LIBSVX and Video Segmentation Evaluation

Chenliang Xu and Jason J. Corso

Computer Science and Engineering
SUNY at Buffalo

Electrical Engineering and Computer Science
University of Michigan
Talk Highlights

• LIBSVX Library Methods
 – Five offline supervoxel methods
 – One streaming supervoxel method (v2.0)

• Evaluation Benchmark
 – A set of 2D frame-by-frame & 3D volumetric metrics
 – Human independent metrics

• Flattening Algorithm: Uniform Entropy Slice (v3.0)

• Updates & Recognition (v3.1)

[Xu & Corso CVPR 2012]
[Xu, Xiong & Corso ECCV 2012]
[Xu, Whitt & Corso ICCV 2013]
LIBSVX: Supervoxel Methods
LIBSVX: Supervoxel Methods

• Offline Algorithms:
 – Graph-Based (GB)
 \[\text{Felzenszwalb \\& Huttenlocher IJCV 2004}\]
 – Graph-Based Hierarchical (GBH)
 \[\text{Grundmann et al. CVPR 2010}\]
 – Segmentation by Weighted Aggregation (SWA)
 \[\text{Sharon et al. CVPR 2001, NATURE 2006}, [\text{Corso et al. TMI 2008}]\]
 – Nyström Normalized Cuts (NCut)
 \[\text{Fowlkes et al. TPAMI 2004}, [\text{Shi \\& Malik TPAMI 2000}]\]
 – Mean Shift (External at the author’s website)
 \[\text{Paris \\& Durand CVPR 2007}\]

• Streaming Algorithm:
 – Graph-Based Streaming Hierarchical (streamGBH)
 \[\text{Xu, Xiong \\& Corso ECCV 2012}\]
Data Format

• Input Video
 – Extract frames in png and ppm formats.
 – Organize in a folder as a sequence of images: %05d.png/ppm.
 – Example: ffmpeg -i video.mp4 input/%05d.ppm

• Output Segmentation
 – A sequence of color-coded images. Each supervoxel index or label is coded with a unique RGB color.
 – Use read_video_supervoxels.m to convert a folder of segmentation frames to a 3D matrix in Matlab, and use cvlbmap.m to sort the labels to 1:N.
Nyström Normalized Cuts (NCut)

• Implement: MATLAB
• To Run: Nystrom_video(PathInput, PathOutput, numOfSvx, numOfSamples, numOfEvecs, sigmaE, sigmaLab, KNN)
 – PathInput & PathOutput – Paths to input and output directories.
 – numOfSvx – number of supervoxels
 – numOfSamples – number of sampled points in a video
 – numOfEvecs: number of eigenvectors
 – sigmaE – weight of Euclidean distance
 – sigmaLab – weight of Lab color distance
 – KNN – the option to use knn to assign final labels

[Fowlkes et al. TPAMI 2004] [Shi & Malik TPAMI 2000]
Nyström Normalized Cuts (NCut)

• Demo videos.
Segmentation by Weighted Aggregation (SWA)

• Implement: C/C++
• To Run: ./swa config.txt
• The following parameters are to be set in config.txt file.

 - InputSequence – Specifies the input sequence naming format, e.g. input/%05d.png.
 - Frames – Frame number to be processed.
 - MaxStCubeSize – The number of frames the spatiotemporal cube that spans back from frame N.
 - NumOfLayers – Number of layers in the SWA hierarchy.
 - VizLayer – It specifies the layers of the hierarchy to be visualized.
 - VizFileName – The directory path for storing the visualization results.

[Sharon et al. CVPR 2001, NATURE 2006], [Corso et al. TMI 2008]
Segmentation by Weighted Aggregation (SWA)

- Demo videos.
Graph-Based (GB) and Hierarchical (GBH)

• Implement: C/C++
• To Run: ./gbh c c_reg min sigma hie_num input output
 – **c** – Governs the merging threshold of the two nodes in the minimum spanning tree during the oversegmentation stage. Bigger C means larger segments.
 – **c_reg** – Like c, it governs the merging of two nodes, but this is in the hierarchical levels whereas c is at the pixel level nodes.
 – **min** – Enforced minimum segment size for a whole supervoxel.
 – **sigma** – The variance of the Gaussian smoothing.
 – **hie_num** – The number of desired levels in the hierarchy + 1. If hie_num = 0, no hierarchy is created, which is GB.

[Grundmann et al. CVPR 2010]
[Felzenszwalb & Huttenlocher IJCV 2004]
Graph-Based (GB)

- Demo videos.
Graph-Based Hierarchical (GBH)

- Demo videos.
Graph-Based Streaming Hierarchical (streamGBH)

- Implement: C/C++
- To Run: `./gbh_stream c c_reg min sigma range hie_num input output`
 - `range` – The number of frames to include in one subsequence (or clip). `range = 1` means each frame is handled separately. `range = number_of_frames` means the whole video is handled at once. `range = k` is the typical way to run the streaming method.
 - Other parameters are just like in GBH.
- The program also streams the output of supervoxel segmentation for subsequences.

[Xu, Xiong & Corso ECCV 2012]
Graph-Based Streaming Hierarchical (streamGBH)

- Demo videos.
LIBSVX: Benchmark Evaluation
3D Undersegmentation Error

- It measures what fraction of the pixels exceed the boundary of the ground-truth segmentation.
- Ground-truth segmentation: $\mathcal{G} = \{g_1, g_2, \ldots, g_m\}$
- Supervoxels: $\mathcal{S} = \{s_1, s_2, \ldots, s_n\}$
- 3D Undersegmentation error:

$$UE(g_i) = \frac{\sum_{j=1}^{n} \text{Vol}(s_j | s_j \cap g_i \neq \emptyset) - \text{Vol}(g_i)}{\text{Vol}(g_i)}$$

- where $\text{Vol}(\cdot)$ denotes the number of the voxels that are inside a 3D volume.
- We take the average across all ground-truth segments, where they are equally weighted.
3D Segmentation Accuracy

• It measures what fraction of a ground-truth segment is correctly segmented by the supervoxels: each supervoxel belongs to only one object or ground-truth segment.

• 3D Segmentation Accuracy:

\[
SA(g_i) = \frac{\sum_{j=1}^{n} \text{Vol}(s_j) \mathbf{1}\{\text{Vol}(s_j \cap g_i) \geq \text{Vol}(s_j \cap \bar{g}_i)\}}{\text{Vol}(g_i)}
\]

• where \(\bar{g}_i = G - g_i \) means all other segments.

• To evaluate the segmentation accuracy of a video, we again take the average of the segmentation accuracy score across all ground-truth segments.
3D Boundary Recall

- Within-frame boundary
 - Object boundary defined in 2D images.
- Between-frame boundary
 - A same object in adjacent two frames.

- The volumetric 3D boundary recall:
 \[
 R = \frac{|S \cap G|}{|G|}
 \]
 - \(S \) and \(G \) are the 3D boundary maps for segments and GT.
 - \(\cap \) solves a bipartite graph assignment between two boundary maps (often relaxed by 1 pixel offset).
Human-Independent Metrics

- **Explained Variation** considers the supervoxels as a compression method of a video.

 Mean value of the voxels assigned to the supervoxel that contains X_i.

 The global voxel mean.

 \[R^2 = \frac{\sum_i (\mu_i - \mu)^2}{\sum_i (x_i - \mu)^2} \]

 The actual video voxel value.

 [Moore et al. CVPR 2008]

- **Supervoxel Mean Duration** measures the temporal extension of supervoxels. It measures the average length of supervoxels in a video.
Computational Cost

• **Computational Cost** in terms of time and peak memory consumption.

<table>
<thead>
<tr>
<th></th>
<th>GB</th>
<th>GBH</th>
<th>streamGBH</th>
<th>SWA</th>
<th>MeanShift</th>
<th>NCut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (s)</td>
<td>115</td>
<td>1166</td>
<td>1000</td>
<td>934</td>
<td>101</td>
<td>1198</td>
</tr>
<tr>
<td>Memory (GB)</td>
<td>6.9</td>
<td>9.4</td>
<td>1.6</td>
<td>19.9</td>
<td>3.8</td>
<td>20.9</td>
</tr>
</tbody>
</table>

• We report the computational cost of all methods for a typical video with 352 x 288 x 85 voxels. The experiment is done on a laptop featured with Intel Core i7-3740QM @ 2.70GHz and 32GB RAM running Linux.

• All methods are running in single thread except NCut running with 8 threads with resized spatial resolution to 240 x 160.
Evaluate your method with benchmark

• Dataset Setup
 – We include the Chen xiph.org dataset in the benchmark.
 – SegTrack and GaTech datasets can be downloaded and organized in a same file hierarchy.

• Preparing your results for use with the benchmark.
 – Compute supervoxels for a complete dataset.
 – Run with a varying set of parameters.
 – Segment each video with a distribution of supervoxel numbers varying from less than 200 to more than 900.
 – We use a linear interpolation scheme to compute the values for the curve. More samples leads to better estimate of the curve.
Evaluate your method with benchmark

- Let the root path of your results for Chen's data set be ROOT.

- The eight videos in the root path.
 - ROOT/bus
 - ROOT/container
 - ROOT/garden
 - ROOT/ice
 - ROOT/paris
 - ROOT/salesman
 - ROOT/soccer
 - ROOT/stefan

- The results for one video are put in different folders with the supervoxel number as the name in this example.
 - ROOT/bus/150
 - ROOT/bus/227
 - ...
 - ROOT/bus/905

- The segmentation results of one video with one particular supervoxel number
 - ROOT/bus/150/00001.ppm
 - ...
 - ROOT/bus/150/00085.ppm
Evaluate your method with benchmark

• Config and run EVALUATION.m

```
path_input_method = ROOT;  % path to your results of one data set
path_ppm = 'dataset/Chen_ppm';  % path to dataset
dataset = 1;  % 1 – Chen's xiph.org; 0 – SegTrack; 2 – GaTech
output_path = 'path_to_save_your_evaluation_results';
verbose = 1;  % option to show intermediate results
x_min = 200; x_max = 900;  % range of supervoxels generated by your method
```

• It generates both 2D frame-by-frame and 3D volumetric scores.

• To compare with scores by methods in the library, see XuCorso_CVPR2012_mat
Other Video Segmentation Evaluation

- **A Unified Video Segmentation Benchmark** [Galasso et al. ICCV 2013]
- **Dataset: BVSD (100 videos)** [Sundberg et al. CVPR 2011]
 - Labeled ground-truth frames at every 20th frames.
 - Each is labeled by multiple human annotators.
 - Spatiotemporal coherence is preserved.

- **Evaluation Metrics**
 - Boundary Precision-Recall (BPR)
 - 2D image segment boundaries.
 - Volume Precision-Recall (VPR)
 - Treated as volumes at the ground-truth frames in a video.
 - Related to 3D undersegmentation error and 3D segmentation accuracy.
LIBSVX: Flattening Hierarchy
Prerequisites

• Hierarchical Video Segmentation
 – LIBSVX: GBH or SWA (treeify)
 – GaTech web service: www.videosegmentation.com

• Solver for Binary QP

• Feature Criteria
 – Ce Liu’s Optical Flow Aug 1, 2011.
 http://people.csail.mit.edu/celiu/OpticalFlow/
 – Objectness V1.5. http://groups.inf.ed.ac.uk/calvin/objectness/
Usage

• To Run: ues(video_path, hie_path, output_path, hie_select_num, sigma, method, visflag)
 – **video_path**: path to raw video extracted png frames.
 – **hie_path**: path to hierarchical segmentation output.
 – **output_path**: folder to output flattening results.
 – **hie_select_num**: select a certain number of levels from the hierarchical segmentation as input to the flattening algorithm.
 – **sigma**: the weight between unary and binary.
 – **method**: feature criterion of motion-ness/object-ness/human-ness
 – **visflag**: option to output intermediate results.

• Treeify a Hierarchy
 – It modifies arbitrary supervoxel hierarchy to a tree structure, such as SWA. See treeify.m.
 – Enforce the supervoxel boundary agreement across levels in a hierarchy.
Demo: boxers

- Motion-ness

flow feature selection flattening
Demo: danceduo

- Motion-ness

flow feature selection flattening
Demo: danceduo

- Object-ness
Demo: danceduo

- Human-ness

human detection
selection
flattening
LIBSVX v3.1: Updates & Recognition Task
LIBSVX v3.1: Updates & Recognition Task

• New Datasets:
 – SegTrack v2 – Updated version of the SegTrack and provides frame-by-frame pixel-level multiple foreground objects labeling. It contains 14 video sequences. [Li et al. ICCV 2013]
 – BVDS – 100 videos with multiple human annotations by a sampling rate of every 20 frames. [Galasso et al. ICCV 2013]
 – CamVid – 18K frames with labeled 11 semantic object class labels at 1 Hz and in part 15 Hz. [Brostow et al. ECCV 2008]

• New Metrics:
 – Supervoxel Size Variation. [Chang et al. CVPR 2013]
LIBSVX v3.1: Updates & Recognition Task

- Recognition Task on CamVid dataset.
LIBSVX v3.1: Updates & Recognition Task

• Speed up the evaluation benchmark.

• Of course: Bug fix to methods!

• Planned release date: Fall 2014.
Thank you!

- Download LIBSVX: www.supervoxel.com