

Graph-Based Hierarchical
Video Segmentation

Matthias Grundmann,
Vivek Kwatra, Mei Han

!

Google Research

Daniel Castro, Irfan Essa  

!

Georgia Institute of
Technology

1.

Video Segmentation

region color indicates region identity

• Spatio-temporal regions:  
Group appearance and motion 
in space and time

• Application: Selecting regions  
⇒ rapid annotation

1.

Talk outline
• Graph-based segmentation in the video domain
• Segmentation approaches / agglomerative clustering
• Over-segmentation
• Hierarchical segmentation
• Based on [Grundmann et al. 2010]: Efficient graph-based hierarchical video

segmentation 
with many improvements

• Streaming segmentation (next talk)

1.

Graph-based segmentation
• Grid graph over image domain
• Connectedness: N4 or N8
• Affinity between pixels:

- Color distance
- Weighted with gradients
- Take into account optical flow
- From per pixel classifiers, etc.

1.

Extending to Video Domain
• Direct application of image-based algorithm 

per frame
• Lacking temporal coherence
• Unstable boundaries in time

• Associating 2D regions will yield noisy
outcome

image segmentation
applied to each frame

1.

Extending to Video Domain
• Extend N8 graph in time:  

Spatio-Temporal volume
• Connect each pixel to also to  

its 9 neighbors in time  
(forward / backward)

• Connectedness: N26
- 1 sec of 360p video: 90 million

edges
- vs. 1 million for image case

• How to connect?
- Direct predecessor
- Displaced along optical flow

t

t +
1

t - 1

1.

Connection in time
• Direct predecessor can’t model movements > 1 pixel
• Displace connection in time along dense optical flow

 oversegmentation using
direct 
predecessor in volume

dense flow, hue encodes angle

1.

Connection using dense optical flow
• Displace temporal connection along dense optical flow

oversegmentation using
predecessor along dense

flow

 oversegmentation using
direct 
predecessor in volume

1.

Connection using dense optical flow
• Displace temporal connection along dense optical flow

oversegmentation using
predecessor along dense

flow

 oversegmentation using
direct 
predecessor in volume

1.

Why Graph-based segmentation
• Need:

- Low-complexity segmentation algorithm
- Algorithm that we can constrain (later: for streaming segmentation)
- Initialization free (i.e. no prior user interaction or parameters, e.g. Snakes, GrabCut)

- Mean-Shift [Comaniciu and Meer, 2002]
- Normalized cuts [Shi and Malik, 1997]
- k-Means, EM / Mixture of Gaussians [Bishop 2006]
- SLIC [Achanta et al. 2012]
- Watersheds
- Turbo Pixels [Levinshtein et al. 2009]
- Greedy Graph-Based [Felzenszwalb and Huttenlocher 2004]

1.

Agglomerative clustering
• Simplest type of clustering:
• Put every item in a single cluster
• Define distance between clusters
• Iteratively merge the two closest

one
• Merge sequence represented by

dendrogram
• Segmentation result: Threshold at

cost level (not necessarily uniform)  
or number of regions

co
st

Cost level

1.

Agglomerative clustering
• How to define the cluster distance

between cluster C1 and C2?
• Basically 3 types:

- Single-link  
 

- Complete-link  
 

- Average-link 
(N = total number of 
 summands)  

min
a2C1,b2C2

||d(a)� d(b)||

max

a2C1,b2C2

||d(a)� d(b)||

1

N

X

a2C1[C2

X

b 6=a2C1[C2,b

||d(a)� d(b)||

1.

Agglomerative clustering
• Single link:

- Distance between closest two elements
• Complete link:

- Distance between two furthest elements
• Average link:

- Average distance between all elements  
(not drawn)

• Conclusion:
- Only single link merges do not alter cluster distance!
- 1 sec of 360p video: 90 million edges

1.

Single link agglomerative clustering
• Complexity:

- Sort the edges between original nodes O(n log n)
- Traverse in order O(n)
- Merges via union-find / disjoint forest

• Union by rank
• Path compression
• Total complexity: O(n 𝜶(n)), 𝜶 : inv. Ackermann, 𝜶 <= 5 in practice

- Read result: O(n 𝜶(n))
• Total complexity: O(n log n) Dominated by sort

1.

Efficient graph based image segmentation
• [Felzenszwalb and Huttenlocher 2004]
• Single link agglomerative clustering

- Cluster distance: Diff. pixel appearance
- Int(Ci): last edge weight for each cluster  

(height from dendrogram)
- Termination criteria:  
 
 
 
 

- 𝜏(C) = constant / |C|

Figure 2: A street scene (320 × 240 color image), and the segmentation results pro-

duced by our algorithm (σ = 0.8, k = 300).

Figure 3: A baseball scene (432 × 294 grey image), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

Figure 4: An indoor scene (image 320 × 240, color), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

17

from [Felzenszwalb and Huttenlocher 2004]

min
a2C1,b2C2

||d(a)� d(b)|| = Int(C1 [C2) >

min(Int(C1) + ⌧(C1), Int(C2) + ⌧(C2))

1.

Efficient graph based image segmentation
• Termination criteria  
 
 

• Int(C) : dendrogram height, 𝜏(C) = constant / |C|
• Relative test, space decreases with region size

co
st

Int(C1 [C2) >

min(Int(C1) + ⌧(C1), Int(C2) + ⌧(C2))

𝜏(C)

1.

Efficient graph based image segmentation
• What to take away:

- [Felzenszwalb and Huttenlocher 2004] is single link agglomerative clustering
- “Local” termination criteria w.r.t. dendrogram spacing
- Monotonic criteria: Once violated, the two clusters won’t be merged
- Also: Any other monotonic criteria will do

1.

Efficient graph based video segmentation
• Applying the “Local” termination criteria to video is problematic

- 𝜏(C) = constant / |C| decreases with region size
• For video:

- In video region volume >> region area for images
- Either increase constant (more segmentation errors)
- Or: Have many small regions

• For practical implementations:
- For large homogenous regions:  
⇒ Regions are broken into small pieces

- For textured regions: Additional merges required to achieve minimum region size
⌧(C) ! 0

1.

Homogenous regions

⌧(C) ! 0

1.

Introducing additional merges
• Forced merges: Merge everything with edge weight < 1 intensity / compression level
• Regular merges: [Felzenszwalb and Huttenlocher 2004] local criteria
• Small region merges: also [Felzenszwalb and Huttenlocher 2004]

with forced merges without forced merges

Results use new merge criteria, not [Felzenszwalb and Huttenlocher 2004]

1.

Merge percentages
• [Felzenszwalb and Huttenlocher 2004] with forced merges
• Regular merges account for less than 1/3 of all merges

Truck
(homogenous)

8.7
7.2

84.1

Forced
Regular
Small Region

Flowergarden 
(textured)

42.8

28.8

28.3 Forced
Regular
Small Region

forced includes merges due to constraints

1.

Talk outline
• Graph-based segmentation in the video domain
• Segmentation approaches / agglomerative clustering
• Over-segmentation
• Hierarchical segmentation

1.

A new merge criteria
• Recall: Any monotonic criteria will do
• Need more regular merges, distance that accounts for compression levels
• Avoid “chaining” for single link clustering 

(small local edge weights can accumulate)
• Idea:

- Build up local descriptors during merge process
- Use edge and descriptor distance to determine  

 if a merge should be performed
- Incorporate small region merges
- Monotonicity: If merge test fails, label regions as done

co
st

merge test 
 failed

1.

Our new merge criteria
• Descriptor during merges:  

Mean color / Mean flow (any other possible)
• Merge regions if:

- Edge weight < 1 intensity level and  
descriptor distance < 20%  
(allow for variability but control cutoff)

- Edge weight >= 1 intensity level and  
descriptor distance < 5% intensity range

- One of them is too small
• If violated: Flag as done (monotonicity!)

1.

Merge percentages for new criteria
• Regular merges account for more than 80% of all merges!

Truck
(homogenous)

5.3

90.3

4.3
Forced
Regular
Small Region

Flowergarden 
(textured)

10.1

83.4

6.5

Forced
Regular
Small Region

forced includes merges due to constraints

1.

Fast O(n) segmentation
• Single link agglomerative clustering: Total complexity: O(n log n) Dominated by

sort
• Idea: Skip the sort

• Discretize edge weight domain into 2-4K buckets (bucket sort)  
L1 RGB color distance: 768 values

• Complexity: O(n) [no large multipliers, 𝜶(n) < 5 for all practical values of N]
• Can we do better?

• Observation: Edge evaluation is costly / Spatial and temporal edges are disjoint
• Bucket lists

- For N frames use 2 * N - 1 list of 2K buckets
- Create in parallel via on-demand threads!  

 31% faster!!

Sp
at

ia
l #

1

Te
m

po
ra

l 1
↔

2

Sp
at

ia
l #

2

Te
m

po
ra

l 2
↔

3

Sp
at

ia
l #

3

Parallel 
construction

1.

Talk outline
• Graph-based segmentation in the video domain
• Segmentation approaches / agglomerative clustering
• Over-segmentation
• Hierarchical segmentation

1.

Hierarchical graph-based segmentation
• Size of regions: Controlled by merge threshold between

descriptors (earlier: 𝜏(C))
• Hierarchical segmentation: Instead of tweaking

thresholds
• Build spatio-temporal adjacency graph of regions  

from over-segmentation
• Edge weights based on similarity of region descriptors

(Appearance, texture, motion)
• Segment regions in super-regions
• Repeat until: Minimum region number reached

1.

Hierarchical segmentation
• Descriptors (3):

- LAB histogram (10 * 16 * 16) w/ interpolation
- Flow histogram (20 angles)
- Compare each via 𝟀2 distance
- Region Size Penalizer (truncated ratio w.r.t. average region size)
- Combine via Soft-OR distance times region penalizer 𝜸 :

• Merge:
- Merge each descriptor / histogram

• Important: Merge alters edge weights between clusters (like average-link clustering)

�[1�
Y

i

(1� di)]

1.

Hierarchical segmentation
• Which algorithm to use?
• First version: Uses single link [Felzenszwalb and Huttenlocher 2004]

- Note: Merges alter edge weights!
- Only allows for one merge per region per hierarchy level
- Bad control for number of merges per hierarchy level

• Current version: True average-link agglomerative clustering + specify percentage of
merges

• Fast: O(n) bucket sort for edges
• At every merge (< n) : Update neighboring edges in parallel
• Total complexity: O(n * k), k < 100 for our purposes

1.

Spatio-Temporal Over-Segmentation

original video over-segmentation

1.

Hierarchical Segmentation

Hierarchy at 20%Over-segmentation

1.

Hierarchical Segmentation

Hierarchy at 20% Hierarchy at 50%

1.

Benefits of hierarchical segmentation
Note: instability in over-segmentation (identities of region
change [lights, window], boundaries are more unstable)

Hierarchical segmentation
(shown at 50% of height of

segmentation tree)

Over-segmentation only
(manually tuned to give similar

sized regions)

1.

Benefits of hierarchical segmentation

Hierarchical segmentation Over-segmentation only
(manually tuned to give similar

sized regions)

1.

Effect of flow as feature

original

flow in hierarchical
segmentation

no flow

flow in over-
segmentation &
flow in hierarchical
segmentation

1.

Results

1.

Results

Applications of  
Video Segmentation

Matthias Grundmann,
Vivek Kwatra, Mei Han

!

Google Research

Daniel Castro, Irfan Essa  

!

Georgia Institute of
Technology

1.

Talk outline
• Applications of video segmentation

- Super-Parsing
- Geometric context
- Radiometric calibration for segmentation
- Weakly supervised segmentation

• Online video segmentation and annotation
• Open source video segmentation

1.

Super-Parsing
• [Joseph Tighe and Svetlana Lazebnik, 2012]:  

SuperParsing: Scalable Nonparametric Image Parsing with Superpixels
• Simplified description:

- Extract super pixels from query image
- Label transfer: From labeled super-pixel  

in training set
- Smoothing via MRF Query Image Retrieval set of similar images

Per-class likelihood

Building

Road

Sky

Car

Sky
Vertical

Horizontal

Superpixels

Building

Car

Road

Sky Semantic Classes Geometric Classes

• http://www.cs.unc.edu/~jtighe/Papers/ECCV10/index.html  

http://www.cs.unc.edu/~jtighe/Papers/ECCV10/index.html

1.

Super-Parsing
• [Joseph Tighe and Svetlana Lazebnik, 2012]:  

SuperParsing: Scalable Nonparametric Image Parsing with Superpixels
• Extended to video:

- Super pixels → Spatio-Temporal regions
- Aggregate prediction score over segments
- MRF smoothing over super-voxels

Superparsing 15

Spatiotemporal Segmentation

Still Image Segmentation

Frames

Fig. 12 A comparison of still image segmentation of Felzenszwalb et al. [8] (second row) to the spatiotemporal segmentation of
Grundmann et al. [12] (third row). Shown are only the segments required to cover the foreground cars in each frame. The still
image segmentation is not able to separate the lower parts of the cars from the road, while the spatiotemporal segmentation
does not su↵er from the same problem.

frames, possibly at di↵erent angles or scales, can help
us build a better model of the objects’ shape and ap-
pearance. On the other hand, the large volume of video
data makes parsing very challenging computationally.

Previous approaches have tried a variety of strate-
gies for exploiting the cues contained in video data.
Brostow et al. [3], Sturgess et al. [40], and Zhang et
al. [47] extract 3D structure (sparse point clouds or
dense depth maps) from the video sequences and then
use the 3D information as a source of additional fea-
tures for parsing individual frames. Xiao and Quan [45]
run a region-based parsing system on each frame and
enforce temporal coherence between regions in adjacent
frames as a post-processing step.

We pre-process the video using a spatiotemporal
segmentation method [12] that gives 3D regions or su-
pervoxels that are spatially coherent within each frame
(i.e., have roughly uniform color and optical flow) as
well as temporally coherent between frames. The hope
is that these regions will contain the same object from

frame to frame. We then compute local likelihood scores
for possible object labels over each supervoxel, and fi-
nally, construct a single graph for each video sequence
where each node is a supervoxel and edges connect ad-
jacent supervoxels. We perform inference on this graph
using the same MRF formulation as in Section 2.5. Sec-
tion 4.1 will give details of our video parsing approach,
and Section 4.2 will show that this approach signifi-
cantly improves the performance compared to parsing
each frame independently.

4.1 System Description

We wish to take advantage of the motion cues in video
without explicitly adding motion or geometric features
to our system. We do this by using the hierarchical
video segmentation method of Grundmann et al. [12],
which Xu and Corso [46] show to be quite e↵ective at
capturing the boundaries of objects in video. We run all

1.

Super-Parsing

1.

Geometric Context from Video
• Hoiem, Efros, Hebert, "Geometric Context from a Single Image", ICCV 2005
• Hussein, Grundmann, Essa, “Geometric Context from Video, CVPR 2013

http://www.cc.gatech.edu/cpl/projects/videogeometriccontext/

http://www.cc.gatech.edu/cpl/projects/videogeometriccontext/

1.

Geometric Context from Video
• Simplified description

- Run video segmentation to yield
super-regions

- Extract spatio-temporal features
- Train classifiers from features (from

label dataset)
- Different from super-parsing:

Classifiers work directly on regions
(not images)

- Also: Aggregate prediction over
hierarchy

Sub Classifier Main ClassifierLabeled Video

Color
Texture
Location
Perspective
Motion

Feature Extraction

Hierarchical Segmentation

1.

Geometric Context from Video
Hussein, Grundmann, Essa, CVPR 2013

1.

Radiometric Calibration for Video Segmentation
Grundmann, Kang, Essa (ICCP 2013)

• Goal: Segmentation robust
to gain changes in video

• Simplified description:
- Radiometric calibration 

Colors → Irradiance
- Segment in irradiance

1.

Pixels to Semantics (YouTube scale)
• G. Hartmann, M. Grundmann, J. Hoffman, D. Tsai, V. Kwatra, O. Madani, S.

Vijayanarasimhan, I. Essa, J. Rehg, R. Sukthankar  
Weakly Supervised Learning of Object Segmentations from Web-Scale Video  
ECCV Workshop on Web-scale Vision and Social Media, 2012 (Best Paper)  

1.

Weakly supervised segmentation
• Simplified description

- Stabilize and segment videos to yield good input (input: YouTube videos)
- Yield spatio-temporal segments via Video Segmentation
- Extract features from segments (appearance, motion, texture, shape etc.)
- Weakly supervised: Training data only has (video, label) pairs (similar to MIL)
- Learn model for each label by pooling over all extracted segments (MILBoost)
- Evaluation: Manual annotation via online tool

1.

Talk outline
• Applications of video segmentation
• Online video segmentation and annotation
• Open source video segmentation

1.

Online video segmentation
• Goal:

- Enable researchers / users to segment videos
• Initially launched on a single server in 2010 (limited resolution and length)
• In 2011: videosegmentation.com

- Hosted on two machines with GPUs (for flow)
- No limits on resolution or length (streaming)
- One job at a time (HD video could stall queue for everyone)
- REST API for terminal based usage

• Now:
- Build fast, highly parallel cloud solution

http://videosegmentation.com

1.

Fast online video segmentation
• Main ingredients:

- Underlying segmentation algorithm O(n)
- Parallelize over segmentation and hierarchical segmentation

- Streaming segmentation
- Run flow and both segmentations in a parallel pipeline
- Resolution independence

1.

Fast O(n) segmentation
• Use bucket sort: Discretize edge weight domain into 2-4K buckets (bucket sort)  

L1 RGB color distance: 768 values
• Complexity: O(n) [no large multipliers, 𝜶(n) < 5 for all practical values of N]
• Spatial and temporal edges are disjoint → Bucket lists:

- For N frames use 2 * N - 1 list of 2K buckets
- Create in parallel via on-demand threads! 31% faster!!

• For hierarchical segmentation:
- Evaluate region ↔ neighbor edges in parallel
- Hash edges to weights for fast graph construction Sp

at
ia

l #
1

Te
m

po
ra

l 1
↔

2

Sp
at

ia
l #

2

Te
m

po
ra

l 2
↔

3

Sp
at

ia
l #

3

Parallel 
construction

1.

Streaming video segmentation
• Clip-based with overlap
• Original implementation

modified edge weights
• Modifying edge weights  

is bad!
- Single-link clustering
- Changes order of merges
- If used with Felzenszwalb

criteria prohibits merges

Segment 30 frames

Video Volume: frame# →

Output result

Constrain graph before
segmentation using result
of previous clip

Edge within a region
=> weight = 0
Edge across boundary
=>weight = ∞

1.

Constraint streaming video segmentation
• Instead of modifying edge weights:  

Add to each region a constraint id (-1 for unconstrained)
• Proposed by several authors:

- [Lezama et al. , 2011]: Track to the future
- [C. Xu et al., 2012]: Streaming hierarchical video segmentation
- videosegmentation.com, since early 2011

• Criteria:
- Merge regions if constraints are equal (regardless of distance)
- Never merge two different constraints
- Constrains are sticky: Propagates to unconstrained nodes

•region_id
•size
•descriptor[]
•is_done
•constraint

http://videosegmentation.com

1.

Resettable Constraints: Motivation
• Problem: Constraints over-constrain!
• Following example from  

[Joseph Tighe and Svetlana Lazebnik, 2012]:  
SuperParsing: Scalable Nonparametric Image
Parsing with Superpixels

• Problem:  
Pixels in distance are grouped together  
(perspective = averaging)  
 
Cannot be broken apart!

1.

Resettable constraints: Observation
• Regions become increasingly larger

- Over-constraint: Everything gets
grouped together

- Constraints are dominating the
segmentation process

• [Joseph Tighe and Svetlana Lazebnik,
2012] p. 16 about
videosegmentation.com:  
“we have found the segmentation
results to be better if we run the
videos through the system
backwards”

segmented backwards

1.

Resettable constraints
• New merge criteria supplies descriptor distance
• New split operation:

- Split if: Same constraint but descriptor distance >
15%

- Reset constraint of smaller region (if < 1/3) or both
• Requires addition of virtual nodes/edges for

topological information 
(neighbors)

1.

Resettable constraints: Comparison

Constraint segmentation Segmentation with resettable constraints

1.

Fast online video segmentation
• Main ingredients:

- Underlying segmentation algorithm O(n)
- Streaming segmentation
- Run flow and both segmentations in a parallel pipeline
- Resolution independence

1.

Segmentation Pipeline

Hierarchical
Segmentatio

n

Dense
flow

computation

Over-
segmentatio

n
Video

Segments
clips of 30 frames

Buffers extracted features
Builds graph in parallel

Computing region
descriptors

discard frames

Flow computation on 
 video frame pairs

stream out segmentation tree
for current clip set

Segments
sets of 6-10 clips

1.

Maximum parallelism
Segmentation pipeline

• Flow, Over-segmentation and Hierarchical segmentation can be run
independently once input is available: 400% CPU sustained

1.

Segmentation resolution
• Problems with current approach:

- Segmentation is always computed for a specific resolution (e.g. 360p, 720p, etc.)
- Complexity of flow and over-segmentation grows with video resolution
- Segmentation representation grows with resolution 

Rasterization: Set or scanline intervals (RLE encoding)
• Rasterization does not enable geometric transformations  

(w/o need for bilateral upsampling)

1.

Compute segmentation boundaries
• Seems trivial at first:

- Raster scan → Boundary pixel: current region is different from N4
- Not “water tight” → double boundaries

1.

Unique segmentation boundaries
• Based on:  

"A contour tracing algorithm that preserves
common boundaries between regions" 
 Yuh-Tay Liow, CVGIP: Image
Understanding, 1991

• Idea: Similar to polygon rasterization (don’t
render bottom or rightmost boundary)

- Assume N4 segmentation → N8 boundary
- Start at most top-left pixel
- 12 different configurations

1.

Vector representation for Video Segmentation
• Extract boundaries for each component of a region (different from image case)

- Trace each component
• Simplify boundaries via Ramer–Douglas–Peucker algorithm

- Yields a water-tight polygon representation per region component
• Store coordinates into a vector mesh

- Geometrically transform mesh
- Rasterize if needed

• Enables downscaling of input video and upscaling of result! 
Segment 1080p! (~1 billion edges for 1s)

1.

1.

1.

Fast online video segmentation
• Main ingredients:

- Underlying segmentation algorithm O(n)
- Streaming segmentation
- Run flow and both segmentations in a parallel pipeline
- Resolution independence

1.

Video Annotation

1.

Online Video Segmentation and Annotation
• End-to-end system for online video

segmentation and annotation
• www.videosegmentation.com

http://www.videosegmentation.com

1.

Segment your videos
Online Video Segmentation and Annotation

1.

Adjust options
Online Video Segmentation and Annotation

1.

Annotate!
Online Video Segmentation and Annotation

1.

Download results
Online Video Segmentation and Annotation

1.

Talk outline
• Applications of video segmentation
• Online video segmentation and annotation
• Open source video segmentation

1.

The Video Segmentation Project
• Open source implementation of everything shown today

- https://github.com/videosegmentation/video_segment
- BSD license

• Generic segmentation interfaces
- Over segmentation:

• Define pixel distance
• region descriptors,
• merge thresholds

- Hierarchical segmentation:
• Define region descriptors
• distances

https://github.com/videosegmentation/video_segment

1.

C++ 
// Create generic distance for space and time (here L1, color only).
typedef SpatialCvMatDistance<ColorDiff3L1, ColorPixelDescriptor> SpatialCvMatDistance3L1;
typedef TemporalCvMatDistance<ColorDiff3L1> TemporalCvMatDistance3L1;
!
// Bundle spatial and temporal distances.
struct DistanceColorL1 : DistanceTraits<SpatialCvMatDistance3L1,TemporalCvMatDistance3L1>
{ };
!
// API callback to create dense segmentation graph.
virtual DenseSegGraphInterface* CreateDenseSegGraph(...) {

DenseSegmentation

82

Fully customizable features, distances and descriptors

1.

C++ DescriptorExtractorList* extractors; // Supplied by API  
 DescriptorUpdaterList* updaters; // Supplied by API
 shared_ptr<AppearanceExtractor> appearance_extractor(
 new AppearanceExtractor(options_.luminance_bins, options_.color_bins,
 features[0]); // Stores image.
 extractors->push_back(appearance_extractor);
 updaters->push_back(shared_ptr<NonMutableUpdater>(new NonMutableUpdater()));
 shared_ptr<FlowExtractor> flow_extractor(
 new FlowExtractor(options_.flow_bins, features[1])); // Stores flow images
 extractors->push_back(flow_extractor);
 updaters->push_back(shared_ptr<NonMutableUpdater>(new NonMutableUpdater()));

RegionSegmentation

83

Fully customizable region descriptors and distances

