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ABSTRACT
Documents containing video and text are becoming more
and more widespread and yet content analysis of those doc-
uments depends primarily on the text. Although automated
discovery of semantically related words from text improves
free text query understanding, translating videos into text
summaries facilitates better video search particularly in the
absence of accompanying text. In this paper, we propose
a multimedia topic modeling framework suitable for pro-
viding a basis for automatically discovering and translating
semantically related words obtained from textual metadata
of multimedia documents to semantically related videos or
frames from videos. The framework jointly models video and
text and is flexible enough to handle different types of docu-
ment features in their constituent domains such as discrete
and real valued features from videos representing actions,
objects, colors and scenes as well as discrete features from
text. Our proposed models show much better fit to the mul-
timedia data in terms of held-out data log likelihoods. For a
given query video, our models translate low level vision fea-
tures into bag of keyword summaries which can be further
translated using simple natural language generation tech-
niques into human readable paragraphs. We quantitatively
compare the results of video to bag of words translation
against a state-of-the-art baseline object recognition model
from computer vision. We show that text translations from
multimodal topic models vastly outperform the baseline on
a multimedia dataset downloaded from the Internet.
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1. INTRODUCTION
In recent years there has been an abundance of multimedia

data in the form of video contents from television networks,
video uploads to websites and so on. However, organizing
such data by integrating the semantic content of the videos
is a very difficult problem. On the other hand, summarizing
videos directly into text summaries can lead to significant
improvements in many end-user applications—multimedia
search experience, content based advertisements [33], help-
ing the visually impaired and so on. In this paper we concern
ourselves with two language agnostic tasks: i) Building a
topic modeling framework to model multimedia documents
consisting of videos and textual metadata and ii) use the
topic modeling framework to predict bag-of-word summaries
for a new video belonging to a previously known category.
The first task helps us discover semantically related con-
cepts in the text through latent topics and translating them
to topically related videos or frames. The second task takes
a video and generates intermediate text keywords ideal for
natural language generation.

    
Human summary   Footage of people skateboarding and doing tricks - skateboarder falls and hits head 

    
Human summary  One guy is making a wooden table indoors 

Figure 1: An example of the task of video summarization

As a further addition we also experiment with efficient
natural language sentence generation from the predicted bag
of words (henceforth BoW) using language models and con-
fidence of syntactic parse tree generation following a simple
template. The first two tasks, though, are the focus of this
paper. Fig. 1 shows some keyframes of two sample videos
from our training dataset and the short summaries written
by human annotators. This dataset is discussed in Section
1.1. In our paper, translation from video to text is synony-
mous to summarizing a video with a set of textual keywords.

It seems intuitive that a topic model which incorporates
low level vision features representing objects, actions, color
and scenes and correspond those to the text summaries should
have a better chance of describing the multimedia data.
We thus seek representations of visual data that mimic the
subject-verb-object-scene quadruplet structure of English sen-
tences in terms of subject, object and scene nouns as well
as verbs. Additionally illumination gives rise to color which
differentiates one object from another and is often expressed
as adjectives. Objects, actions and color can be visualized



using specific word concepts and can be counted over time
thus lending themselves to quantization but scene represents
global energy distributions which pervade the arrangement
of objects and is thus better represented as real values.

In the context of this paper, our training data consists
of videos and associated summaries. The training data is
also available with event category labels for e.g. “boarding
event” and topic modeling video documents in each event
can allow us to discover “sub-topics” e.g. “skateboarding”,
“snowboarding” and “surfing”. Of course, our topic mod-
els do not include any event label bias and can be applied
on the overall dataset as well. However we will see shortly
that doing so can be very unappealing to end users when
summaries need to be generated.

Apart from the topical analysis of video documents, the
problem of generating summaries directly from videos also
has significant end user appeal. We emphasize that the video
summarization/translation task in this paper is to describe
an entire video firstly as a bag of salient keywords i.e. BoW,
and then, as a further addition, use simple Natural Language
Generation (henceforth NLG) techniques to summarize the
bag of words into a human readable paragraph of text wher-
ever possible. Translating and generating summaries from a
video can always be looked upon as finding the right infor-
mation need which is paramount to any search problem.

Video summarization in our context is different from im-
age annotation mentioned in early literature [27] and in more
modern ones [18]. If we perfectly annotate all objects and
actions in each frame correctly, we can probably use a stan-
dard topic modeling technique [5] to figure out the themes in
the multimedia documents. However, detecting objects [15]
and scenes [22] in images and actions [11] and keyframes
[14] in videos in a reliable manner are open problems in the
computer vision community [18]. Most of these detection
techniques fall in the domain of supervised learning and re-
quire large amounts of annotated data. Video annotation
task is a particularly laborious process even though tools
like VATIC [29] have been written to ease the effort (for an
interactive demo of the tool, see VATIC’s website1). Also
firing thousands of detectors to accurately label even a single
keyframe of an unknown video leads to many false positives.
This is particularly true of the videos in-the-wild i.e. videos
downloaded from the Internet where there are plenty of res-
olution problems, severe motion blurs, camera shakes etc.
These are the videos that we experiment with in this paper.

We view the video to text translation/summarization prob-
lem in the light of multidocument summarization of plain
text documents which has been popularized by the Text
Analysis Conference2 (TAC). In the multidocument summa-
rization track of TAC, participants are given document sets
(docsets) of newswire articles typically belonging to 5 major
event types like “Health and Safety,”“Accidents and Natu-
ral Disasters” etc. and are asked to generate a fixed length
fluent summary of the documents in each docset. A docset
in the TAC setting is unique in that it contains a set of doc-
uments that are relevant for a particular information need
like “Cyclone Katrina.” The system summaries are scored in
several ways including the most reliable manual way using
PYRAMID [21] evaluation but systems usually are tuned
w.r.t. the automatic ROUGE [16] scoring. By analogy, we

1
http://mit.edu/vondrick/vatic/

2
http://www.nist.gov/tac/2011/Summarization/

assume that each docset here corresponds to a video and
contains a sequence of frames and a set of keyframes. At
test time we are given unknown event specific videos with-
out any text summary. For measuring system performance,
we generate summaries of videos and evaluate them using
the recall oriented ROUGE-1 score to measure the percent
overlap of the words in the short ground truth summaries.

 
Human Summary: Montage of clips from an outdoor wedding 
Predicted bag of words summary: birthday wed indoor outdoors mob dance flash cake parade ceremony fish 

Figure 2: An example of vocabulary intrusion in the task of video
summarization. Best viewed with magnification

A key concern in generating a BoW summary of a video is
the vocabulary intrusion problem. Fig. 2 shows an example
of vocabulary intrusion in the task of video summarization
that arises out of topic modeling on the entire vocabulary
of the corpus. If we consider a vocabulary of V words—the
probability of getting the top L words correctly in the sum-
mary is (1/V )(1/(V − 1))...(1/(V − L + 1)). If V is large
(such as 2000) then the probability is very low. Further, if
the entire vocabulary is used, then intrusive words describ-
ing other but related event categories like “birthday, flash
mob, dance, parade, fish” can appear with high probability
(see a possible predicted BoW summary in Fig. 2 from a
topic model(Fig. 3b) trained over all events with number
of topics set to 200). This problem is mitigated by first
classifying the test video into its corresponding event cate-
gory (Section 4.4) and then using a topic model to predict
the BoW summary. In the absence of the event labels, this
direction improves readability and is much faster.

The novelty in our new approach to topic model-
ing video documents with textual metadata is the use of
the right features for the videos and augmenting basic topic
models for joint modeling with those features along with
text. We represent each video in terms of objects, actions,
color (represented with discrete distributions) and scenes
(represented with Normal distributions with unknown means
and variances) and try to find a translation space that trans-
lates the pattern of these features to a permutation in lan-
guage vocabulary. Such a representation of a video is both
intuitive and logical. We observe that the interplay of the
full spectrum of representations (Section 4) indeed yield the
highest likelihoods to held out test data than those using
partial representations (Section 4.1).

1.1 Dataset Description
The dataset that we use for the video summarization task

is released as part of NIST’s 2011 TRECVID Multimedia
Event Detection (MED) evaluation set3. The dataset con-
sists of a collection of Internet multimedia content posted to
the various Internet video hosting sites. The training set is
organized into 15 event categories, some of which are:
1) Attempting a board trick 2)Feeding an animal 3)Landing a fish

4)Wedding ceremony 5) Working on a woodworking project etc.

We use the videos and their textual metadata in all the 15
events as training data. There are 2062 clips with summaries
in the training set with almost equal distribution amongst
the events. The test set which we use is called the Transpar-
ent Development (Dev-T) collection. The Dev-T collection
includes positive instances of the first 5 training events and
near positive instances for the last 10 events—a total of 630

3
http://www.nist.gov/itl/iad/mig/med11.cfm



videos labeled with event category information (and associ-
ated human synopses which are to be compared against for
summarization performance). Each summary is a short and
very high level description of the entire video and ranges
from 2 to 40 words but on average 10 words (with stop-
words). We remove standard English stopwords and retain
only the word morphologies (not required) from the synopses
as our training vocabularies. The proportion of videos be-
longing to events 6 through 15 in the Dev-T set is much low
compared to the proportion for the other events since those
clips are considered to be “related” instances which cover
only part of the event category specifications. The perfor-
mances of our topic models are evaluated on those kinds of
clips as well. The numbers of videos in events 6 through
15 in the Dev-T set are {4,9,5,7,8,3,3,3,10,8} while there are
around 120 videos per event for the first 5 events. All other
videos in the Dev-T set neither have any event category la-
bel nor are identified as positive, negative or related videos
and we do not consider these videos in our experiments.

1.2 Evaluation Measures
We measure the predictive performance of the topic mod-

els using the Evidence Lower BOunds (ELBO) on held-out
test set—the Dev-T collection with summaries, as well as
the predictive ELBO for BoW summary generation on the
held-out Dev-T collection without summaries (Section 4.1).
ELBO is just log likelihood and is directly related to mea-
suring average perplexity of the model per observed textual
word [5, 4]. We also evaluate our BoW summaries using
the ROUGE scorer. ROUGE measures the n-gram overlap
for system generated summaries to the ones written by an-
notators and the scores are interpreted in terms of recall.
Usually 4 gold standard summaries are needed for evalua-
tion but here we use the base case of using only one short
summary as a reference summary per video on this dataset.
While summarizing, since our primary task is to evaluate
only the BoW summaries generated from a video, we use
the ROUGE-1 unigram measure. We evaluate 5 and 10 key-
words long BoW summaries respecting the average length
of the short human summaries. Since we are considering
videos in the Dev-T set with event category information,
we can use the ROUGE evaluation setup of multidocument
summarization as used in TAC. If the categories are not
known, we can multiply the ROUGE scores with the event
classification accuracies to obtain lower bounds (see Section
4.4 for lower bounds on classification accuracies). Evalua-
tions with higher order n-grams are not needed for unigram
translations. We do not use manual evaluations since the
data cannot be released for public verifications.

The task of discovering topically related words is mostly
evaluated w.r.t ELBO. We use the topic models from [4]
as baselines. We modify the GM-LDA model in [4] fol-
lowing [26] to use discrete visual data and name the model
MMLDA—“MM”stands for the multinomials for text as well
as the multinomials for the visual words. We implement a
deterministic optimization framework for MMLDA instead
of the non-deterministic sampling as in [26]. The Corr-LDA
model in [4] is also extended by using Normal-Wishart pri-
ors and named Corr-MGLDA (M for Multinomials and G
for Gaussians). For evaluating video to text summarization
based on ROUGE-1 scores, we use a non-topic model based
automatic image annotation tool as the baseline for video la-
beling by using labels aggregated from keyframes. Our topic
model based video summarization methods outperform the

state-of-the-art image to text translation model [15] applied
on video keyframes in terms of ROUGE-1 scores of the pre-
dicted keyword summaries.

2. RELATED WORK
Makadia et al. [18] uses nearest neighbor and label trans-

fer techniques to annotate images suitable for the image re-
trieval task. However, we can not directly apply their meth-
ods as the individual frames/keyframes of the videos in our
dataset are not annotated. Based on the size and genre of
our dataset, such annotations prove very expensive and we
do not follow that direction. Further, we are interested in
the task of direct natural language summarization of the en-
tire video and not specific annotation of a vast majority of
possible objects, actions and scenes in every frame/keyframe
of the video. The closest work to our task is by Yang et al.
[34] where low level object and scene classifiers are used to
obtain object and scene labels in an image. These are then
combined using background language models and Hidden
Markov Models to predict a natural language sentence that
automatically includes the best possible verb i.e. action. We
will observe in Section 4.4 that actions, which are intrinsic
to videos, are important event discriminators. Further, none
of above mentioned methods can discover related concepts
as latent topics and translate them into related frames.

In the domain of topic modeling of images with captions,
the Corr-LDA model has recently been extended to handle
a multinomial feature space in [25] with different number
of topics for visual word type and textual word type. The
model learns an association from the topic proportions over
image domain to those over text domain through a regression
formulation. However, during prediction, this dependency
needs to be marginalized out anyways. Also, if we quantize
every type of real valued vision feature using some clustering
algorithm such as K-means into C clusters, then each C
represents a parameter of the final model and performance
analysis become that much more difficult. Ahmed et al. [1]
uses Gaussian feature vectors and mention Normal-Wishart
priors but do not use them—they use uniform priors in a
non-deterministic sampling framework instead.

On the other hand the Continuous Relevance Model (CRM)
[13] and Multiple Bernoulli Relevance Model (MBRM) [8]
assume different, nonparametric density representations of
the joint word-image space. CRM gets rid of the latent fac-
tor representation and achieves non-parameterization. The
dataset used in [8] for MBRM has hierarchical word anno-
tations which are handled using multiple Bernoulli models
rather than multinomial distributions. In our dataset, multi-
nomial distributions are sufficient since the summaries read
like very short documents with repeated word morphologies.

Detecting objects can often be seen as an important step
towards identifying the main topic of a video and generating
a BoW summary. To that end, Torresani et al. [28] trans-
form an image feature vector into a another lower dimen-
sional feature vector whose values are the outputs of several
category classifiers (which are named “classemes” in their
paper). We take a similar approach to convert Object Bank
[15] (OB) feature vectors to high level sparse histogram of
object detectors to be used in our discrete video data rep-
resentation and as baseline for video to text translation. To
extract OB features, keyframes are identified to reduce com-
putational time. Keyframe detection is a research topic in
its own right, where some recent ones include more involved



techniques [14] using Transfer Learning from accompanying
text transcripts. However, the keyframes extracted using
the change in color histogram [35] satisfy our purposes.

In the domain of topic modeling of videos, the Hidden
Topic Markov Model in [32] does not incorporate both text
and visual words in a single framework and also does not
use a fuller representation of videos as we do. A Markovian
assumption is also imposed in [10] for modeling actions and
identifying behaviors (with no automatic labeling), however,
we can safely ignore frame dependence because our action
features are derived using temporal windows and activity
tracking is not an objective in this paper. The reformula-
tions of LDA and CTM using class labels and without any
temporal dynamics in [30] also target activity classification.
To the best of our knowledge this is the first work to use
mixed membership topic models for video to text summa-
rization which can eliminate frame-wise object annotations.

The proposed models are discussed in the following sec-
tion in as much depth as possible. The use of asymmetric
Dirichlet priors over the topic proportions helps us achieve
better sparsity in topics. However, this also leads to sin-
gularities in precision matrices conditioned on topics when
Normal-Wishart priors for real valued data are not used.

3. THE PROPOSED MODELS
In this section we describe our proposed topic models

for multimedia documents. We call the model in Fig. 3d
MMGLDA, short for Multinomial-Multinomial-Gaussian LDA,
and the model in Fig. 3e to Corr-MMGLDA, short for cor-
respondence MMGLDA. In our context, the correspondence
LDA model [4] places a probabilistic constraint on the cor-
respondence of summary words to Gaussian observations—a
word is likely to be generated by the topic which is agreed
upon by most of the Gaussian instances in the video docu-
ment. Since the real valued GIST features (see Section 4)
“summarize” a scene in an image, we want a stronger influ-
ence of the topic of the scene on the summary text. This
assumption is relaxed in MMGLDA. Of course the corre-
spondence could have been established between the discrete
observations only or both discrete and real valued ones but
conditioned on the current dataset, we want more flexibil-
ity in topics for sampling discrete observations. We avoid
overly complicated topic models and instead go for better
data representations and supporting models with just the
right amount of complexity.

In MMGLDA, for a multimedia document d, it is possi-
ble to have different topics competing for each occurrence
of wm. In Corr-MMGLDA, the number of such modes is
constrained to be much fewer. The asymmetric α can yield
few additional modes which group co-occurring data domi-
nant in densities or masses in separate latent topics. This
phenomenon is observed for a larger number of latent topics.

Table 1 explains the symbols used in the two proposed
topic models. Everywhere in this paper, we assume that K
is the number of topics. The generative processes for the
proposed models are illustrated below:

For each video document d ∈ 1, ...,D
Choose a topic proportion θ|α ∼ Dir(α)
For each position h in d

Choose topic indicator zh|θ ∼Mult(θ)
Choose a discrete video “word” wh|zh = k,ρ ∼Mult(ρzh

)
For each real valued observation o in d

Choose topic indicator zo|θ ∼ N (μ,Λ−1)
Choose a real valued wo|zo = k,μ,Λ−1 ∼ N (μzo

,Λ−1
zo )

Symbol Meaning (r.v. = random variable)
D total number of multimedia “documents”

M total number of discrete text features per multime-
dia document d ∈ {1, ...,D}

H total number of discrete visual features in a multi-
media document d ∈ {1, ...,D}

O total number of real valued visual features per mul-
timedia document d ∈ {1, ...,D}

α =
{α1, ..., αK}

r.v. for asymmetric Dirichlet prior for the document
level topic proportions

θd r.v. for document level latent topic proportions

ρ corpus level topic multinomials over discrete video
features

β corpus level topic multinomials for textual words

μ means of topic Gaussians for the real valued features
from videos

Λ =
(Σ−1)

precision (inverse covariance) matrices of topic
Gaussians for the real valued features from videos

ym in Figs.
3b, and 3d

indicator variable for a sample from θd for discrete
text features

ym in Figs.
3c and 3e

indicator variable for document level real valued da-
tum correspondences

zh indicator variable for a sample from θd for discrete
visual features

zo indicator variable for a sample from θd for real val-
ued visual features

wm r.v. for textual word at position m in document d;
vocabulary size of V

wh r.v. for vision oriented discrete feature at position
h in document d; vocabulary size corrVH

wo r.v. for the oth Gaussian feature vector with a di-
mensionality of P in document d

Table 1: Meanings of the variables used in the models

For each position m in video d
Choose ym ∼ Uniform(1, ...,O) (for Fig. 3e)
or Choose ym|θ ∼Mult(θ) (for Fig. 3d)
Choose a word wm ∼ p(wm|zym ,β) (for Fig. 3e)
or Choose a word wm ∼ p(wm|ym,β) (for Fig. 3d)

In all further notations, wM is the ensemble of observed
random variables that represent summary words in the dth

multimedia document. Similar notations hold for wO, wH

and the indicators y and z. In this paper, the text vocabu-
laries are event specific and of size 312 words on average.

Fig. 3a shows the Object Bank [15] (OB) baseline that
we initially used to translate videos to text. The boxes la-
beled OB1, ..., OBN are the individual object detectors in
Object Bank. The positive responses of the detectors lead
towards identifying the label of the objects in the keyframes
and hence translating the entire video. We choose this base-
line to verify the difficult nature of our dataset—there is a
10% overlap between OB’s vocabulary and the test set vo-
cabulary, and we should expect to see at least 2-5% recall in
ROUGE-1 recall scores for most events based on a 40-50%
ROUGE-1 recall achieved by the best 100-word multidocu-
ment text summarization systems in TAC competitions.

3.1 Inference on Latent Variables
We use the Variational Bayesian Expectation Maximiza-

tion (VB-EM) [2, 31] algorithmic framework as the opti-
mization framework. An advantage of VB-EM is that it is
deterministic.

The derivations for the MMG class of topic models be-
come sufficiently complicated due to the need for using priors
over the parameters governing the real valued observations.
Since the nature of the modes for topic proportions is not



(a) Object Bank object
detection model [15]
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Figure 3: Graphical model representations of existing topic models and proposed extensions— Figs. 3d and 3e. In this paper, we extend
the model in Fig. 3c i.e. the Corr-LDA model in [4] with Normal-Wishart priors over parameters for real valued observations as well.

known in advance, singularities arising out ill-conditioned
topic covariance matrices must be handled. This problem
is mitigated in a principled way by introducing independent
Normal-Wishart priors governing the mean vectors and pre-
cision matrices of the Gaussians conditioned on the topics.
Since both μ andΛ are unknown we cannot factorize p(μ,Λ)
directly because the variance of the distribution over μ is
a function of Λ. Instead we use combinations of Normal-
Wishart priors on each Gaussian component as:

p(μ,Λ) =
K∏

k=1

N (μk |m0, (κ0Λk)
−1)W(Λk|W0, ν0) (1)

where Σ−1
k = Λk is the precision matrix for the kth fac-

tor or topic. This is similar to the mixture model used in
[19]. To preserve the dependence between the means and
covariances, a partially factorized tractable q distribution
with “free” variational parameters γ, φ, φ(O),φ(H) (for ev-
ery multimedia document d ∈ D) is imposed by

q(θ,y, zO , zH |γ,φ,φ(O)φ(H)) =

⎡
⎣ D∏
d=1

q(θd|γd)

⎡
⎣ Md∏
m=1

q(yd,m

|φd,m)

Od∏
o=1

q(zd,o|φ(O)
d,o )

Hd∏
h=1

q(zd,h|φ(H)
d,h )

⎤
⎦
⎤
⎦ K∏

i=1

q(μi,Λi) (2)

with θd ∼ Dirichlet(γd), zd,o ∼ Mult(φ
(O)
d,o ) and zd,h ∼

Mult(φ
(H)
d,h ). The maximum likelihood (ML) estimates of

free parameters are found by optimizing the lower bound on
log p(wM ,wH ,wO|α,β,ρ,μ,Λ).

The hyperparameters for α in the asymmetric Dirichlet
case (the concentration parameter and the base measure)
and κ0, ν0, m0 and W0 are not shown in Figs. 3c, 3d and
3e and in equ. 2 above. Also φ are the free parameters
of the variational summary word multinomials over Gaus-
sian observations in the correspondence multimodal mod-
els or summary word multinomials over topics in the plain
multimodal models; φ(O) are the free parameters of the vari-
ational Gaussian observation multinomials over topics and
similarly for φ(H) for discrete visual features.

The variational posterior distribution q(μk,Λk) does not
factorize into the product of the marginals, but we can al-
ways write it as q(μk,Λk) = q(μk|Λk)q(Λk). Then we
use the result from mean field theory[24, 31] that says that
the log of the optimal solution for factor qj is obtained by
considering the log of the joint distribution over all hid-
den and observed variables and then taking the expecta-
tion with respect to all of the other factors {qi} for i �= j
i.e. for visible and hidden variable ensembles V and H ,
log q∗j (Hj) = Ei�=j [log p(V,H)] + const. This results in a
Normal-Wishart distribution and is given by:

q(μk,Λk) = N (μk|mk, (κkΛk)
−1)W(Λk|Wk, νk) (3)

where Σ−1
k = Λk is the precision matrix for the kth factor

or topic. The expression in Equ. 3 is obtained by first
writing out the expression for log q∗(.) and selecting those
terms that involve μk and Λk. This yields:

log q∗(μ,Λ) =
K∑
i=1

log p(μi,Λi)+ (4)

D∑
d=1

Od∑
o=1

K∑
i=1

φ
(O)
d,o,i logN (wd,o|μi,Λ

−1
i ) + const

Note that the variance of the distribution over μk is a
function of Λk. The random variables mk and Wk can be
thought of as surrogates to m0 and W0 and that κk and νk
surrogates to κ0 and ν0 but conditioned on latent topic k.
The expressions for these variables, which are also used in
the M-Step updates, can be found in Equs. 23, 24, 22 and 25.
These expressions are obtained by matching the moments of
μk and Λk to the Normal and Wishart distribution expres-
sions. The optimal solution for q∗(μk,Λk) depends on the
moments evaluated with respect to the distributions of other
variables, and so the variational update equations are cou-
pled and must be solved iteratively. Following [5, 4], let us
now write down the objective functional, L(.), to be max-
imized which acts as the lower bound to the true data log
likelihood. We have for the MMGLDA model,

LMMG = Eq[log p(θ|α)] +Eq[log p(yM |θ)]
+ Eq[log p(wM |yM , β)] + Eq[log p(zO|θ)]
+ Eq[log p(wO|zO,μ,Λ)] + Eq[log p(μ,Λ|m0,W0, κ0, ν0)]

+ Eq[log p(zH |θ)] + Eq[log p(wH |zH ,ρ)]−Eq [log q(θ,yM ,

zO, zH ,μ,Λ|γ,φ,φ(O),φ(H),m,W,κ,ν)] (5)

We only highlight the derivations for the expressions:

Eq[µi,Λi]

[
ln|Λi|

2
− (wo−μi)

′
Λi(wo−μi)
2

]
, Eq[µi,Λi]

[log p(μi,Λi)]

and Eq[µi,Λi]
[log q(μi,Λi)]. In the variational Bayesian set-

ting, the expression:

Eq[µi,Λi]

[
(ln |Λi|)/2 − ((wo − μi)

�Λi(wo − μi))/2
]

needs to be evaluated in the log likelihood calculation for
every video document d to update the free distributions

given the current parameter values. The term
[
ln|Λi|

2

]
is

the normalization factor of the Gaussians and its expecta-
tions can cause the log likelihood to be positive. We there-
fore only evaluate Eq[µi,Λi]

[−((wo − μi)
�Λi(wo − μi))/2

]



for the per document updates and subtract the log of the
exponentials of the aggregations as an approximation. We
independently derive and mention only the final expressions
for the following variables due to space constraints and self
containment of this paper:

Eq[µi,Λi]
[ln |Λi|] =

P∑
p=1

ψ

(
νi + 1− p

2

)
+ P ln 2 + ln |Wi| (6)

Eq[µi,Λi]

[
(wo − μi)

′
Λi(wo − μi)

]
= Pκ−1

i + νi
(
(wo −mi)

′
Wi(wo −mi)

)
(7)

Eq[µ,Λ]
[log q(μ,Λ)] =

K∑
i=1

{
1

2
ln Λ̂i +

P

2
ln
κi

2π
− P

2
−H[q(Λi)]

}

(8)

H[q(Λi)] = − lnZ(Wi, νi)− (νi − P − 1)

2
ln Λ̂i +

νiP

2
, where

(9)

• Z(Wi, νi) = |Wi|−νi/2

⎛
⎝2νiP/2πP (P−1)/4

P∏
p=1

Γ

(
νi + 1− p

2

)⎞⎠
−1

• ln Λ̂i = Eq[ln |Λi|] =
P∑

p=1

ψ

(
νi + 1− p

2

)
+ P ln 2 + ln |Wi|

Note that Ψ is the digamma function. For the expression∑K
i=1 Eq[µi,Λi]

[log p(μi,Λi)], we have:

K∑
i=1

Eq[µi,Λi]
[log p(μi,Λi)] =

1

2

K∑
i=1

{
P ln(

κ0

2π
) + ln Λ̂i − κ0P

κi

−κ0νi(mi −m0)
′
Wi(mi −m0)

}
+K lnZ(W0, ν0)

+
ν0 − P − 1

2

K∑
i=1

ln Λ̂i − 1

2

K∑
i=1

νiTr(W
−1
0 Wi) (10)

Using the lower bound LMMG, the ML estimations of the
hidden variables in video document d can be obtained using
Lagrange Multipliers on φ(H), φ(O) and φ as follows:

φ
(H)
d,h,i ∝ exp

⎧⎨
⎩ψ(γd,i)− ψ(

K∑
j=1

γd,j) + log ρi,wd,h

⎫⎬
⎭ (11)

φ
(O)
d,o,i ∝ exp

⎧⎨
⎩ψ(γd,i)− ψ(

K∑
j=1

γd,j) +Eq[µi,Λi]
[(ln |Λi|)/2

−((wo − μi)
′
Λi(wo − μi))/2

]}
(12)

φd,m,i ∝ exp

⎧⎨
⎩ψ(γd,i)− ψ(

K∑
j=1

γd,j) + log βi,wd,m

⎫⎬
⎭ (13)

γd,i = αi +

Md∑
m=1

φd,m,i +

Od∑
o=1

φ
(O)
d,o,i +

Hd∑
h=1

φ
(H)
d,h,i (14)

For the Corr-MMGLDA model, Eq[log p(wM |zyM , β)]
expands out to be:

M∑
m=1

K∑
i=1

(
O∑

o=1

φm,oφ
(O)
o,i

)
log βi,wm (15)

Also,

Eq[log q(yM |φyM
)] =

M∑
m=1

O∑
o=1

φm,o log φm,o (16)

and Eq[log p(yM |O)] is constant for all m in d. Equation
(15) is a computational bottleneck because finding the con-
fidence of the word wm on topic i necessitates the elimina-
tion of uncertainties of wm’s dependence on wo and wo’s
dependence on topic i. This is also a strong point since the
marginalization suggests a stronger influence of a topic on a
summary word if that influence is justified by most wos.

Using a similar lower bound LCorr−MMG for Corr-MMGLDA,
the ML estimations of the hidden variables in video d can
be obtained as follows:

φ
(H)
d,h,i ∝ exp

⎧⎨
⎩ψ(γd,i)− ψ(

K∑
j=1

γd,j) + log ρi,wd,h

⎫⎬
⎭ (17)

φ
(O)
d,o,i ∝ exp

⎧⎨
⎩ψ(γd,i)− ψ(

K∑
j=1

γd,j) + Eq[µi,Λi]

[
log |Λi|

2
−

(wo − μi)
′
Λi(wo − μi)

2

]
+

Md∑
m=1

φd,m,o log βzym ,wd,m

⎫⎬
⎭ (18)

φd,m,o ∝ exp

{
K∑
i=1

φ
(O)
d,o,i log βi,wd,m

}
(19)

γd,i = αi +

Od∑
o=1

φ
(O)
d,o,i +

Hd∑
h=1

φ
(H)
d,h,i (20)

3.2 Model Parameter Estimations
Before deriving the expressions for the maximum a poste-

riori and maximum likelihood estimates of the parameters of
the proposed models using moment matching (Section 3.1)
and derivatives w.r.t the parameters of the functional L(.)

let us define the following quantities for each topic i:

Ni =
D∑

d=1

Od∑
o=1

φ
(O)
d,o,i; x̄i =

1

Ni

D∑
d=1

Od∑
o=1

φ
(O)
d,o,iwd,o

Si =

∑D
d=1

∑Od
o=1 φ

(O)
d,o,i(wd,o − x̄i)(wd,o − x̄i)

′

Ni
(21)

By using moment matching techniques on Equ. 3, we obtain
the following MAP expressions in general for each topic i:

κi = κ0 +Ni (22)

mi =
1

κi
(κ0m0 +Nix̄i) (23)

W−1
i = W−1

0 +NiSi +
κ0Ni

κ0 +Ni
(x̄i −m0)(x̄i −m0)

′
(24)

νi = ν0 +Ni (25)

Further, using some algebraic manipulations and utilizing
Lagrange Multipliers for β and ρ for each topic i, we obtain:
For the MMGLDA model:

ρi,j ∝
D∑

d=1

Hd∑
h=1

corrVH∑
j=1

φ
(H)
d,h,iδ(wd,h, j) (26)

βi,j ∝
D∑

d=1

Md∑
m=1

V∑
j=1

φd,m,iδ(wd,m, j) (27)

For the Corr-MMGLDA model:

βi,j ∝
D∑

d=1

Md∑
m=1

V∑
j=1

(
O∑

o=1

φd,m,oφ
(O)
d,o,i

)
δ(wd,m, j) (28)



The update for parameters ρi,j remain the same. To opti-
mize the α parameters, we follow the corresponding expres-
sions in [5] and optimize using Newton’s iterative gradient
based method using backtracking line search.

For predicting a bag of words summary from an ensemble
of low level features of video document d and the learnt
p(wv|zv = k,β), we permute the vocabulary V for the new
test video as:

p(wv|wO,wH) ≈
O∑

o=1

K∑
i=1

φ
(O)
d,o,ip(wv|βi) +

H∑
h=1

K∑
i=1

φ
(H)
d,h,ip(wv|βi)

(29)

4. EXPERIMENTAL SETUP AND RESULTS
Here we briefly mention the descriptors that we use to

represent the videos. To represent actions, we use features
known as Histogram of Oriented Gradients in 3D (HOG3D)
[11]. The gradient directions are binned by mapping them
to 10 polar meridian and 6 polar parallel planes and then
treating half spaces to be equivalent. We resized the video
frames such that the largest dimension (height or width)
was 160 pixels, and extracted HOG3D features from a dense
sampling of frames. Our HOG3D parameters resulted in
a 300-dimensional feature vector using support volumes of
dimension 2 × 2 × 5 and 5 × 3 polar co-ordinate bins. We
then use K-means clustering to create a 1000-word codebook
following [3] from a random sampling of the training data.

Color histogram features are also used as part of the dis-
crete visual data. We use 512 RGB color bins and his-
tograms are computed on densely sampled frames. Due to
large deviations in the extremities of the color spectrum, we
use the histogram between the 15th and 85th percentiles av-
eraged across a video and counts normalized to lie in [1,100].

Finally we use Object Banks [15] for a histogram pattern
of positive object detections. OB transforms an image into
a 44604 dimensional concatenated feature vector for each of
the 177 off-the-shelf object detectors that are currently used.
Each entry within a 252 dimensional detection feature vector
represents the distance from the decision hyperplane midway
within the margins for different scale-space transformations
of the image. The object labels in OB cover only about 10%
of the summary words (246 out of 2687 for the training set
and 166 out of 1219 for the Dev-T set). Keyframes used
for these features are extracted using the change in color
histogram method [35] and the positive OB responses are
quantized following classemes in [28]. Thus wH in Figs. 3b,
3d and 3e consists of codebook histograms from HOG3D,
color and OB. Needless to say, the contributions of these
off-the-shelf object detectors are not significant at all.

The real valued features we use in our video represen-
tation are those representing scenes as mentioned in [22].
The scene property by itself induces image summarization
in a way that is consistent with human perception of vision
[23]. A set of perceptual dimensions is proposed along the
boundary viewpoint (e.g. depth, openness, expansion, per-
spective) and along the content viewpoint (e.g. naturalness,
roughness, ruggedness, etc.) which represent the dominant
spatial structure of a scene. These features are named GIST
features as is common parlance in computer vision litera-
ture. To compute these features, we have used the setup in
[7] leading to a 960-dimensional descriptor for each frame.
We calculate GIST features for every 10th frame.

To save computational time, the GIST features are pro-
jected into lower dimensions using Principle Component Anal-
ysis (PCA). PCA is done on the training data across all event

categories to remove the dependence of the visual descriptors
on specific events. We first visualize the lower (15, 30 and
60) dimensional GIST features in two dimensions using t-
statistic based stochastic neighbor embedding (t-SNE) [17],
however, the separations look more or less the same and do
not yield conclusive evidence of choosing the right number of
dimensions. By inspecting the plots from t-SNE, we choose
15 dimensions and validate the choice by both manually in-
specting the eigenvalues and experimentally cross-validating
with the baseline Corr-MGLDA topic model (Fig. 3c). 30 or
60 dimensional features decreased the ELBO of the model.
We do not select further lower dimensions based on signif-
icance of the eigenvalues. Each wo in Figs. 3c, 3d and 3e
represents a frame in 15 dimensions corresponding to a GIST
feature vector.

4.1 Model Log Likelihoods and Topics
In this section, we evaluate the topic models in terms of

ELBO on the held-out Dev-T set acting as a test set (with
the human summaries) for posterior inference and as a pre-
diction set (without human summaries) for BoW summary
generation. Multinomial parameters are seeded and Gaus-
sian parameters are randomly initialized. The base measures

Model Topic 1 Topic 2 Topic 3

Corr-

MMG

LDA

wed couple cer-
emony church
ring footage
exchange
bride groom
helicopter

wed ceremony
bride groom
church flower
vow exchange
ring walk kiss
outdoors

wed Hawai US
beach guest
place footage
scene ring
minister lei
Kailua

W
ed

d
in
g
ce
re
m
o
n
y

Corr-

MG

LDA-

PDS

wed ceremony
couple bride
groom church
flower exchange
vow

wed ceremony
bride groom
couple flower
church man
outdoors vow

wed ceremony
bride groom
couple flower
church man
outdoors vow

Table 2: 3 latent topics for an event from proposed 5-topic Corr-
MMGLDA and Corr-MGLDA-PDS models. The topics from Corr-
MGLDA-PDS are similar as a result of high values of αk obtained
after running Corr-MGLDA-PDS on scaled i.e. normalized data. The
topics from Corr-MMGLDA are qualitatively far superior and indi-
cates sub-events of the “Wedding ceremony” event.

of α are initialized to 0.1 and normalized while its concen-
tration parameter is set to 10. An issue with the real valued
features is the influence of data normalization on the ELBOs
from the topic models. We have observed that when the data
is not normalized to lie within [0,1]P , the sequence of ELBOs
from Corr-MGLDA during EM often indicate suboptimality
even during training. The “PDS” suffix (in the table and all
other figures) means “Positive Data Scaling” i.e. each real
valued vector is sum-normalized to [0,1]P independently.

-700000
-600000
-500000
-400000
-300000
-200000
-100000

0
E001 E002 E003 E004 E005

MMLDA Corr-MGLDA-PDS MMGLDA Corr-MMGLDA

Figure 4: Test ELBOs on events E001-
E005 in the Dev-T set. Lower is better.

The PDS nor-
malization fixes
this problem and
raises ELBOs for
Corr-MGLDA sig-
nificantly but con-
vergence is slower.
However in the
latter setting, the
values of αk become large which destroys sparsity in topics.
This is possibly due to strong overlap of modes within the
[0, 1]P hypercube where one dimension is severely correlated
with the others. Examples of such topics on the “Wedding
Ceremony” event is given in Table 2 where all topics are
almost alike and lose subjective interpretability.

The new topic models with both Multinomial and Gaus-



sian distributions on the video features do not suffer from the
data scaling problem. It is possible that the mean parameter
space for the tractable distributions over both discrete and
real valued observations prevents co-ordinate ascent steps to
dwell in suboptimal regions that could arise out of extreme
values in the real valued data alone.

-60000

-50000

-40000

-30000

-20000

-10000

0
E006 E007 E008 E009 E010 E011 E012 E013 E014 E015

MMLDA Corr-MGLDA-PDS MMGLDA Corr-MMGLDA

Figure 5: Test ELBOs on events E006-E015
from Dev-T set. Lower is better

Although the
Normal-Wishart
priors act as
regularizers, au-
tomatically tun-
ing W0 using
another level
of priors or
from the data
itself is not used here. In general optimization with
tractable distributions and parameter constraints (e.g. non-
negativity, boundedness and positive definiteness) can be
non-convex [31].

Figures 4 and 5 show the test ELBOs of MMGLDA and
Corr-MMGLDA versus the MMLDA model and the Corr-
MGLDA model with PDS. The ELBOs for MMLDA are off
the charts (at least three to four times the cut-off shown in
the graphs). For the first 5 events, the videos contain posi-
tive instances of the events in Dev-T set. For this subset of
events, the MMGLDA family of models outperform the best

-1500000

-1300000

-1100000

-900000

-700000

-500000

-300000

-100000

E001 E002 E003 E004 E005

MMLDA Corr-MGLDA Corr-MGLDA-PDS MMGLDA Corr-MMGLDA

Figure 6: Prediction ELBOs on first 5
event for Dev-T set. Lower is better.

version of Corr-
MGLDA in terms
of ELBOs (i.e.
with PDS). Fig-
ures 4 and 5 are
obtained using
K=20 topics—
K being set through
5-fold cross -
validation. For
the last 10 events (Fig. 5), the videos contain only related
instances of the events in Dev-T set—dissimilar to the train-
ing configuration i.e. the annotators are unsure about the
relevance of the videos to the event category. In this case,
Corr-MGLDA-PDS do not perform worse in general since
the GIST features are global features [22].

The prediction performance on the first 5 events is shown
in terms of ELBO in Fig. 6 for the same value of K. Fig. 6
shows that MMLDA does not perform well in terms of word
prediction ELBO measure. We can also see the effects of
sub-optimality when PDS is suppressed for Corr-MGLDA
(Corr-MGLDA in Fig. 6). MMGLDA and Corr-MMGLDA
again perform comparably and outperforms Corr-MGLDA-
PDS on the first 5 events except E002—“feeding an animal”—
a very complex event for computer vision.

For events 6 through 15, the prediction ELBO graphs also
look very similar to that in Fig. 5 (not shown here due to
space constraints). PDS on our proposed MMGLDA fam-
ily shows even better ELBOs, but topic sparsity problems
mitigate only a little and we do not report those here. All
these experiments are run using m0 set to 0, W0 set to a
broader prior I, the identity matrix, ν0 set to P and κ0 set
to 1. Normalizing the data to lie in [0,1]P with I as priors
for Λks leads to sharing of topic responsibilities of the real
valued data by only a few Gaussians thereby contributing
much less to the overall log-likelihood.

It is also observed that the means of the ELBOs of our

proposed models are significantly less negative (i.e. better)
at 95% confidence level (using paired t-test) than the exist-
ing topic models during cross-validation on the training set.

-400000

-350000

-300000

-250000

-200000

-150000

-100000

-50000

0
K=5 K=10 K=15

Corr-MGLDA Corr-MGLDA-PDS

MMGLDA Corr-MMGLDA

Figure 7: Average test ELBOs on
all events in the Dev-T set for dif-
ferent topics. Lower is better.

For most events, EL-
BOs for proposed mod-
els with K=10 are
not statistically worse
either and show slightly
higher ROUGE-1 scores
for some events. Fig-
ure 7 shows the macro
average of test EL-
BOs across all the 15
events in the Dev-T
set. We omit the line graph for MMLDA as it is out of axis
limits. The graphs confirm the superior fit of our proposed
models to a natural representation of multimedia (test) data.

4.2 Translating Related Words to Videos
Table 3 shows how latent topics can first be used to dis-

cover most probable related words from unstructured text
which can then be translated to most probable frames from
one or more videos (and hence the videos themselves). The
frames correspond to wos in Fig. 3 and Table 1.

Topic 6: mob flash dance people mall out-
doors large gather woman public plaza

Topic 10: Hollywood dog star wars robot
light saber R2D2 eye lens blvd fight street

Table 3: 2 latent topics for “Flash mob” event
from a 10-topic Corr-MMGLDA

We observe
from Table
3 how top-
ics 6 and
10 decom-
pose the“Flash
mob gath-
ering”event
into its con-
stituent sub-
themes. While
topic 6 de-
scribes flash
mob dances
in outdoors
and near plazas,
topic 10 fo-
cuses on a
flash mob
in Hollywood
posing in Star
Wars costumes and light sabers along with the famous
miniature robot R2D2. Due to space constraints we can-
not show more samples of numerous such examples.

Table 4 shows the inter-translation of modalities for topic

Topic 10: place fight fake public event
gather flash mob music star outdoors war

Table 4: Topic 10 for the “Flash mob” event
from a 10-topic MMGLDA

10 from MMGLDA
corresponding
to that in
Table 3 from
Corr-MMGLDA.
Note how the
topic loses
specificity (e.g.
misses“R2D2”,
“light,”“saber”
within the
top few words)
and focuses on generality (e.g. flash mob). Topic 6 for
MMGLDA is exactly the same as that for Corr-MMGLDA.
Table 5 shows log of the ratio: αk

|Λk| for the two proposed



models and gives us a hint on how “broad” a topic k may be
vs. how much variance in the visual summary is it able to
capture. A relatively higher value of the ratio means that
a topic captures more variance and hence the volume cap-
tured by the determinant of the inverse covariance matrix
Λk, i.e. |Λk|, through its spanning eigenvectors is propor-
tionally less. For MMGLDA, this ratio is always relatively
lower in our setting and this means that the model captures
more generic patterns first giving rise to a lower |Λk|−1.

The last column in Table 5 is the average of the ratios
for the other topics from the two models for event eight.

Model k=6 k=10 avgk �={6,10}
Corr-MMGLDA 104.628 8.164 40.2398

MMGLDA 104.623 8.102 40.0702

Table 5: log αk
|Λk| values for topics in event 8

The ratios
can be large
for a more
general topic
(e.g. topic
6 in Table
3) owing to a higher αk too. Although, all values are close
due to the use of the broader prior, I, it is observed that
Corr-MMGLDA discovers related words which are qualita-
tively superior. However, the corresponding most probable
frames are almost similar for both models in most cases.
Translating related words to frames is best judged manu-
ally, but, the ratio we use here can be a viable alternative.

4.3 Translating/Summarizing Videos To Text
Table 6 reports the ROUGE-1 (henceforth R-1) scores of

the predicted 5 to 10 keyword summaries from the differ-
ent models when compared with the corresponding short
human synopses. Sometimes full sentences cannot be gen-
erated from the predicted words due to a deficient language
model. This and the short nature of human synopses are the
primary reasons why we perform only R-1 evaluation. Some
examples of the sentences/phrases are shown in Fig. 8.

    
Bag of words: feed bird food outdoors woman eat hand leaf daytime boy giraffe zoo cup girl goat 
Sentences: Boys feed birds by hand. Girl feed birds by hand. Girl eats food in zoo. Woman feed birds by   
hand. Woman feeds goat in zoo. 

[Event E002 - Feeding animal] Actual Summary: little boy feeds goat 

    
Bag of words: fish noodle man sea boat bare land big stretch person catch hand stream catfish 
Sentences: Men catch fish on boat. Men catch fish by hand. Men catch fish in stream. Men catch fish in boat. 
[Event E003 - Landing a fish] Actual Summary: catching big fish off dock 

    
Bag of words: church wed ceremony inside bride groom aisle dress doughnut couple clap hug kiss sign 
Sentences: Could not generate sentence  current template and language model is insufficient, but phrases 
are found   

[Event E004 - Wedding] Actual Summary: wedding ceremony in church 

Figure 8: Bag of keywords and sentence translations from our
proposed MMGLDA (K = 20) for some clips from events 2, 3 and
4 from the Dev-T set. Best viewed in color and magnification.

In Table 6, OB is the Object Bank baseline (see just ahead
of Section 3.1)—it confirms the difficulty of detecting objects
on this dataset. The quantized OB responses perform poorly
since a-priori it is hard to know which object detectors will
be needed and existing but irrelevant object detectors can
produce an unpredictable pattern of false positives. Creat-

ing object models for every genre of data requires expensive
annotation efforts. Even if there is a 100% overlap between
our training vocabulary and object models, the R-1 scores
for OB may only increase by 10-folds which is still low.

Purely multinomial topic models showing lower ELBOs
can perform quite well in BoW summarization. MMLDA
assigns likelihoods based on success and failure of indepen-
dent events and failures contribute highly negative terms
to the log likelihoods but this does not indicate the model’s
summarization performance where low probability terms are
pruned out. Gaussian components can partially remove
the independence through covariance modeling and fit the
data better at the cost of higher time and space complexity.

Model n=5 n=10 OB

E
0
0
1

MMLDA 0.182 0.248

0.0*
Corr-MGLDA-PDS 0.187 0.257

MMGLDA 0.179 0.245

Corr-MMGLDA 0.139* 0.192*

E
0
0
2

MMLDA 0.186 0.249

0.0*
Corr-MGLDA-PDS 0.182 0.242

MMGLDA 0.186 0.237

Corr-MMGLDA 0.143* 0.176*

E
0
0
3

MMLDA 0.221 0.265

0.012*
Corr-MGLDA-PDS 0.233 0.263

MMGLDA 0.228 0.267 =1%

Corr-MMGLDA 0.171* 0.230

E
0
0
4

MMLDA 0.265 0.302

0.0*
Corr-MGLDA-PDS 0.263 0.292

MMGLDA 0.264 0.321

Corr-MMGLDA 0.221 0.247*
E
0
0
5

MMLDA 0.167 0.213

0.005*
Corr-MGLDA-PDS 0.180 0.208

MMGLDA 0.165 0.205 =0.5%

Corr-MMGLDA 0.129* 0.142*

6
-1
5
A
v
g
. MMLDA 0.216 0.252

0.001*
Corr-MGLDA-PDS 0.211 0.258

MMGLDA 0.210 0.243 =0.1%

Corr-MMGLDA 0.179* 0.221

Table 6: Individual and average ROUGE-1 scores
on the events—best results from 10/20 latent top-
ics are shown. The value of n represents the top-
n most probable keywords. A (*) means signif-
icantly worse performance at 95% confidence to
{MM,MMG}LDAs. These results are only reported
for the same hyperparameter settings.

The R-
1 scores
from MM(G)
LDAs are
compara-
ble for 5
and 10 key-
words with
no sta-
tistical dif-
ference, how-
ever, a
possible rea-
son for
lower R-
1 scores
for Corr-
MMGLDA
model is
that due
to bet-
ter cor-
respondence
to the topic
of the GIST
energy in
the scene,
when a
topically
relevant but
non-summary
word is
chosen upfront, more related but non-summary words are
also drawn in. As future research, we also like to do a prin-
cipled initialization of Gaussian parameter priors as in [19].

However, the high scores with Corr-MGLDA-PDS is en-
tirely co-incidental—the topics are more or less uniform and
each one covers parts of the sub-events equally. Further,
each wo’s density over those topics is uniform enough to
not achieve a reasonable permutation. The same thing hap-
pens when PDS is used for our MMGLDA family of mod-
els and the summaries completely lose subjective appeal al-
though R-1 scores improve considerably. This is similar to
the qualitatively degenerate approach—taking the top n fre-
quent words from the event vocabulary and using those as
summaries for every test video. The scores for MMLDA
and MMGLDA are also comparable to this setting. Quan-
tification of the permutation quality has not been done.

Scores in Table 6 need to be multiplied by the event clas-
sification accuracies to obtain lower bounds for clips having



no event labels. The scores become competitive for larger n
and much larger K if we topic model on the entire corpus.

4.3.1 Natural Language Generation
To translate a video into multiple sentences from pre-

dicted keywords, we use an ordered-sequence template as
<subject, verb, object, preposition, scene-noun>. Language
models from the data at hand is used to prune impossible
sequences. The subjects, objects, verbs and nouns extracted
from the training synopses using dependency grammars and
POS models appear in each generated sentence only once.

We use the parser in [12] to score the sequence of words
following the template. The sentences are ordered according
to bigram and parse tree scores. When complete sentences
cannot be generated due to a deficient language model, we
output possible bigrams and trigrams (see E004 in Fig. 8).
Similar corpus based sentence generation techniques can be
found in [34, 9] but NLG is a research topic in its own right.

4.4 Event Classification
Fig. 9 shows 5-fold cross-validation on the 15-event train-

ing set and also the test accuracies on Dev-T
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Figure 9: Event detection accuracies for
cross-validation (light gray bars) and test
(dark gray bars) with different features

set for event
classification. A
c-SVM classi-
fier from the
libSVM [6] pack-
age is used
with default
settings for mul-
ticlass classi-
fication. Al-
though around 50% classification accuracy can be easily
achieved using the discrete visual features that we use,
higher accuracies can be obtained using better kernels, fu-
sion of classifiers and optimizing Detection-Error-Tradeoff
curves while cross validating [20]. However, these discus-
sions are outside the scope of this paper.

5. CONCLUSION
Our new topic models show better fits to multimedia data

representation consisting of discrete and real valued features
from videos as well as accompanying short textual synopses.
In general Corr-MMGLDA improves on text to video trans-
lation while the non-correspondence versions perform bet-
ter in video to text summarization. Video summarization
through topic models significantly out-perform that through
state-of-the-art object detectors and thus can be used as
new baselines. Our NLG component has suffered from se-
vere data sparsity and impoverished language models and
we wish to overcome these using external knowledge bases.
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