

OP with basis functionsWarning: up until Rong Zhang spotted my error in
Oct 2003, this equation had been wrong in earlier
versions of the notes. This equation had been wrong in earlier
versions of the notes. This equation had been wrong in earlier
versions of the notes. This equation had been wrong in earlier
versions of the notes. This equation had been wrong in earlier
versions of the notes. This equation had been wrong in earlier
versions of the notes. This equation had been wrong in earlier
versions of the notes. This equation had been wrong in earlier
versions of the notes. This equation had been wrong in earlier
versions of the notes. This equation had been wrong in earlier
versions of the notes. This equation had been wrong in earlier
we constraints:Subject to these
constraints:
$$0 \le \alpha_k \le C$$
 $\forall k$ $\sum_{k=1}^{R} \alpha_k y_k = 0$ Then define:
 $\mathbf{W} = \sum_{k \text{ s.t. } \alpha_k > 0} \alpha_k y_k \Phi(\mathbf{x}_k)$
 $b = y_K (1 - \varepsilon_K) - \mathbf{x}_K \cdot \mathbf{W}_K$
where
 $K = \arg\max_k \alpha_k$ Then classify with:
 $f(\mathbf{x}, \mathbf{w}, b) = sign(\mathbf{w}, \phi(\mathbf{x}) - b)$ Copyright © 2001, 2003, Andrew W. Moore

Higher Order Polynomials						
Poly- nomial	ф <i>(х)</i>	Cost to build Q_{kl} matrix tradition ally	Cost if 100 inputs	ф <i>(а).</i> ф <i>(b)</i>	Cost to build <i>Q_{k/}</i> matrix sneakily	Cost if 100 inputs
Quadratic	All <i>m²/2</i> terms up to degree 2	m ² R ² /4	2,500 <i>R</i> ²	(a . b +1) ²	m R² / 2	50 <i>R</i> ²
Cubic	All <i>m³/6</i> terms up to degree 3	m ³ R ² /12	83,000 <i>R</i> ²	(a . b +1) ³	m R² / 2	50 <i>R</i> ²
Quartic	All <i>m⁴/24</i> terms up to degree 4	m ⁴ R ² /48	1,960,000 <i>R</i> ²	(a . b +1) ⁴	m R² / 2	50 <i>R</i> ²
Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 53						

What You Should Know

- Linear SVMs
- The definition of a maximum margin classifier
- What QP can do for you (but, for this class, you don't need to know how it does it)
- How Maximum Margin can be turned into a QP problem
- How we deal with noisy (non-separable) data
- How we permit non-linear boundaries
- How SVM Kernel functions permit us to pretend we're working with ultra-high-dimensional basisfunction terms

Copyright @ 2001, 2003, Andrew W. Moore

Support Vector Machines: Slide 65