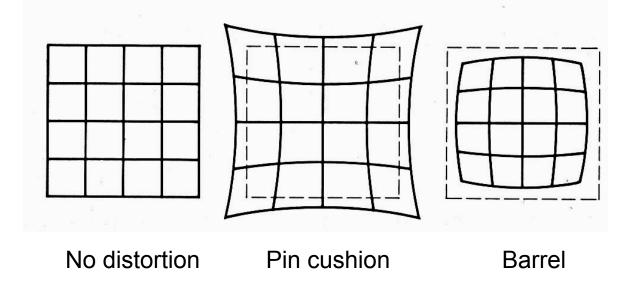


• Barrel / Fisheye





# **Radial Distortion**



- Radial distortion of the image
  - Caused by imperfect lenses
  - Deviations are most noticeable for rays that pass through the edge of the lens

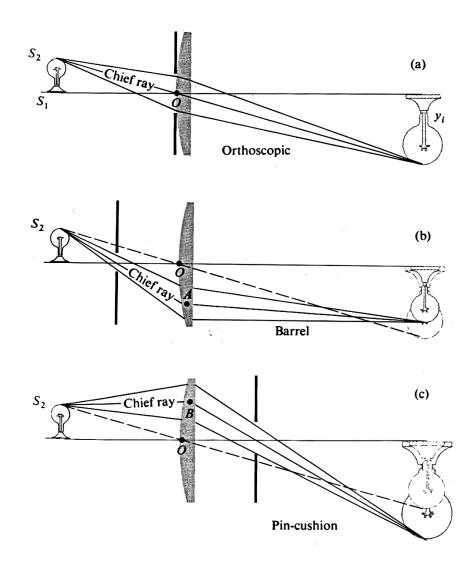
# **Correcting radial distortion**





from Helmut Dersch

#### **Distortion**



# **Modeling distortion**

| $Pro(\widehat{x}, \widehat{y}, \widehat{z})$ to "normalized" image coordinates |        |   | $\widehat{x}/\widehat{z}$<br>$\widehat{y}/\widehat{z}$                                                                            |
|--------------------------------------------------------------------------------|--------|---|-----------------------------------------------------------------------------------------------------------------------------------|
| Apply radial distortion                                                        | $x'_d$ | = | $x'_{n}^{2} + {y'_{n}}^{2}$<br>$x'_{n}(1 + \kappa_{1}r^{2} + \kappa_{2}r^{4})$<br>$y'_{n}(1 + \kappa_{1}r^{2} + \kappa_{2}r^{4})$ |
| Apply focal length translate image center                                      |        |   | $fx'_d + x_c$ $fy'_d + y_c$                                                                                                       |

- To model lens distortion
  - Use above projection operation instead of standard projection matrix multiplication

# **Other types of projection**

- Lots of intriguing variants...
- (I'll just mention a few fun ones)

# 360 degree field of view...



- Basic approach
  - Take a photo of a parabolic mirror with an orthographic lens (Nayar)
  - Or buy one a lens from a variety of omnicam manufacturers...
    - See <u>http://www.cis.upenn.edu/~kostas/omni.html</u>

#### **Tilt-shift**



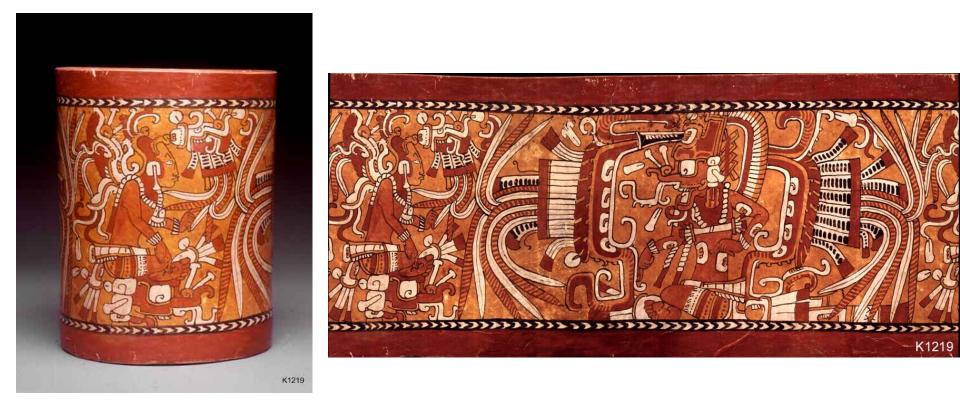
http://www.northlight-images.co.uk/article\_pages/tilt\_and\_shift\_ts-e.html





Titlt-shift images from <u>Olivo Barbieri</u> and Photoshop <u>imitations</u>

# **Rotating sensor (or object)**



#### Rollout Photographs © Justin Kerr http://research.famsi.org/kerrmaya.html

Also known as "cyclographs", "peripheral images"

Source: S Seitz slides.

# Photofinish

#### The 2000 Sydney Olympic Games - 200m Women Final

