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Segmentation by Weighted Aggregation Set-Up

Define the problem on a graph: G ={V, £}
— Edges are sparse, to neighbors.
— Each pixel / voxel is a node.

Augment nodes, for v € V
— statistics: s,

— class label: ¢,

Define affinity betweenu,v € V

Wyy € €xp (—D(Sy, Sv;0))

— where [) is some non-negative
distance function and 6 are some
predetermined values.

Regions are defined by cuts.

[Sharon et al. CVPR 2001, NATURE 2006. Corso TMI 2008]



SWA Region Saliency

« Define a region saliency
measure.
F(R) — ZUGRaUGZRwu”

Zu,UGR Wy

« Low I'(R) means good
saliency:
— Low affinity on boundary.
— High affinity in interior.
 Criterion is based on the

normalized cut criterion (Shi &
Malik)

— Affinities at the pixel scale
only.

[Sharon et al. CVPR 2001, NATURE 2006. Corso TMI 2008]



Segmentation by Weighted Aggregation

Invented in natural image domain by Sharon et al. (CVPR 2000, 2001, Nature 2006).
Used in medical imaging Akselrod-Ballrin (CVPR 2006), Corso et al. (MICCAI 2006, TMI 2008)
Extended to videos Xu and Corso (CVPR 2012, ECCV 2012)

Results in a pyramid of recursively coarsened graphs that capture multiscale properties of the
data.

Affinities are calculated at each level of the graph.

[Sharon et al. CVPR 2001, NATURE 2006. Corso TMI 2008]



Segmentation by Weighted Aggregation

* Finest layer induced by pixel/voxel lattice
— 4/6-neighbor connectivity
— Node properties Sq, set according to multimodal image intensities.
— Affinities initialized by L1-distance: Wy, = €xp (—0|sy — Sy 1)
- Superscripts on graph denotes level ¢ — (Gt:t=0,...,T}
In a pyramid of graphs.

[Sharon et al. CVPR 2001, NATURE 2006. Corso TMI 2008]



Segmentation by Weighted Aggregation

« Select a representative set of nodes satisfying

Z’UERt Wyy = 6 ZUEVt Wy

— i.e., all nodes in finer level have strong affinity to nodes in coarser.
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[Sharon et al. CVPR 2001, NATURE 2006. Corso TMI 2008]




Segmentation by Weighted Aggregation

« Select a representative set of nodes satisfying

Z’UERt Wyy = 6 ZUEVt Wy

— i.e., all nodes in finer level have strong affinity to nodes in coarser.
- Begin to define the graph G! = {V1!, &1}
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[Sharon et al. CVPR 2001, NATURE 2006. Corso TMI 2008]




Segmentation by Weighted Aggregation

« Compute interpolation weights between coarse and fine levels

S WuU
p’LLU ZV€vt+1 Wy VvV

[Sharon et al. CVPR 2001, NATURE 2006. Corso TMI 2008]



Segmentation by Weighted Aggregation

« Compute interpolation weights between coarse and fine levels

- Wy U

PuU =

 Accumulate statistics at the coarse level

_ PuUSu
SU = Zuevt Zvevt PvU

[Sharon et al. CVPR 2001, NATURE 2006. Corso TMI 2008]



Segmentation by Weighted Aggregation

 Interpolate affinity from finer levels

Dy = ) PuUWuuPuv
(uv) eV

[Sharon et al. CVPR 2001, NATURE 2006. Corso TMI 2008]



Segmentation by Weighted Aggregation

 Interpolate affinity from finer levels.

Dy = ) PuUWuuPuv
(u7v)eV?
» Use coarse affinity to modulate the interpolated affinity.

Wuyy = wyy exp (—D(su, sv; 0))

[Sharon et al. CVPR 2001, NATURE 2006. Corso TMI 2008]



Segmentation by Weighted Aggregation

* Repeat ...

[Sharon et al. CVPR 2001, NATURE 2006. Corso TMI 2008]



Bayesian Affinities

 Standard affinity calculation is based on simple features,
such as the L1-distance of intensities as in the example.

» Affinity can be extended using metric learning

— LMNN [Weinberger et al. NIPS05], ITML [Davis et al. ICMLO7],
RFD [Xiong et al. KDD12]

« Or Bayesian view of affinity [Corso, Yuille TMI 2008]
— Introduce a binary grouping random variable X, .

P uv‘suwsv ZZP UU|SU7Sv7muamU)P(mU7mv‘SU7S?)) ’
'U/

X ZZP uv|8u7Svamuamv)P(Su7SU|mU7mU)P(mU7mU) Y
’LL

:ZZP X |$us Sy M M) P(8[1120) P50 110) P (120, )

— /

Model Specific Measurement Class Prior




Example on Synthetic Grayscale Image




SWA Video Examples




SWA Video Examples




SWA Video Examples




Example of the Segmentation Pyramid
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Streaming Hierarchical
Video Segmentation

A Framework and Implementation



Streaming Hierarchical Video Segmentation

An approximation framework for Streaming Hierarchical
Video Segmentation.

We'll discuss the minimum spanning forest method within
the framework: StreamGBH.

Incorporates ideas from the data streams literature to allow
— a constant (and small) memory requirement,
— a method to handle arbitrarily long (or streaming) video,

— a balance between subsequence length and overall
performance.

[Xu, Xiong and Corso, ECCV 2012]



Why Streaming?

» Practical use of video segmentation presents two problems
— Memory—Videos are an order of magnitude larger than images.

— Duration—how much of the video to process at once.
* Indeed some videos are endless.

Full Video
[Paris and Durand CVPR 2007]
[Grundmann et al. CVPR 2010]
[Lezama et al. CVPR 2011]



Why Streaming?

« Works have resorted to a frame-by-frame segmentation
followed by a correspondence.

— Temporal coherence is problematic.
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past current future
Frame-by-Frame Full Video
[Brendel and Todorovic ICCV 2009] [Paris and Durand CVPR 2007]
[Lee et al. CVPR 2011] [Grundmann et al. CVPR 2010]

[Lezama et al. CVPR 2011]



Why Streaming?

« Streaming is needed.

— Can we bound memory needs and handle arbitrarily long
videos without sacrificing quality of segmentation?
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past current future past current future
Frame-by-Frame Streaming Full Video
[Brendel and Todorovic ICCV 2009] [Paris ECCV 2008] [Paris and Durand CVPR 2007]
[Lee et al. CVPR 2011] [Grundmann et al. CVPR 2010] [Grundmann et al. CVPR 2010]

(Clip-based) [Lezama et al. CVPR 2011]



Streaming Hierarchical Video Segmentation

e Basic pr0b|em statement: Segmentation Video Input
« Segmentation hierarchy S*= argéﬂiﬂ E(S|V)

S={st,5% ..., 58"
S* ={s1,82,... } such that s; CT', U;s; =T, and s, N's; = & for pairs i, j
» Consider a stream pointer t that indexes into the video; the
streaming method may not alter any prior result ¢ <t .

— Analogous to treating the video as a set of sequential
subsequences. V = {V;, V5,--- ., V,,,}
— Framework generalizes a spectrum of methods.

Process a streaming video as a set of hon-overlapping subsequences

| = 1 Each subsequenceis some. k frames. F Temporal

~ 4 = -

Stream _Video
Vi Vs V3




Streaming Hierarchical Video Segmentation

« Can apply to various hierarchical methods, such as the minimum
spanning tree method of Felzenszwalb et al. [JCV 2004.

ES'V)=7Y > w(e)+ min w(e)
s€St eeMST(s) s,teSt

In_ Memory

Build a voxel lattice
oh one subsequence

Stream _Video Voxel _Lattice _V;

[Xu, Xiong and Corso, ECCV 2012]



Streaming Hierarchical Video Segmentation

« Similarity between regions in the hierarchy is reevaluated with
multiscale features.

« Hierarchical grouping strategies must maintain segmentations that
were computed for prior subsequence.

In_ Memory

Hierarchical

segmentation on Seg_s
. =1

the first subsequence 1

2 ; ! Temporal ! Temporal

[Xu, Xiong and Corso, ECCV 2012]
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Streaming Hierarchical Video Segmentation

« Streaming Markovianity assumption.

S = {Sl, s ,Sm} — argmin E1(51|V1) -+ ZEl(Si’%,S'_l, ‘/z'—l)
S1,52,+ ,Sm o

Temporal Markov s In_ Memory
Assumption:

later subsequence only
depends on one
previous subsequence

Build a voxel lattice
oh two subsequences

! Temporal

[Xu, Xiong and Corso, ECCV 2012]

L = d

Stream _Video




Streaming Hierarchical Video Segmentation

Si = argsminEl(Sz-Wi, Si—1,Viz1) :{ af%gliDEQ(SiQ\‘/},Sga S; 1,87 1, Vi),

argmin E%(SP|V;, St~ it sh ‘/;—1)}
St

In_ Memory N
Hierarchical Markov
Assumption (again)

& Semi-Supervised
Grouping

‘ ! I Temporal

[Xu, Xiong and Corso, ECCV 2012]

L ~—

Stream _Video




Streaming Hierarchical Video Segmentation

« Estimating a single sub-sequence/level segmentation can be
considered a semi-supervised problem.

- Additional merging criteria at upper levels to avoid changing
previously computed hierarchy before current stream point.

Temporal Markov In_ Memory ‘
Assumption: / Hierarchical Markov

later subsequence only Assumption (again)
depends on one & Semi-Supervised

previous subsequence Grouping

! Temporal

[Xu, Xiong and Corso, ECCV 2012]
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Stream_Video Voxel _Lattice _V; Voxel _Lattice_V,



Additional Merging Criteria
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1. If s, and s; both are unsupervised segments, as in (b), then s, and s,
can be merged.

2. If s, is an unsupervised segment and s; contains some supervised seg-
ments, as in (c), then s, and s; also can be merged, vice versa.

3. If s, and s; both contain some supervised segments, as in (d), if they have
the same parent, then they are merged, otherwise they are not merged.



Streaming Hierarchical Video Segmentation

* Finish the hierarchical segmentation at the current stream
pointer time.

In_ Memory

!|I Temporal

[Xu, Xiong and Corso, ECCV 2012]

L

Stream_Video | Voxel _Lattice _V} Voxel _Lattice_V,



Streaming Hierarchical Video Segmentation

* Once finished with two subsequences, move the stream pointer
forward.

« Offload the earlier subsequence from memory and load the next.

Slide the stream point In_ Memory
further in time and again ;
use both Markov
assumptions.

Temporal X Tempq?al

L

Stream_Video Voxel _Lattice _V; Voxel _Lattice _V,

[Xu, Xiong and Corso, ECCV 2012]



Streaming Hierarchical Video Segmentation

« Segment again...

- In_ Memory T
/ O @O O \

\
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Stream_Video Voxel _Lattice _V; \Voxgl _Lattice V, Voxel _Lattice_V, _~

[Xu, Xiong and Corso, ECCV 2012]



StreamGBH Example Results

Graph-based 'StreamingiHierarchicalVideo Segmentation
» 2 3 3

) Vs

12th layer (medium segments}

VA

[Xu, Xiong and Corso, ECCV 2012]




StreamGBH Quantitative Comparisons

 Does StreamGBH balance between frame-to-frame methods
and full-video methods?

0.9

Full Video, Segmentation
“Upper Bound”

0.8

StreamGBH

Frame-by-
“Lower Bound”

3D Boundary Recall

—a— GBH )

—d— StreamGBH k=10

—b— StreamGBH k=1

—e— GB

—0— StreamGB k=10
StreamGB k=1
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Number Of SUpGI’VOXG|S [Xu, Xiong and Corso, ECCV 2012]




How does StreamGBH compare to existing streaming video
segmentation methods.

— ClipGB is our implementation of Grundmann et al. CVPR 2010.
— MeanShift is Paris et al. ECCV 2008 implementation.
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StreamGBH Example Results

Graphibased{StreaminglHierarchical VideolSegmentation
1 gona &
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5th layeri(small segments) ¢ 10th layer (medium segments)
- = - e Y = e

[Xu, Xiong and Corso, ECCV 2012]



StreamGBH Example Result: Shot-Detection

[Xu, Xiong and Corso, ECCV 2012]



Summary of StreamGBH

The first method for streaming hierarchical video
segmentation.

— Memory need is independent of video length.
— Can handle streaming / arbitrarily long video.
— A general approximation framework for other methods.

StreamGBH smoothly varies between frame-based
segmentation and whole-video segmentation, based on k.

StreamGBH performance approaches whole-video
segmentation as k increases, and degrades gracefully as k
decreases.




Supervoxel Hierarchical Flattening
with the Uniform Entropy Slice



Why Flatten the Hierarchy?
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» Over-segmentation on a budget...

« Asingle layer slice may give too much detail near the
semantics you care about and too little detail in other places.

« Combining regions from different levels, can overcome this.

Need supervised guidance on the unsupervised hierarchy!




Uniform Entropy Slice on Motion

* The entropy of the motion at each supervoxel hints at where
the high information segments are.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7
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« Seek a flat segmentation that balances the amount of motion
entropy across the selects segments.

— Segments with less motion (low entropy) choose high level.
— Segments with more motion (high entropy) choose low level.
F* = argmin E(s;) — E(s;
min Y [E(si) - B(s))

Si,8; eF
[Xu, Whitt and Corso ICCV2013]



Segmentation Tree Slice

An Example Segmentation Tree

=1 7 )
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Possible Segmentation Tree Slices

D

[Xu, Whitt and Corso ICCV2013]



Uniform Motion Entropy as a Segmentation Tree Slice

« We can formulate the uniform motion entropy as a
segmentation tree slice via the following binary QP.

minimize E OéZ'CCZ'—I—O'E 51',]'5172'56]'
g 1]

subject to
x = {0, 1}

Segmentation Tree Slice Constraint
« Linear term pushes the cut up the hierarchy.

ai:\Sl\ ifSiESl

« Quadratic term balances entropy across neighbors.
Bij = |E(si) — E(s;)||R(s:)|[R(s;)

[Xu, Whitt and Corso ICCV2013]



Segmentation Tree Slice as a Linear Constraint

A Segmentation Tree Corresponding Path Matrix P

SO Sl SQ S3 54 S5

[Xu, Whitt and Corso ICCV2013]



Visual Comparisons

Uniforrn Motion Exif0my: Visualizaon

[Xu, Whitt and Corso ICCV2013]



Visual Comparisons




Quantitative Comparisons

« LIBSVX benchmark: 3D ACCU, 3D UE, 3D BR. We add 3D BP.

« Data set: SegTrack has six videos, an average of 41 frames-per-
video (fpv), a minimum of 21 fpv and a maximum of 71 fpv.

Video 3D ACCU 3D UE 3D BR 3D BP
GBH SAS GBH SAS UME GBH SAS GBH SAS
birdfall2| 0.0 0.0 46.1 44.9 42.4 78.8 81.3 0.67 0.73
cheetah| 43.2 41.5 11317 19.0 18.6 84.5 84.1 1.10 1.09
girl| 60.5 59.7 10.2 10.2 10.8 89.3 89.2 3.43 3.43
monkeydog| 81.5 81.3 14.2 14.0 1l | 93.6 94.1 1.36 15
parachute| 85.4 85.4 211 19.7 211 94.9 94.9 1.06 1.05
penguin| 71.1 71.0 1.7/ 1.6 2.0 78.8 79.0 0.95 0.95

AVERAGE| 57.0 56.5 18.7 18.2 18.3 86.7 87.1 1.43 1.44
Table 1. Quantitative comparison of GBH, SAS and UME on all 6 videos in SegTrack [ 1©].




Generalizing the Feature Criterion

« The post-hoc guidance function is arbitrary.
* Have shown: unsupervised motion
« Can apply:
— Supervised, Class-Specific
 Human-ness
« Car-ness

— Supervised, Class-Agnostic
* Object-ness

[Xu, Whitt and Corso ICCV2013]



Generalizing the Feature Criterion

Input Video

[Xu, Whitt and Corso ICCV2013]



Summary and Thanks!

Segmentation hierarchies generate rich decompositions of
the image/video/what-have-you content.

But in many situations the hierarchy is too much data.

Propose a physically plausible model based on balancing
feature entropy to drive the selection of segments at
different levels through the hierarchy.

Formulate the model as a binary QP with a segmentation
tree-cut constraint via a simple path matrix.

Code available in LIBSVX 3.0
— http://www.supervoxel.com/



COFFEE BREAK!




