

Graph-Based Hierarchical Video Segmentation

Matthias Grundmann, Daniel Castro, Irfan Essa Vivek Kwatra, Mei Han

Google Research

Georgia Institute of Technology

Video Segmentation

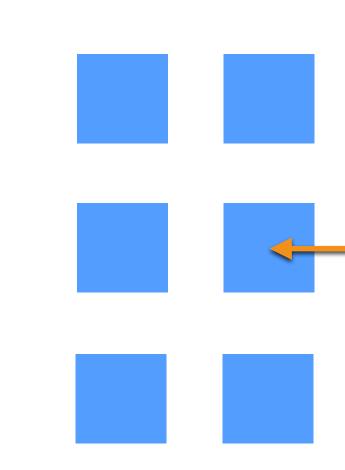
- Spatio-temporal regions: Group appearance and motion in space and time
- Application: Selecting regions \Rightarrow rapid annotation

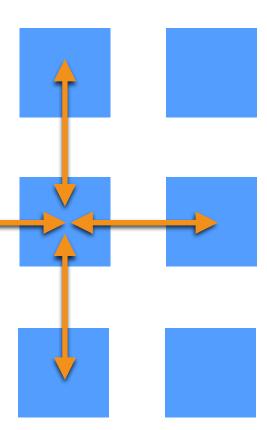
Tech

Computing

region color indicates region identity

Talk outline


- Graph-based segmentation in the video domain
- Segmentation approaches / agglomerative clustering
- Over-segmentation
- Hierarchical segmentation
- Based on [Grundmann et al. 2010]: Efficient graph-based hierarchical video segmentation with many improvements
- Streaming segmentation (next talk)



Graph-based segmentation

- Grid graph over image domain
- Connectedness: N4 or N8
- Affinity between pixels:
 - Color distance
 - Weighted with gradients
 - Take into account optical flow
 - From per pixel classifiers, etc.

Extending to Video Domain

- Direct application of image-based algorithm per frame
- Lacking temporal coherence
- Unstable boundaries in time
 - Associating 2D regions will yield noisy outcome

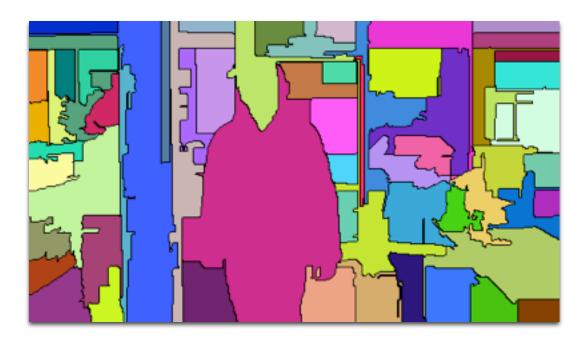
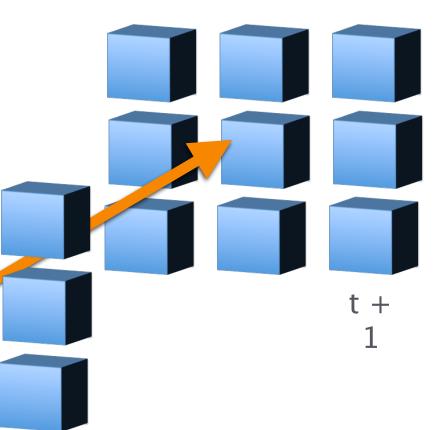


image segmentation applied to each frame

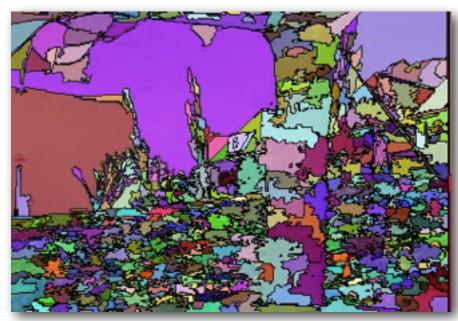


entation Georgia College of Ach frame Tech Computing

Extending to Video Domain

- Extend N8 graph in time: Spatio-Temporal volume
- Connect each pixel to also to its 9 neighbors in time (forward / backward)
- Connectedness: N26
 - 1 sec of 360p video: 90 million edges
 - vs. 1 million for image case
- How to connect?
 - Direct predecessor
 - Displaced along optical flow

t

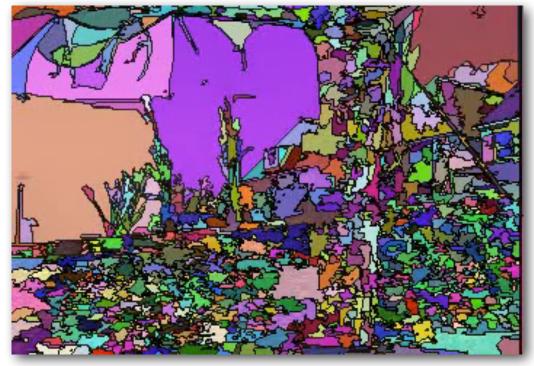


Connection in time

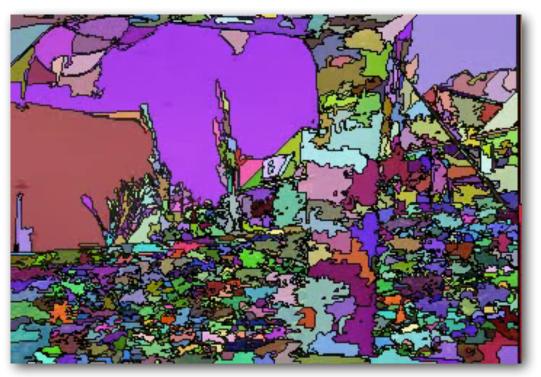
- Direct predecessor can't model movements > 1 pixel
- Displace connection in time along dense optical flow

dense flow, hue encodes angle

direct


predecessor in volume Georgia **College of** Tech Computing

oversegmentation using



Connection using dense optical flow

Displace temporal connection along dense optical flow

oversegmentation using predecessor along dense flow

oversegmentation using direct predecessor in volume

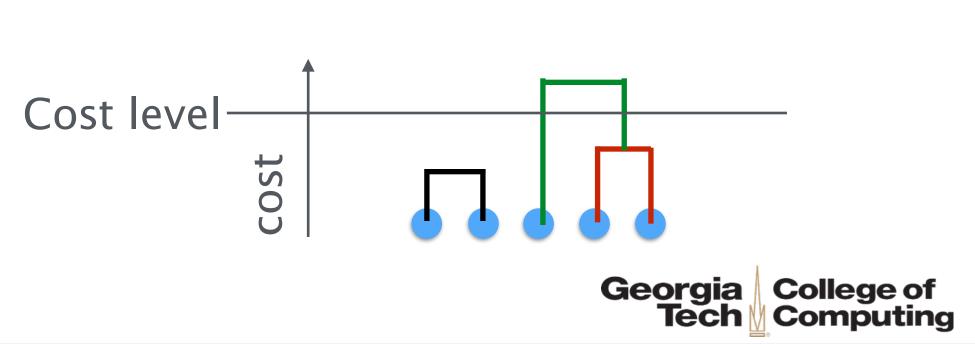
Connection using dense optical flow

Displace temporal connection along dense optical flow

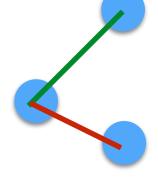
oversegmentation using predecessor along dense flow oversegmentation using direct predecessor in volume

Why Graph-based segmentation

- Need:
 - Low-complexity segmentation algorithm
 - Algorithm that we can constrain (later: for streaming segmentation)
 - Initialization free (i.e. no prior user interaction or parameters, e.g. Snakes, GrabCut)
 - Mean-Shift [Comaniciu and Meer, 2002]
 - Normalized cuts [Shi and Malik, 1997]
 - k-Means, EM / Mixture of Gaussians [Bishop 2006]
 - SLIC [Achanta et al. 2012]
 - Watersheds
 - Turbo Pixels [Levinshtein et al. 2009]
 - Greedy Graph-Based [Felzenszwalb and Huttenlocher 2004 Georgia



on) g. Snakes, GrabCut)



Agglomerative clustering

- Simplest type of clustering:
- Put every item in a single cluster
- Define distance between clusters
- Iteratively merge the two closest one
- Merge sequence represented by dendrogram
- Segmentation result: Threshold at cost level (not necessarily uniform) or number of regions

Agglomerative clustering

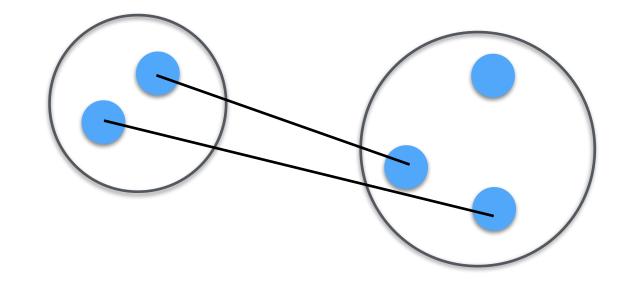
- How to define the cluster distance between cluster C1 and C2?
- Basically 3 types:
 - Single-link

$$\min_{a \in C_1, b \in C_2} ||d(a) - d(b)||$$

- Complete-link

$$\max_{a \in C_1, b \in C_2} ||d(a) - d(b)||$$

Average-link
 (N = total number of summands)


$$\frac{1}{N} \sum_{a \in C_1 \cup C_2} \sum_{b \neq a \in C_1 \cup C_2, b} ||d(a) - d(b)||$$

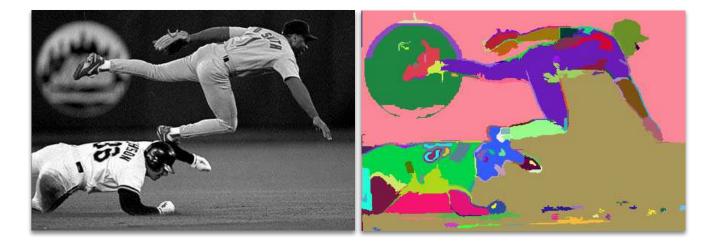
Agglomerative clustering

- Single link:
 - Distance between closest two elements
- Complete link:
 - Distance between two furthest elements
- Average link:
 - Average distance between all elements (not drawn)
- Conclusion:
 - Only single link merges do not alter cluster distance!
 - 1 sec of 360p video: 90 million edges

Georgia College of Tech Computing

Single link agglomerative clustering

- Complexity:
 - Sort the edges between original nodes O(n log n)
 - Traverse in order O(n)
 - Merges via union-find / disjoint forest
 - Union by rank
 - Path compression
 - Total complexity: O(n α (n)), α : inv. Ackermann, $\alpha <= 5$ in practice
 - Read result: O(n α (n))
- Total complexity: O(n log n) Dominated by sort



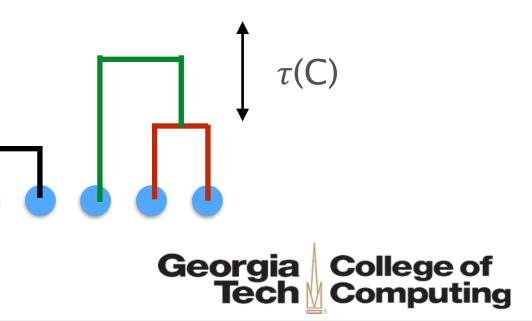
Efficient graph based image segmentation

- [Felzenszwalb and Huttenlocher 2004]
- Single link agglomerative clustering
 - Cluster distance: Diff. pixel appearance
 - Int(C_i): last edge weight for each cluster (height from dendrogram)
 - Termination criteria:

$$\min_{a \in C_1, b \in C_2} ||d(a) - d(b)|| = \operatorname{Int}(C_1 \cup C_2) >$$

$$- \min(\operatorname{Int}(C_1) + \tau(C_1), \operatorname{Int}(C_2) + \tau(C_2))$$

from [Felzenszwalb and Huttenlocher 2004]


Georgia **College of** Tech Computing

Efficient graph based image segmentation

- Termination criteria
 - $\operatorname{Int}(C_1 \cup C_2) >$
- $\min(\operatorname{Int}(C_1) + \tau(C_1), \operatorname{Int}(C_2) + \tau(C_2))$ • Int(C) : dendrogram height, $\tau(C) = \operatorname{constant} / |C|$
- $\Pi(C)$. Uenurogram Height, $\iota(C) = Constant / <math>\Gamma$
- Relative test, space decreases with region size

cost

Efficient graph based image segmentation

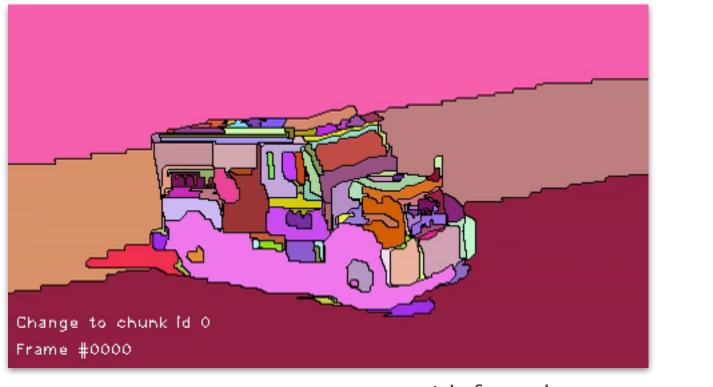
- What to take away:
 - [Felzenszwalb and Huttenlocher 2004] is single link agglomerative clustering
 - "Local" termination criteria w.r.t. dendrogram spacing
 - Monotonic criteria: Once violated, the two clusters won't be merged
 - Also: Any other monotonic criteria will do

Efficient graph based video segmentation

- Applying the "Local" termination criteria to video is problematic
 - $-\tau(C) = constant / |C|$ decreases with region size
- For video:
 - In video region volume >> region area for images
 - Either increase constant (more segmentation errors)
 - Or: Have many small regions
- For practical implementations:
 - For large homogenous regions:
 - \Rightarrow Regions are broken into small pieces 0
 - For textured regions: Additional merges required to achieve minimum region size

Homogenous regions

$\tau(C) \to 0$


Frame #0000

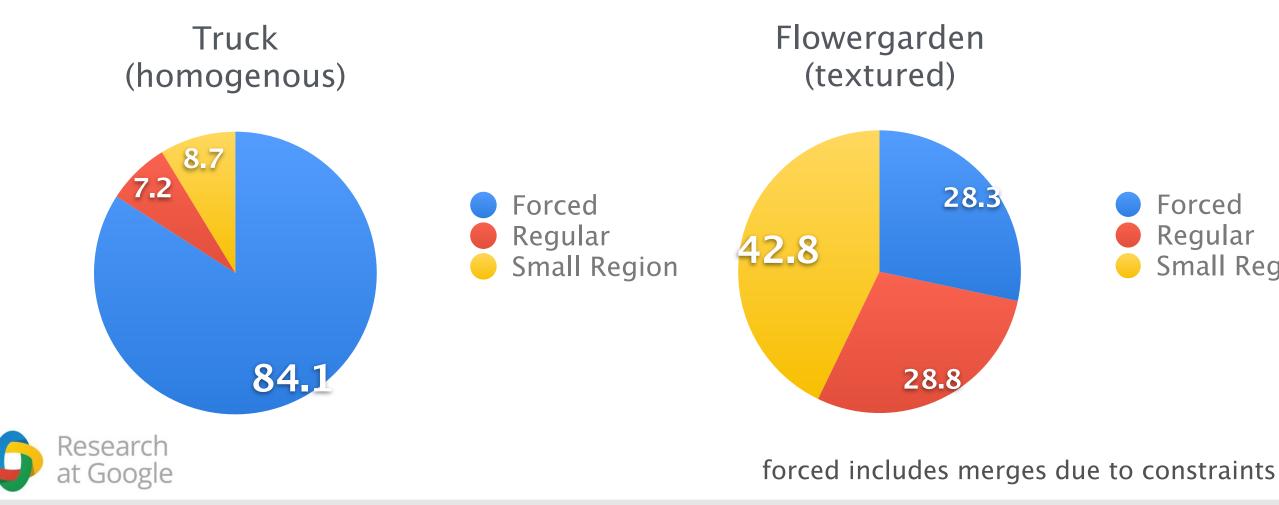
Introducing additional merges

- Forced merges: Merge everything with edge weight < 1 intensity / compression level
- Regular merges: [Felzenszwalb and Huttenlocher 2004] local criteria
- Small region merges: also [Felzenszwalb and Huttenlocher 2004]

with forced merges

without forced merges

Results use new merge criteria, not [Felzenszwalb and Huttenlocher 2004]


Research

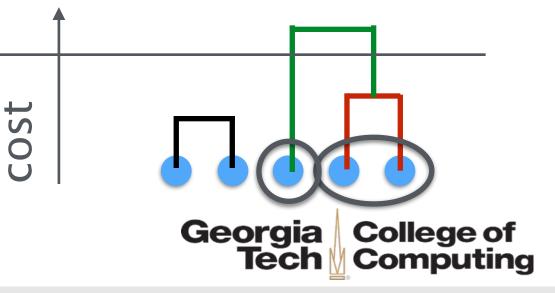
Merge percentages

- [Felzenszwalb and Huttenlocher 2004] with forced merges
- Regular merges account for less than 1/3 of all merges

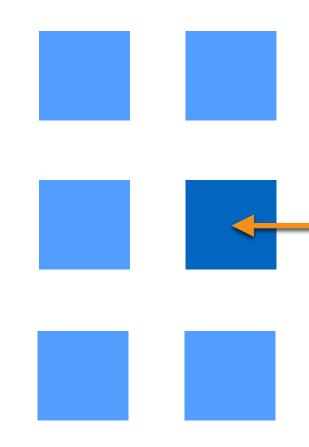
Forced Regular Small Region

Talk outline

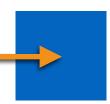
- Graph-based segmentation in the video domain
- Segmentation approaches / agglomerative clustering
- Over-segmentation
- Hierarchical segmentation


A new merge criteria

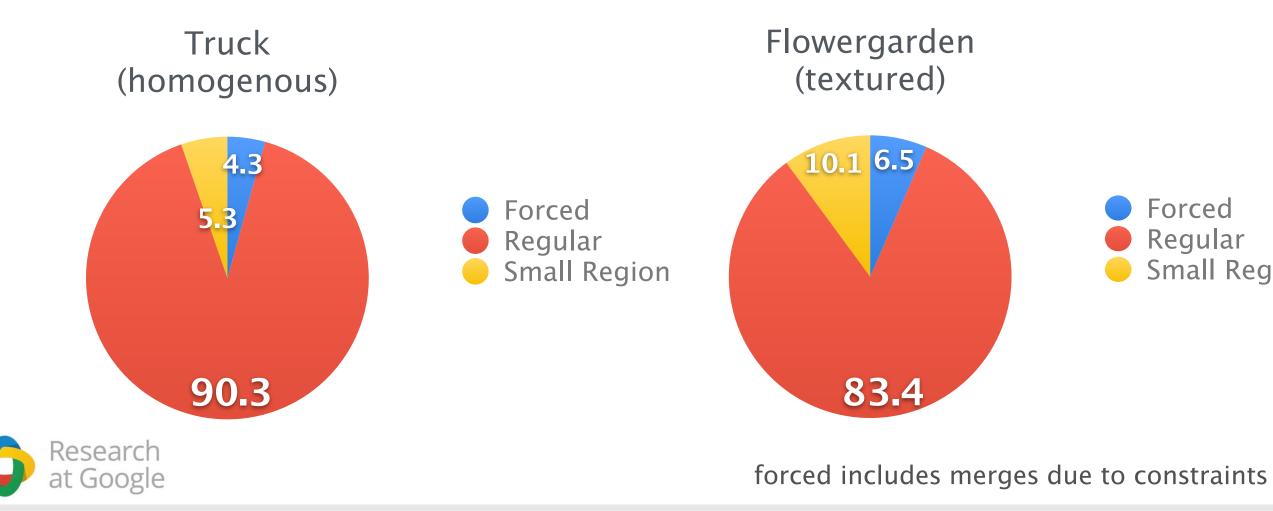
- Recall: Any monotonic criteria will do
- Need more regular merges, distance that accounts for compression levels
- Avoid "chaining" for single link clustering. (small local edge weights can accumulate)
- Idea:
 - Build up local descriptors during merge process
 - Use edge and descriptor distance to determine if a merge should be performed
 - Incorporate small region merges
 - Monotonicity: If merge test fails, label regions as done



merge test

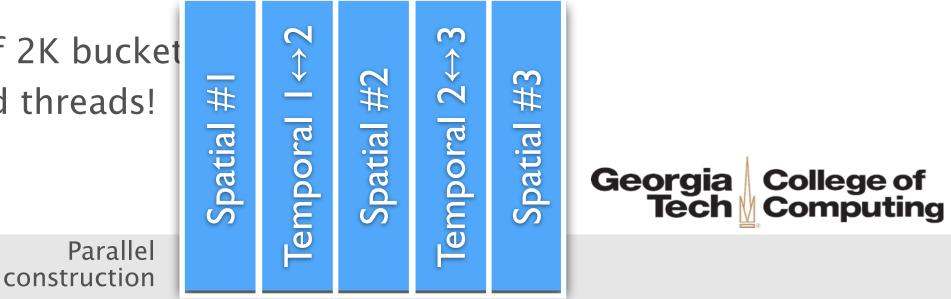

Our new merge criteria

- Descriptor during merges: Mean color / Mean flow (any other possible)
- Merge regions if:
 - Edge weight < 1 intensity level and descriptor distance < 20% (allow for variability but control cutoff)
 - Edge weight >= 1 intensity level and descriptor distance < 5% intensity range
 - One of them is too small
- If violated: Flag as done (monotonicity!)



Merge percentages for new criteria

• Regular merges account for more than 80% of all merges!



Forced Regular **Small Region**

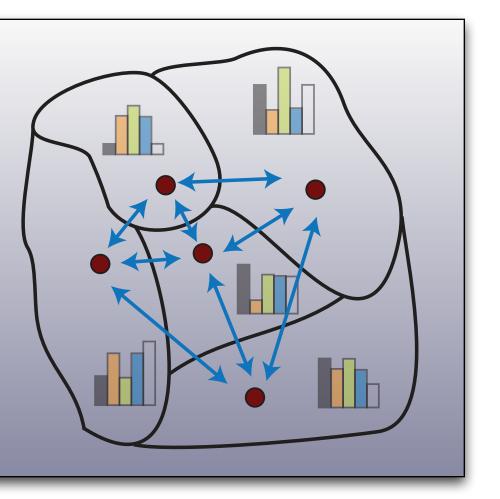
Fast O(n) segmentation

- Single link agglomerative clustering: Total complexity: O(n log n) sort
- Idea: Skip the sort
 - Discretize edge weight domain into 2-4K buckets (bucket sort) L1 RGB color distance: 768 values
- **Complexity:** O(n) [no large multipliers, $\alpha(n) < 5$ for all practical values of N]
- Can we do better?
 - Observation: Edge evaluation is costly / Spatial and temporal edges are disjoint
- Bucket lists
 - For N frames use 2 * N 1 list of 2K bucket
 - Create in parallel via on-demand threads! **31% faster!!**

n) Dominated by

Talk outline

- Graph-based segmentation in the video domain
- Segmentation approaches / agglomerative clustering
- Over-segmentation
- Hierarchical segmentation



Hierarchical graph-based segmentation

- Size of regions: Controlled by merge threshold between descriptors (earlier: $\tau(C)$)
- Hierarchical segmentation: Instead of tweaking thresholds
- Build spatio-temporal adjacency graph of regions from over-segmentation
- Edge weights based on similarity of region descriptors (Appearance, texture, motion)
- Segment regions in super-regions
- Repeat until: Minimum region number reached

Hierarchical segmentation

- Descriptors (3):
 - LAB histogram (10 * 16 * 16) w/ interpolation
 - Flow histogram (20 angles)
 - Compare each via χ_2 distance
 - Region Size Penalizer (truncated ratio w.r.t. average region size)
 - Combine via Soft-OR distance times region penalizer γ :
- Merge:
 - Merge each descriptor / histogram
- Important: Merge alters edge weights between clusters (like average-link clustering)

 $\gamma[1 - \prod(1 - d_i)]$

Georgia College of Tech Computing

Hierarchical segmentation

- Which algorithm to use?
- First version: Uses single link [Felzenszwalb and Huttenlocher 2004]
 - Note: Merges alter edge weights!
 - Only allows for one merge per region per hierarchy level
 - Bad control for number of merges per hierarchy level
- Current version: True average-link agglomerative clustering + specify percentage of merges
- Fast: O(n) bucket sort for edges
- At every merge (< n) : Update neighboring edges in parallel
- Total complexity: O(n * k), k < 100 for our purposes

Spatio-Temporal Over-Segmentation

original video

over-segmentation Georgia Tech College of Computing

Hierarchical Segmentation

Over-segmentation

Hierarchy at 20% Georgia College of Tech Computing

Hierarchical Segmentation

Hierarchy at 20%

Hierarchy at 50%

Benefits of hierarchical segmentation

Note: instability in over-segmentation (identities of region change [lights, window], boundaries are more unstable)

Hierarchical segmentation (shown at 50% of height of segmentation tree)

esearch

Over-segmentation only (manually tuned to give similar sized regions)

Benefits of hierarchical segmentation

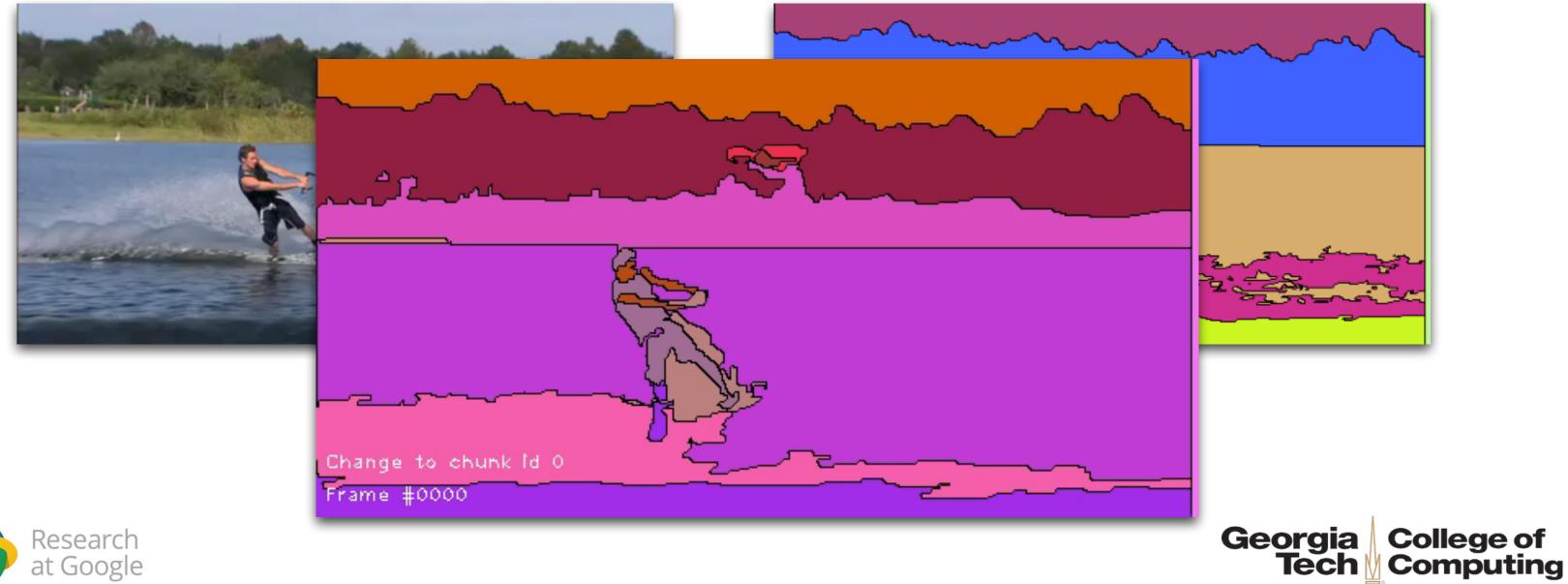
Hierarchical segmentation

Over-segmentation only (manually tuned to give similar sized regions)

Effect of flow as feature

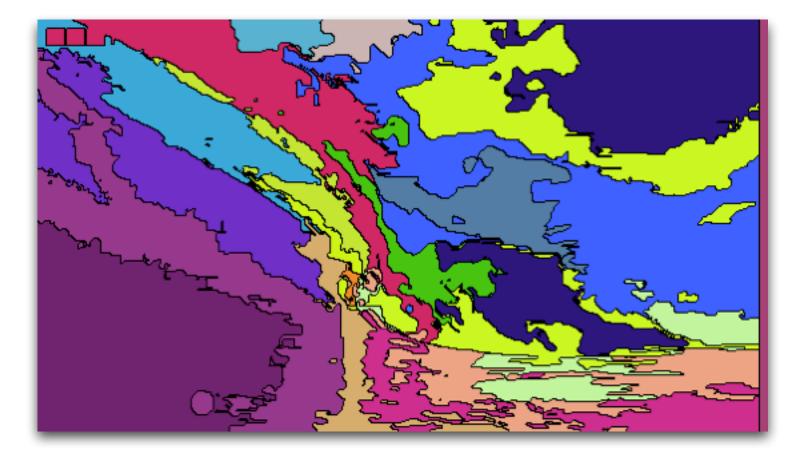
original

flow in hierarchical segmentation



no flow

flow in oversegmentation & flow in hierarchical segmentation


Results

Results

Georgia College of Tech Computing

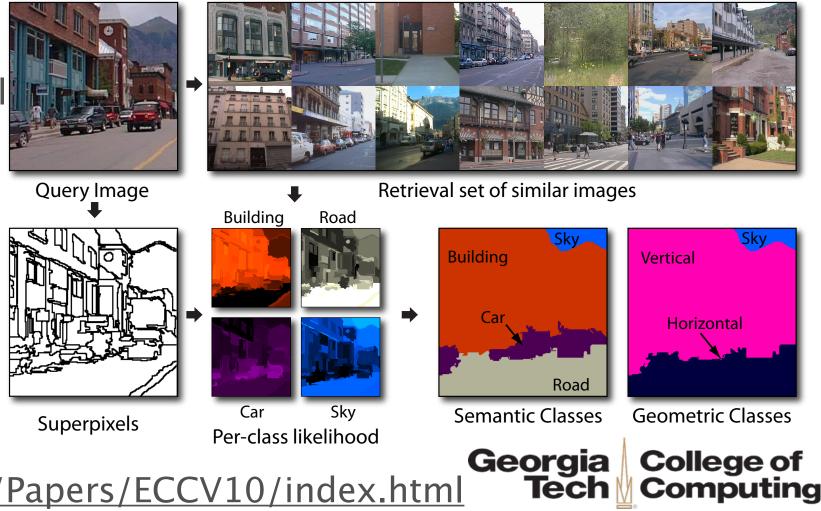
Applications of Video Segmentation

Daniel Castro, Irfan Essa Matthias Grundmann, Vivek Kwatra, Mei Han

Google Research

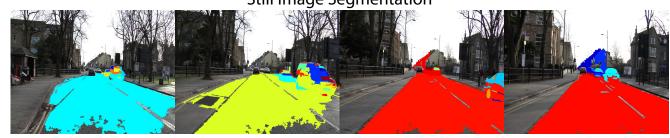
Georgia Institute of Technology

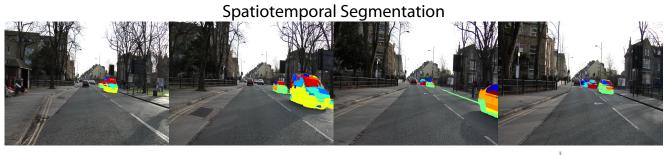
Talk outline


- Applications of video segmentation
 - Super-Parsing
 - Geometric context
 - Radiometric calibration for segmentation
 - Weakly supervised segmentation
- Online video segmentation and annotation
- Open source video segmentation

Super-Parsing

- [Joseph Tighe and Svetlana Lazebnik, 2012]: SuperParsing: Scalable Nonparametric Image Parsing with Superpixels
- Simplified description:
 - Extract super pixels from query image
 - Label transfer: From labeled super-pixel in training set
 - Smoothing via MRF




<u>http://www.cs.unc.edu/~jtighe/Papers/ECCV10/index.html</u>

Super-Parsing

- [Joseph Tighe and Svetlana Lazebnik, 2012]: SuperParsing: Scalable Nonparametric Image Parsing with Superpixels
- Extended to video:
 - Super pixels \rightarrow Spatio-Temporal regions
 - Aggregate prediction score over segments
 - MRF smoothing over super-voxels

Frames

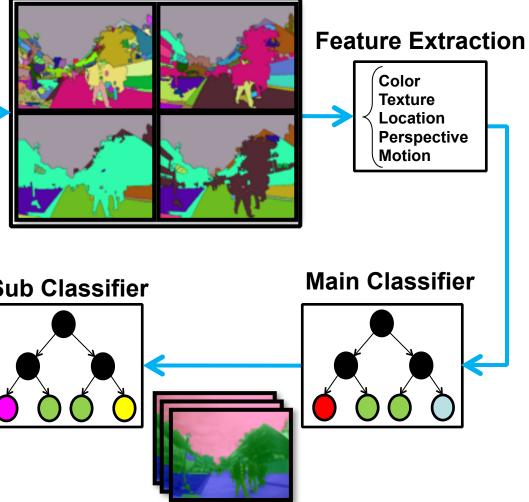
Still Image Segmentation

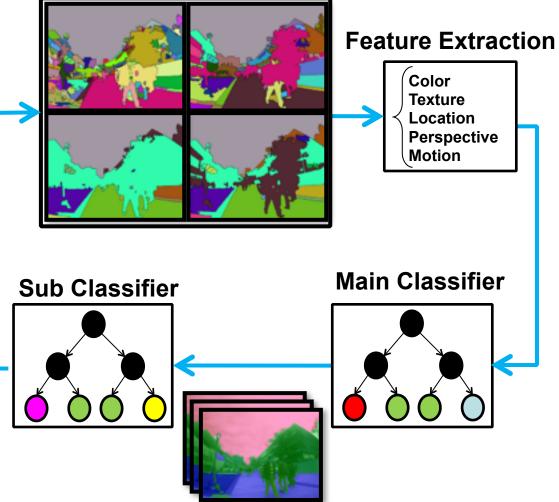
SuperParsing: Scalable Nonparametric Image Parsing with Superpixels Joseph Tighe and Svetlana Lazebnik

Geometric Context from Video

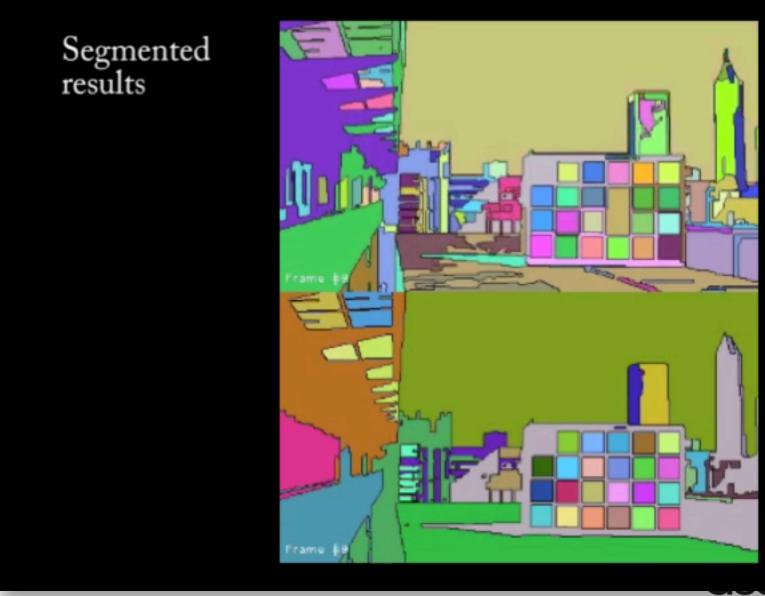
- Hoiem, Efros, Hebert, "Geometric Context from a Single Image", ICCV 2005
- Hussein, Grundmann, Essa, "Geometric Context from Video, CVPR 2013


http://www.cc.gatech.edu/cpl/projects/videogeometriccontext/


Geometric Context from Video


- Simplified description
 - Run video segmentation to yield super-regions
 - Extract spatio-temporal features
 - Train classifiers from features (from label dataset)
 - Different from super-parsing: Classifiers work directly on regions (not images)
 - Also: Aggregate prediction over hierarchy

Hierarchical Segmentation


Geometric Context from Video Hussein, Grundmann, Essa, CVPR 2013

Radiometric Calibration for Video Segmentation Grundmann, Kang, Essa (ICCP 2013)

- Goal: Segmentation robust to gain changes in video
- Simplified description:
 - Radiometric calibration
 Colors → Irradiance
 - Segment in irradiance

without calibration 47.2%

Percent of stable regions

100 % after calibration

Tech V Computing

Pixels to Semantics (YouTube scale)

G. Hartmann, M. Grundmann, J. Hoffman, D. Tsai, V. Kwatra, O. Madani, S. Vijayanarasimhan, I. Essa, J. Rehg, R. Sukthankar Weakly Supervised Learning of Object Segmentations from Web-Scale Video ECCV Workshop on Web-scale Vision and Social Media, 2012 (Best Paper)

esearch

Weakly supervised segmentation

- Simplified description
 - Stabilize and segment videos to yield good input (input: YouTube videos)
 - Yield spatio-temporal segments via Video Segmentation
 - Extract features from segments (appearance, motion, texture, shape etc.)
 - Weakly supervised: Training data only has (video, label) pairs (similar to MIL)
 - Learn model for each label by pooling over all extracted segments (MILBoost)
 - Evaluation: Manual annotation via online tool

Weakly Supervised Training Data (video-level tags)

dog

bike

boat

transformers helicopter

card

horse

robot

Talk outline

- Applications of video segmentation
- Online video segmentation and annotation
- Open source video segmentation

Online video segmentation

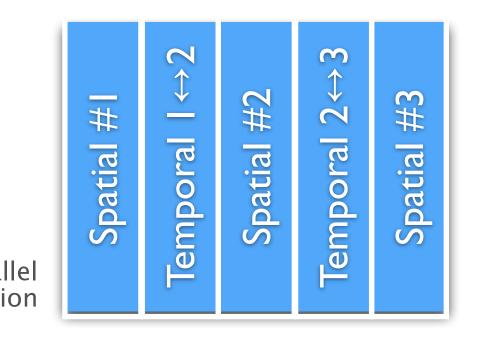
• Goal:

- Enable researchers / users to segment videos

- Initially launched on a single server in 2010 (limited resolution and length)
- In 2011: videosegmentation.com
 - Hosted on two machines with GPUs (for flow)
 - No limits on resolution or length (streaming)
 - One job at a time (HD video could stall queue for everyone)
 - REST API for terminal based usage
- Now:
 - Build fast, highly parallel cloud solution

Fast online video segmentation

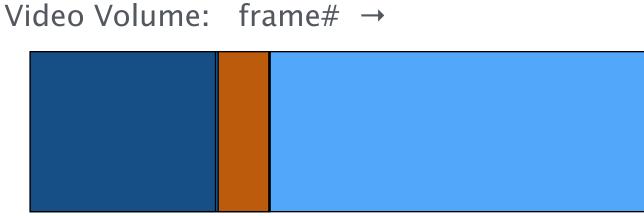
- Main ingredients:
 - Underlying segmentation algorithm O(n)
 - Parallelize over segmentation and hierarchical segmentation
 - Streaming segmentation
 - Run flow and both segmentations in a parallel pipeline
 - Resolution independence



Fast O(n) segmentation

- Use bucket sort: Discretize edge weight domain into 2–4K buckets (bucket sort) L1 RGB color distance: 768 values
- **Complexity:** O(n) [no large multipliers, $\alpha(n) < 5$ for all practical values of N]
- Spatial and temporal edges are disjoint \rightarrow Bucket lists:
 - For N frames use 2 * N 1 list of 2K buckets
 - Create in parallel via on-demand threads! **31% faster!!**
- For hierarchical segmentation:
 - Evaluate region \leftrightarrow neighbor edges in parallel
 - Hash edges to weights for fast graph construction

Parallel construction



Streaming video segmentation

- Clip-based with overlap
- Original implementation modified edge weights
- Modifying edge weights is bad!
 - Single-link clustering Segment 30 frames
 - Changes order of merges
 - If used with Felzenszwalb criteria prohibits merges

Output result

Constrain graph before segmentation using result of previous clip

Edge within a region => weight = 0 Edge across boundary =>weight = ∞

Constraint streaming video segmentation

- Instead of modifying edge weights: Add to each region a constraint id (-1 for unconstrained)
- Proposed by several authors:
 - [Lezama et al., 2011]: Track to the future
 - [C. Xu et al., 2012]: Streaming hierarchical video segmentation
 - videosegmentation.com, since early 2011
- Criteria:
 - Merge regions if constraints are equal (regardless of distance)
 - Never merge two different constraints
 - Constrains are sticky: Propagates to unconstrained nodes

• region_id • size • descriptor[] • is done • constraint

Resettable Constraints: Motivation

- Problem: Constraints over-constrain!
- Following example from [Joseph Tighe and Svetlana Lazebnik, 2012]: SuperParsing: Scalable Nonparametric Image Parsing with Superpixels

 Problem:
 Pixels in distance are grouped together (perspective = averaging)

Cannot be broken apart!

Georgia College of Tech Computing

Resettable constraints: Observation

- Regions become increasingly larger
 - Over-constraint: Everything gets grouped together
 - Constraints are dominating the segmentation process
- [Joseph Tighe and Svetlana Lazebnik, 2012] p. 16 about videosegmentation.com: "we have found the segmentation results to be better if we run the videos through the system backwards"

segmented backwards

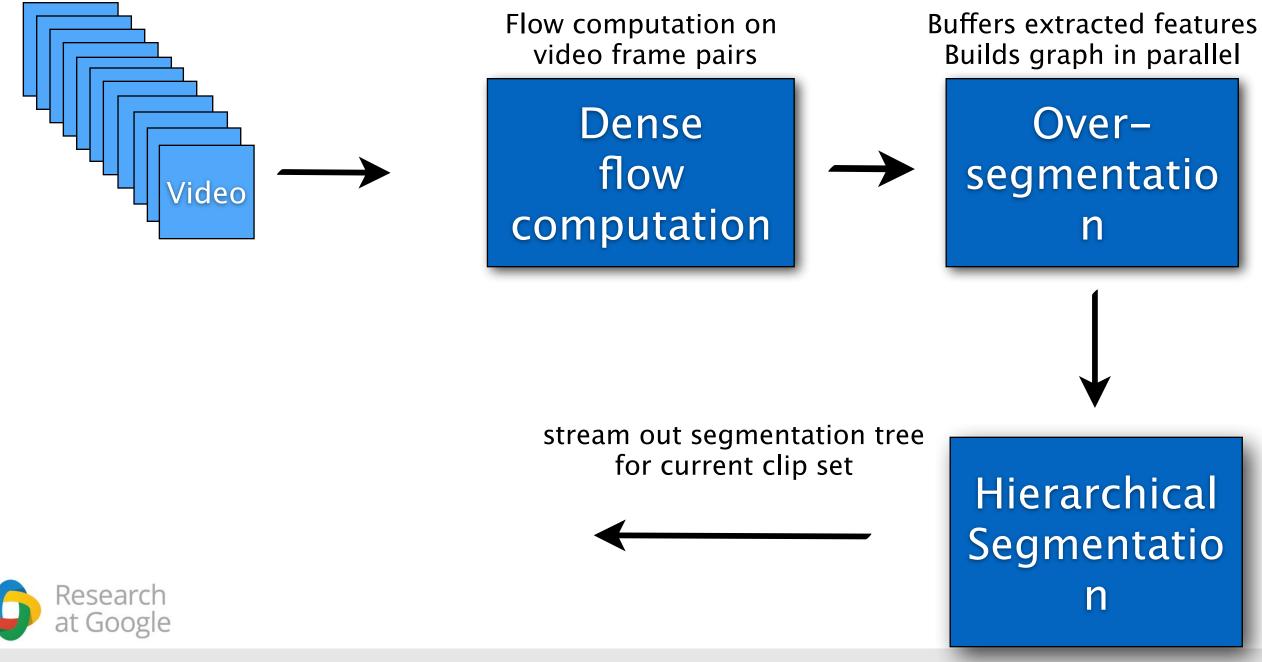
Resettable constraints

- New merge criteria supplies descriptor distance
- New split operation:
 - Split if: Same constraint but descriptor distance > 15%
 - Reset constraint of smaller region (if < 1/3) or both
- Requires addition of virtual nodes/edges for topological information (neighbors)

Resettable constraints: Comparison

Constraint segmentation

Segmentation with resettable constraints


Fast online video segmentation

- Main ingredients:
 - Underlying segmentation algorithm O(n)
 - Streaming segmentation
 - Run flow and both segmentations in a parallel pipeline
 - Resolution independence

Segmentation Pipeline

Segments clips of 30 frames

Computing region descriptors discard frames

Segments sets of 6–10 clips

College of Georgia Computing Tech

Segmentation pipeline

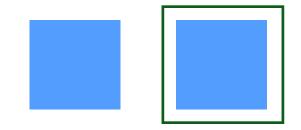
Maximum parallelism

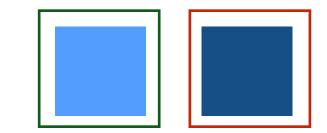
• Flow, Over-segmentation and Hierarchical segmentation can be run independently once input is available: 400% CPU sustained

000	seg_tree_sample — bash — 92×26			
bash	bash	bash	matttion	bash
grundman-macbookpr	o2:seg_tree_samp)	e grundman\$ make		
				. Al
				4
				segmentation
				- /
1				
		se-	1 00/271	1111 1 - 1
000	Dov	vnloads — htop -	- 92×27	
1 [11111111 2 [111 3 [1111111 4 [1] 5 [111111]] Tasks] Load] Uptim]	: 241 total, 14 runni average: 5.79 5 e: 1 day, 17:43:41	
6 [1] 7 [111111 8 [1] Mem[111111111111111111111111111111111111] Tasks] Load] Uptim] 6384]		

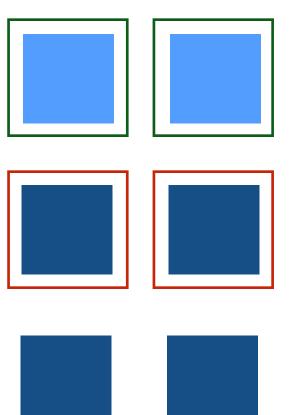
Segmentation resolution

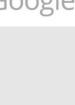
- Problems with current approach:
 - Segmentation is always computed for a specific resolution (e.g. 360p, 720p, etc.)
 - Complexity of flow and over-segmentation grows with video resolution
 - Segmentation representation grows with resolution Rasterization: Set or scanline intervals (RLE encoding)
- Rasterization does not enable geometric transformations (w/o need for bilateral upsampling)


360p, 720p, etc.) plution

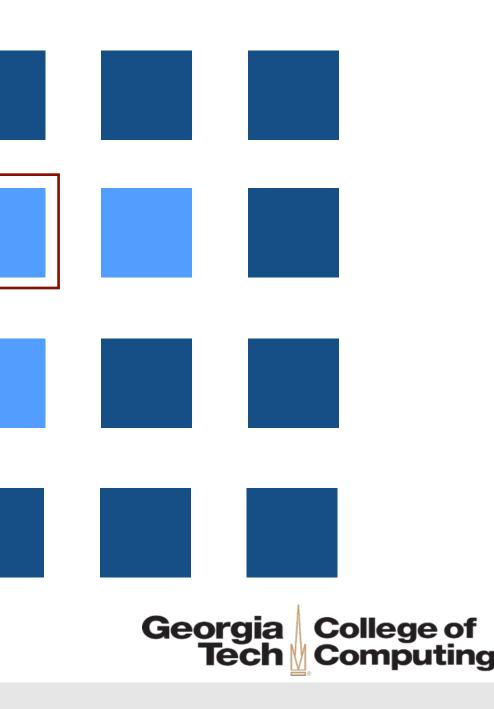


Compute segmentation boundaries


- Seems trivial at first:
 - Raster scan \rightarrow Boundary pixel: current region is different from N4
 - Not "water tight" \rightarrow double boundaries



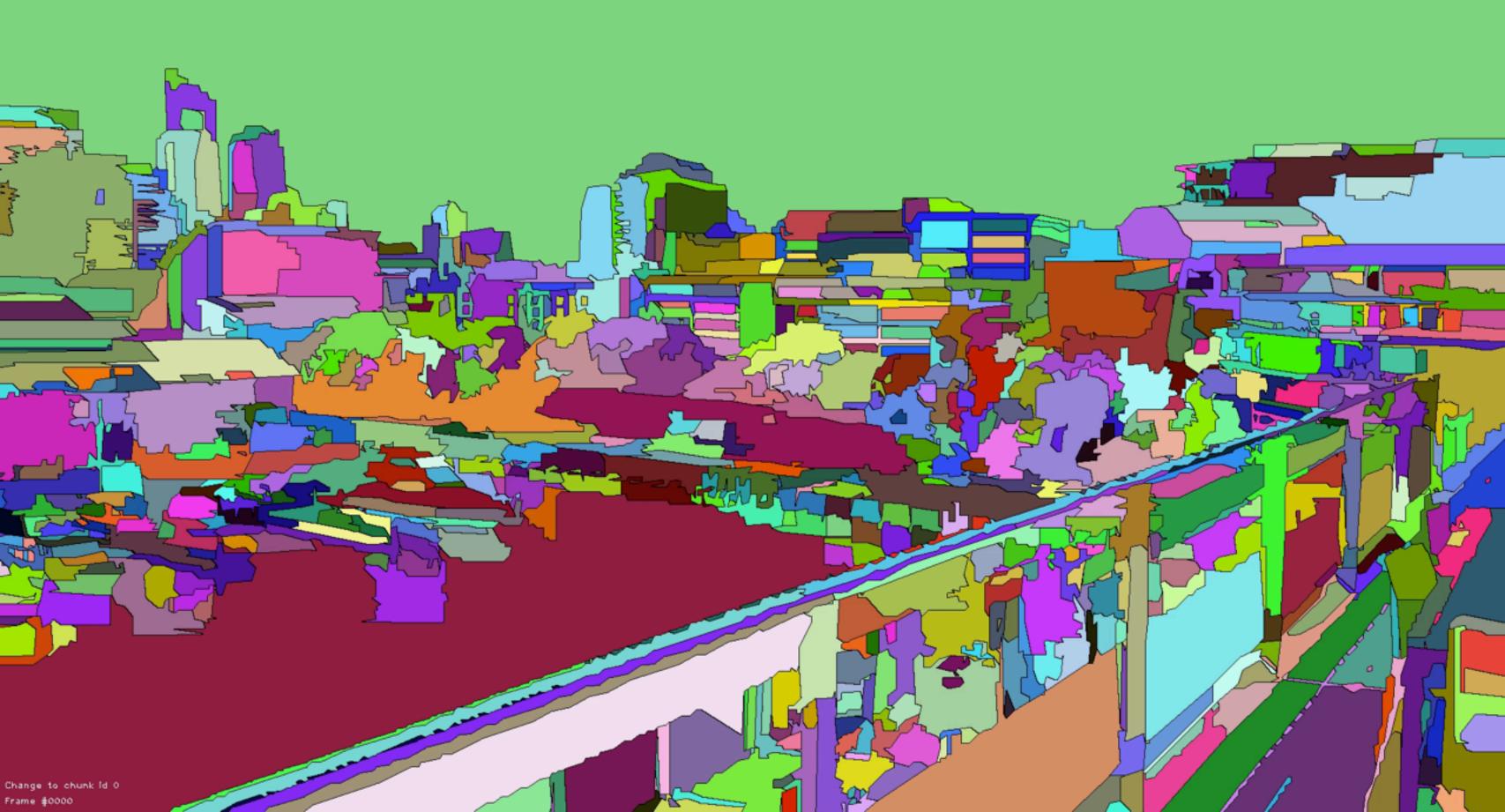
Unique segmentation boundaries


• Based on:

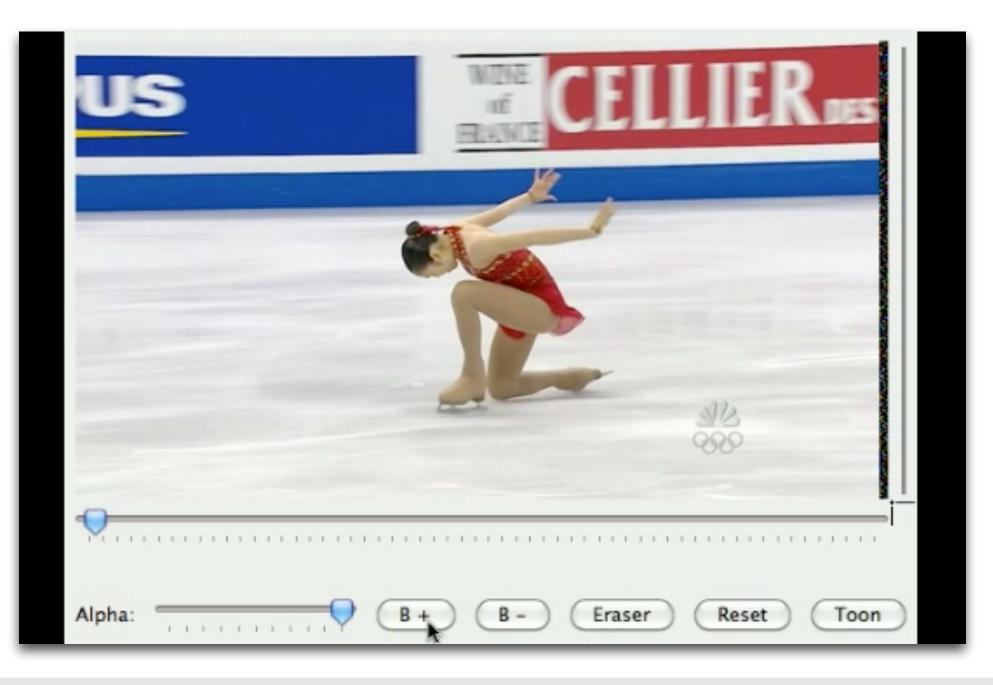
"A contour tracing algorithm that preserves common boundaries between regions" Yuh-Tay Liow, CVGIP: Image Understanding, 1991

- Idea: Similar to polygon rasterization (don't render bottom or rightmost boundary)
 - Assume N4 segmentation \rightarrow N8 boundary
 - Start at most top-left pixel
 - 12 different configurations

esearch

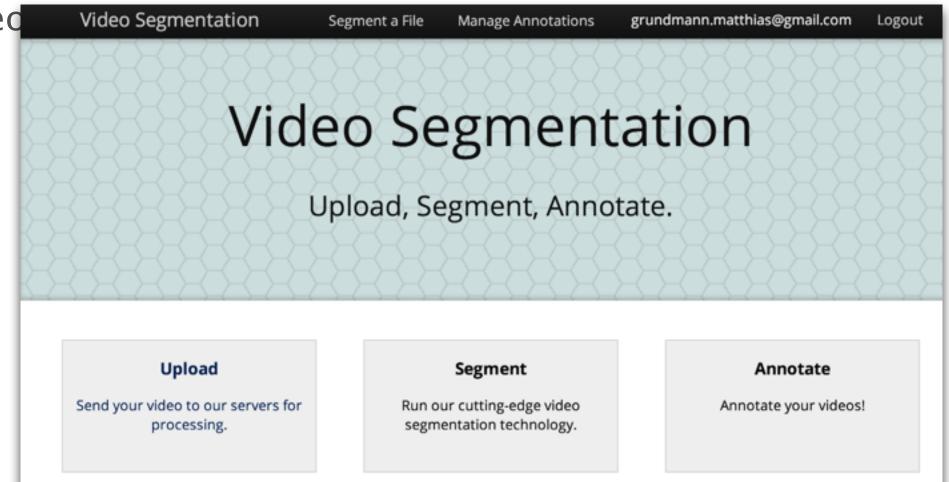

Vector representation for Video Segmentation

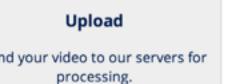
- Extract boundaries for each component of a region (different from image case)
 - Trace each component
- Simplify boundaries via Ramer-Douglas-Peucker algorithm
 - Yields a water-tight polygon representation per region component
- Store coordinates into a vector mesh
 - Geometrically transform mesh
 - Rasterize if needed
- Enables downscaling of input video and upscaling of result! Segment 1080p! (~1 billion edges for 1s)


Fast online video segmentation

- Main ingredients:
 - Underlying segmentation algorithm O(n)
 - Streaming segmentation
 - Run flow and both segmentations in a parallel pipeline
 - Resolution independence

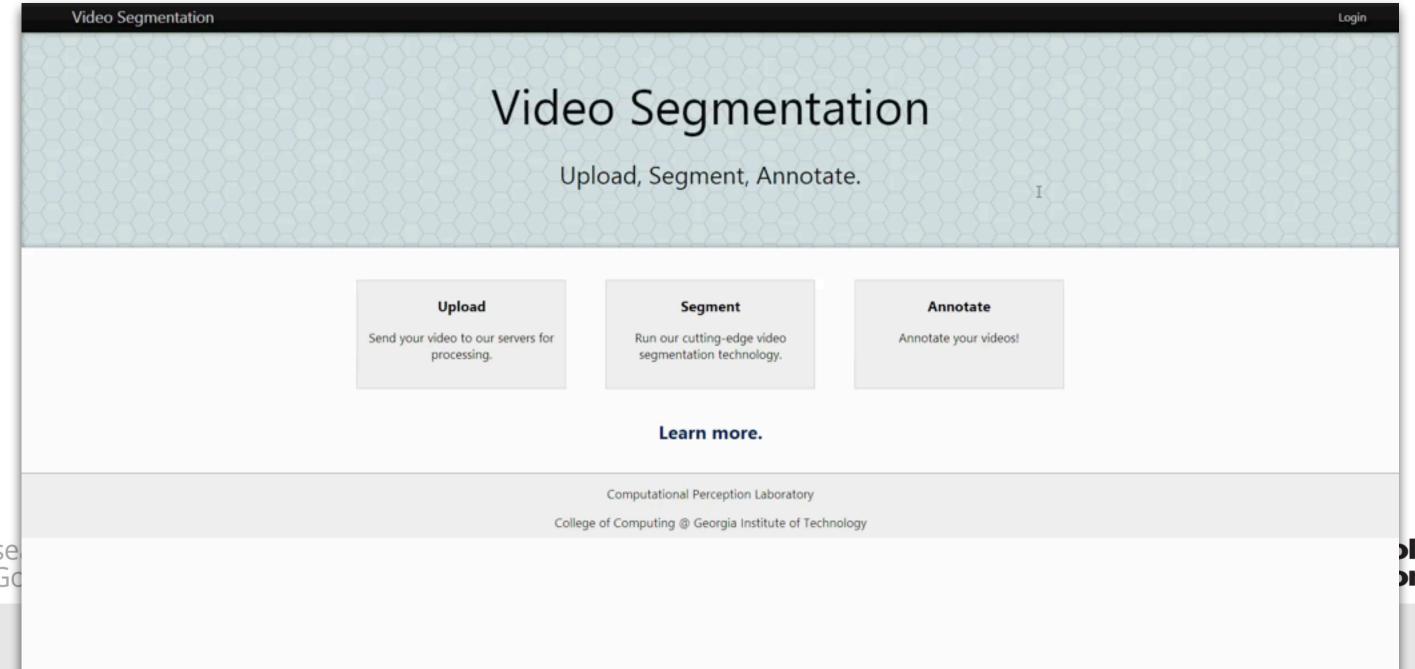
Video Annotation

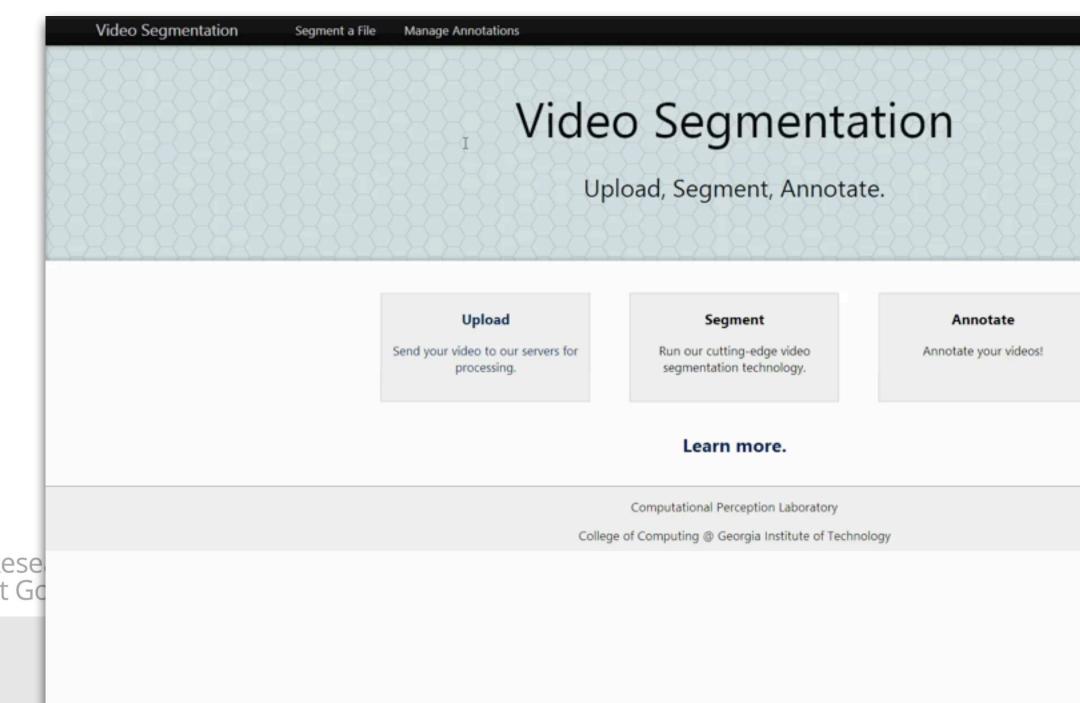


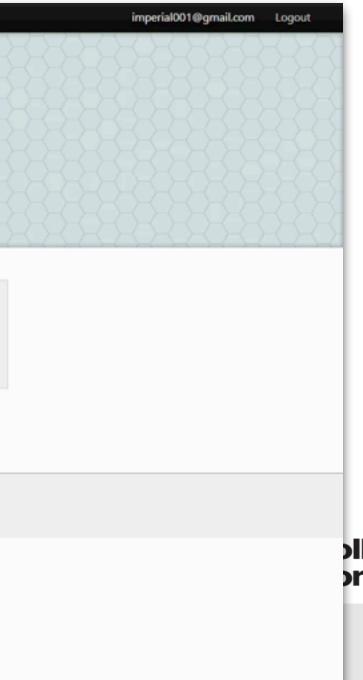


Online Video Segmentation and Annotation

- End-to-end system for online vided segmentation and annotation
- www.videosegmentation.com

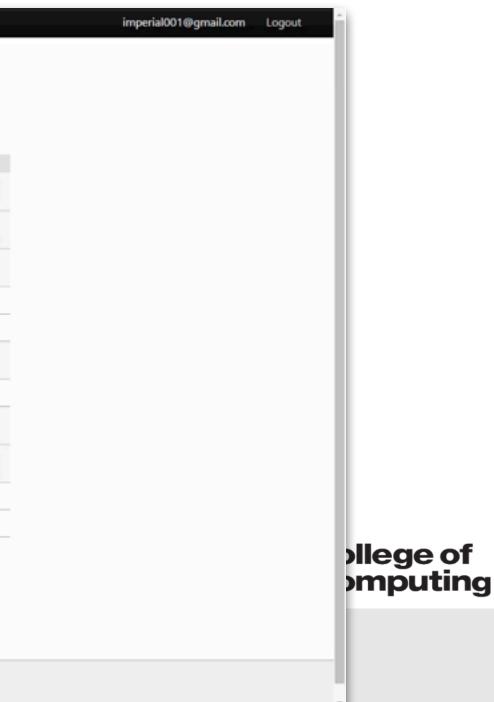





Online Video Segmentation and Annotation Segment your videos

ollege of omputing

Online Video Segmentation and Annotation Adjust options


ollege of omputing

Online Video Segmentation and Annotation Annotate!

Video Segmentation Se	gment a File Manage Annotations								
	imperial001@gmail.com's Segmentations								
	NAME	DATE STATUS	SETTINGS	ACTION					
	demo_video.mp4	2014-06-23 Request has been processed.	Default	New Annotation Download					
	demo_video.mp4	2014-06-23 Request has been processed.	Default	New Annotation Download					
	VID_20140623_030316.mp4	2014-06-23 Request has been processed.	Default	New Annotation Download					
	Annotation on 2014-06-23	Tags: Foreground, Background,		View / Edit Download					
	Annotation on 2014-06-23	Tags: Couch, Picture, Wall, Floor,		New / Edit Download					
	baile.mp4	2014-06-23 Request has been processed.	Gaussian Settings	New Annotation Download					
	Annotation on 2014-06-23	Tags: Dancers, Background,		View / Edit Download					
	truck2.mov	2014-06-23 Request has been processed.	Gaussian Settings	New Annotation Download					
	truck2.mav	2014-06-23 Request has been processed.	Default	New Annotation Download					
	Annotation on 2014-06-23	Tags: Truck,		Wew / Edit Download					
	Annotation on 2014-06-23	Tags: Window, Wheels, Truck, Background,		Wew / Edit Download					

Rese

Computational Perception Laboratory

Online Video Segmentation and Annotation Download results

Video Segmentation Segment	a File Manage Annotations					
	imperial001@g	gmail.	com's Segr	nentatio	ons	
	New Segmentation	5	5			
	NAME	DATE	STATUS	SETTINGS	ACTION	
	demo_video.mp4	2014-06-23	Request has been processed.	Default	New Annotation	Download
	demo_video.mp4	2014-06-23	Request has been processed.	Default	New Annotation	Download
	VID_20140623_030316.mp4	2014-06-23	Request has been processed.	Default	New Annotation	Download
	Annotation on 2014-06-23	Tags: Fore	ground, Background,		View / Edit	Download
	Annotation on 2014-06-23	Tagi: Cou	ch, Picture, Wall, Floor,		View / Edit	Download
	baile.mp4	2014-06-23	Request has been processed.	Gaussian Settings	New Annotation	Download
	Annotation on 2014-06-23	Tags: Dan	cers, Background,		View / Edit	Download
	truck2.mov	2014-06-23	Request has been processed.	Gaussian Settings	New Annotation	Download
	truck2.mov	2014-06-23	Request has been processed.	Default	New Annotation	Download
	Annotation on 2014-06-23	Tags: Truc	k.		View / Edit	Download
	Annotation on 2014-06-23	dow, Wheels, Truck, Background,		View / Edit	Download	
3	truck2.mov	2014-06-23	Request has been processed.	Demo Settings	New Annotation	Download
C						

Computational Perception Laboratory

ideosegmentation.com/user/segmentation

Talk outline

- Applications of video segmentation
- Online video segmentation and annotation
- Open source video segmentation

The Video Segmentation Project

- Open source implementation of everything shown today
 - <u>https://github.com/videosegmentation/video_segment</u>
 - BSD license
- Generic segmentation interfaces
 - Over segmentation:
 - Define pixel distance
 - region descriptors,
 - merge thresholds
 - Hierarchical segmentation:
 - Define region descriptors
 - distances

The Video Segmentation Project

Main repository for the Video Segmentation Project. Online implementation with annotation system available at www.videosegmentation.com

To build you need the following build dependencies:

- Boost
- FFMPEG
- Google protobuffer
- Google logging
- Google gflags
- Intel TBB (to be removed)
- OpenCV

DenseSegmentation

Fully customizable features, distances and descriptors

// Create generic distance for space and time (here L1, color only). typedef SpatialCvMatDistance<ColorDiff3L1, ColorPixelDescriptor> SpatialCvMatDistance3L1; typedef TemporalCvMatDistance<ColorDiff3L1> TemporalCvMatDistance3L1;

// Bundle spatial and temporal distances.

struct DistanceColorL1 : DistanceTraits<SpatialCvMatDistance3L1,TemporalCvMatDistance3L1> { };

// API callback to create dense segmentation graph. virtual DenseSegGraphInterface* CreateDenseSegGraph(...) {

C++

RegionSegmentation

Fully customizable region descriptors and distances

DescriptorExtractorList* extractors; // Supplied by API DescriptorUpdaterList* updaters; // Supplied by API

shared_ptr<AppearanceExtractor> appearance_extractor(

new AppearanceExtractor(options_.luminance_bins, options_.color_bins,

features[0]); // Stores image.

extractors->push_back(appearance_extractor);

updaters->push_back(shared_ptr<NonMutableUpdater>(new NonMutableUpdater())); shared_ptr<FlowExtractor> flow_extractor(

new FlowExtractor(options_.flow_bins, features[1])); // Stores flow images extractors->push_back(flow_extractor);

updaters->push_back(shared_ptr<NonMutableUpdater>(new NonMutableUpdater()));

C++

