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Abstract
The effective propagation of pixel labels through the spa-

tial and temporal domains is vital to many computer vision
and multimedia problems, yet little attention have been paid
to the temporal/video domain propagation in the past. Pre-
vious video label propagation algorithms largely avoided
the use of dense optical flow estimation due to their compu-
tational costs and inaccuracies, and relied heavily on com-
plex (and slower) appearance models. We show in this pa-
per the limitations of pure motion and appearance based
propagation methods alone, especially the fact that their
performances vary on different type of videos. We propose
a probabilistic framework that estimates the reliability of
the sources and automatically adjusts the weights between
them. Our experiments show that the “dragging effect”
of pure optical-flow-based methods are effectively avoided,
while the problems of pure appearance-based methods such
the large intra-class variance is also effectively handled.

1. Introduction
Pixel labels have a great number of uses in the computer

vision and multimedia community. For example, the labels
are the disparity values in stereo vision, grayscale or color
values in image denoising [11], and α values in interactive
segmentation problems [7]. Since manually labeling every
pixel in an image is highly impractical, many research have
been conducted in propagating pixel labels throughout both
the spatial and temporal domain [13, 7, 12, 2]. In interac-
tive image segmentation tasks, a small number of manually
annotated pixel labels are propagated to the remaining pix-
els to produce a foreground/background map for the whole
image. Attempts are also made to propagate labels in the
temporal domain for labeling video objects efficiently.

The problem of propagating pixel labels throughout
video frames seems deceivingly easy at first glance: for any
pixel zt+1

n′ in frame t+ 1, find the optical flow mt from zt
n

to zt+1
n′ (n′ = n + mt), and let zt+1

n′ take the same label
as zt

n. A simple experiment on the commonly used garden
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Figure 1. An example of why optical flow alone can’t solve the
video pixel label propagation problem: holes form with forward
flow and the dragging effect plagues the reverse flow.

A hole occurs, due
to the reappearance
of a previously 
occluded region.

The dragging effect occurs, 
causing the previously occluded
region to take the same 
(now incorrect) label that it 
took in the previous frame.

Forward Flow Reverse Flow

Region being 
occluded is likely to
have multli-incoming 
forward flows

Figure 2. The holes in forward flows and the dragging effect in
reverse flows. When the colored ball moves, the (lightly shaded)
region it left behind have no incoming forward flows or a incorrect
outgoing reverse flow. The (heavily shaded) region being occluded
by this motion frequently have multiple incoming forward flows.

sequence shows otherwise (Fig. 1). Holes (pixels with un-
determined labels) form because the correspondence estab-
lished by the forward flow between zt and zt+1 is neither
one-to-one (injective) nor onto (surjective) (Fig. 2). With
reverse-flow-based propagation, the dragging effect occur
because a reappearing (previously occluded) pixel zt+1

n is
forced to take some un-correlated zt

n′ ’s label by the reverse
flow, while in theory it has no corresponding zt

n′ .
The aforementioned issues have been commonly treated

as the results of inaccurate optical flows, and many algo-
rithms following [7] have shunned optical flows for label
propagation. Wang and Cohen [12] propagate the labels of
a small subset of static pixels from t to t + 1, then per-
form spatial propagation on frame t + 1 with BP [13]. Bai
and Sapiro [2] treat the video as a space-time volume and
propagate labels via the shortest geodesic distance, which is
defined on local color gradients. These methods, although
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Figure 3. A snapshot of our multi-class pixel-wise annotation of
the commonly used sequences collected at xiph.org. We follow
the 24-class MSRC semantic class labels [9] for the annotation.

effective for interactive segmentation tasks, are not capable
of handling occlusion and reappearance of objects at all. To
address this issue, Criminisi et. al. [8] utilized a CRF with
2nd order HMMs to facilitate the correct labeling of reap-
pearing objects in a foreground/background segmentation
problem; however, its generalizability to multi-class label-
ing remains unknown. Recent approaches favor using com-
plex appearance models for propagation, such as the local
shape models in [3] and coupled HMM in [1].

These counterintuitive findings made us question: is op-
tical flow-based propagation that bad? If not, when are they
reliable for label propagation, and when would we require
additional help? Upon close examination, we also noticed
that previous conclusions are drawn from experiments per-
formed on a small biased set of videos—videos with large
foreground objects for two-class propagation and driving
videos for multi-class propagation. In order to fairly com-
pare the results, we build a larger and less-biased multi-class
pixel-wise labeled dataset, which we will discuss in Sec. 2.
We experiment and discuss the results of pure motion and
appearance based methods in Sec. 3, followed by our analy-
sis and design of the optical-flow trustworthiness metric and
our label propagation framework in Sec. 4.3. We discuss the
comparative results in Sec. 4.4 and conclude in Sec. 5.

2. Our new multi-class pixel label dataset
Previous datasets used for evaluating video pixel label

propagation are small and biased. The interactive segmen-
tation society focused only on 2-class (foreground, back-
ground) propagation [7, 12, 2, 8], where the foreground ob-
ject tend to occupy a larger area of the scene. The only
multi-class pixel-wise labeled ground truth dataset available
as of now are all, by coincidence, driving sequences[6, 1].
This type of video consists mostly of objects moving from
the vanishing point of the road towards the sides.

Instead of creating a dataset ourselves, which might be
biased as well, we decide to adapt videos commonly used
by the community collected at xiph.org. Samples are shown
in Fig. 3, which includes well known sequences such as gar-
den and coastguard. These videos cover a wider spectrum
of possible camera and object movements, and is vital to
fully inspect when and where optical flow alone is suffi-

cient. For example, the camera is fixed and only the objects
are moving in container, while the camera is moving and
most objects are static in garden. In a few other sequences,
such as coastguard andstephan, not only is the camera mov-
ing but also multiple objects in the scene are moving as well.

3. Motion v.s. Appearance based Propagation
3.1. Motion alone

In general, there are two ways of using optical flows
to assign a pixel zt+1

n in frame t + 1 with a label from
frame t: forward flow from zt

n′ to zt+1
n represented as

ffwd(zt
n′) = zt+1

n , or reverse flow from zt+1
n to zt

n′′ rep-
resented as frvs(zt+1

n ) = zt
n′′ . Since even the latest op-

tical flow estimation methods are not guaranteed to solve
occlusion and reappearance situations perfectly (as shown
in Fig. 2), we use the classical Black and Anandon method
[5] due to its efficiency and relative effectiveness [4].

The task of propagating labels with forward flows alone
is to determine the proper label L(·) for all zt+1

n (collec-
tively represented as zt+1) by using:

L(zt+1
n ) := L(zt

n′) where ffwd(zt
n′) = zt+1

n (1)

For the task of propagating labels with the reverse flows,

L(zt+1
n ) := L(zt

n′) where frvs(zt+1
n ) = zt

n′ . (2)

The forward and inverse flow functions ffwd(·), frvs(·)
are both non-injective and non-surjective. Deciding Lt+1

n

(short-hand notation for L(zt+1
n )) with frvs(·) is straight-

forward since zt+1
n is in the domain and is guaranteed

to have a corresponding Lt
n′ . Determining Lt+1

n with
ffwd(·) is trickier, since zt+1

n is in the codomain of a
non-injective/surjective function; additional information is
needed to determine the appropriate Lt+1

n when there are
zero or multiple corresponding Lzt

n′ .

3.2. Appearance Model alone
A simple CIE-Lab color space based non-parametric ap-

pearance model is learned for every label L = {la, lb, ...}
we wish to propagate in the first frame. For the following
frames, we extract the color distribution of the subimage
s(·) centered at zt+1

n to determine the most likely labelL(·):

P
(
s(zt+1

n ) | L(zt+1
n )

)
= 1/d(Hs, Hl) , (3)

where L(zt+1
n ) ∈ L and a simple Intersection measure [10]

is used to compute the distance between Hs and Hl.

3.3. Experiments, Results and Discussion
Experiment results on using the motion or appearance

model alone are quite conflicting: instead of having one
constantly outperform the other, the numbers varied widely
from video to video. Videos with large regions of fre-
quent occlusion/reappearance result in extremely poor per-
formance for optical-flow-based propagation methods, such
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Figure 4. Results from using only motion or appearance model.

as the garden sequence shown in Fig. 4. Videos with less
occlusion/reappearance and where the appearance of ob-
jects are multi-modal cause appearance model to perform
worse, such as the container sequence shown in Fig. 4.

These findings have urged us to develop measures for de-
termining the reliability of individual optical flows for the
label propagation task. We develop and adapt these mea-
sures into a probabilistic framework as discussed as follows.

4. Our Proposed Method
4.1. The Probabilistic Pixel Labeling Model

We use a probabilistic framework to jointly optimize the
clues we obtain from the optical flows, appearance models,
and prior knowledge such as the spatial smoothness con-
straint. The label propagation task becomes a problem of
determining the optimum set of labels Lt+1 for all the pix-
els zt+1 in frame t+ 1:

E
(
Lt+1|Lt, zt+1, zt

)
= UM(Lt+1,Lt, zt+1, zt)

+ λ1U
C(Lt+1,Z) + λ2 V

S(Lt+1, zt+1) . (4)

where Z is the collection of all frames we’ve seen so far.
The weights λ1 and λ2 are typically estimated dur-

ing training and fixed afterwards; our proposed location-
varying, flow reliability-dependent weights λ1 are devel-
oped later in Sec. 4.3. We discuss the individual energy
terms in the following sub-section.

4.2. The Individual Energy Terms
The Motion Evidence Term UM(·) generalizes Eq. 2

to deal with situations where multiple incoming flows are
present. The idea is to measure the “confidence” level of

the all flows, either intrinsically during the flow computa-
tion process via the error measure, or extrinsically by calcu-
lating the cross-correlation between the two regions where
the flow originates and terminates. We choose the label
Lt+1

n := Lt
n′ that maximizes the overall confidence over all

flows, or equivalently, minimizes the energy function de-
fined over the flows. We associate the Pott’s model with
spatially-varying per pairing weights w(·) to discount the
penalty given to the more confident flows:

UM(Lt+1,Lt, zt+1, zt) (5)

=
∑
n

∑
n′ |zt

n′∈f(z
t+1
n )

w(zt+1
n , zt

n′)
(
1− δ

(
Lt+1

n , Lt
n′

))
,

where δ is the Kronecker delta and f(zt+1
n ) is the set of

pixels in zt that are associated with zt+1
n by ffwd(·) and

frvs(·). The spatially-varying weights are defined such that

w(zt+1
n , zt

n′) ∝ ||s(zt+1
n )− s(zt

n′)|| , (6)

where again s(zt+1
n ) is the local sub-window centered at

zt+1
n and || · || is the distance (we use K-L divergence) be-

tween the histograms of the two patches s(zt+1
n ) and s(zt

n′).
The Appearance Likelihood Term UC(·) in Eq. 4 de-

termines how likely a pixel zt
n was generated by one of

the label classes. We use the appearance model defined in
Sec. 3.2 (except that a model is now learned for every co-
herent segment) and the energy is defined as:

UC(Lt+1, zt+1) = −
∑
n

logP (s(zt+1
n )|Lt+1

n ) . (7)

P (s(zt+1
n )|Lt+1

n ) is defined in (3). The appearance likeli-
hood models are updated after every new frame is labeled.

The Spatial Continuity Term V S(Lt, zt) is defined as:

V S(Lt+1, zt+1)

=
∑

(n,n′)∈C

w(zt+1
n , zt+1

n′ )
(
1− δ

(
Lt+1

n , Lt+1
n′

))
, (8)

where C is the set of all neighboring pairs of pixels, µ is the
contrast parameter set to µ = (2〈 ||zt

n − zt
m||2 〉)−1, where

〈·〉 is the expectation over all neighbor pairs in an image.

4.3. Estimating the Reliability of Optical Flows and
Defining our Reliability-driven Weights

Figure 5 (a-c) shows examples where a combination of
forward and reverse flows can be used to estimate when oc-
clusion and reappearance are occurring. If zt+1

n belongs to
a reappearing region, there would likely be no good match
for it in zt, therefore frvs(zt+1

n ) is likely to be different from
those zt

n′ where ffwd(zt
n′) = zt+1

n , as shown in (b) and
(c). When zt

n′ is being occluded, there would likely be no
frvs(·) = zt

n′ , resulting in phenomena similar to (b) and
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Figure 5. Flow reliability estimation

(c). Contrarily, when frvs(zt+1
n ) = zt

n′ where ffwd(zt
n′) =

zt+1
n as in (a), the flows are likely to be more reliable.

Based on these observations, we derive a simple yet
effective measure for determining location-varying flow-
depent λ1’s for every pixel zt+1

n , represented as λ1(zt+1
n ):

λ1(zt+1
n ) = w′

∑
n′ |zt

n′∈f(z
t+1
n )

||frvs(zt+1
n )− zt

n′ || (9)

where w′ is the normalizing weight estimated from the av-
erage λ1(·)’s. The weight map formed by all λ1(zt+1

n )’s
is shown in Fig. 5 (d). Brighter-colored regions represent
larger λ1(·). The area on the right of the tree where previ-
ously occluded regions are reappearing gives UC(·) higher
weight, since no reliable ffwd(·), frvs(·) exist. Similarly,
the area around the pole on the right and the boundaries of
the tree branches on the left also rely more on UC(·).

4.4. Experiments, Results and Discussions
We use one of the standard energy minimization meth-

ods, the Graph-Cuts Expansion as in [11], to obtain Lt+1

at each iteration. Figure 6 and 7 shows that our proposed
method properly weighs between multiple sources of infor-
mation and constraints and achieves quite a significant im-
provement. In the garden sequence, the rapidly moving tree
trunk with large regions of occlusion/reappearance causes
optical flow based methods to drag on and propagate the er-
ror, while our proposed method properly fills in the gap with
the appearance information. The pure appearance model is
prone to intra-class variances, and the upper region of the
flowers in the garden sequence being wrongly assigned the
void label. In the container sequence, the large intra-class
variance causes the appearance model to incorrectly assign
assign road and tree to the upper part of the container; our
method properly filled in the region with motion clues.

5. Conclusion
We showed the issues of pure motion and appearance

based video pixel label propagation methods, and pro-
posed a probabilistic framework that estimates the relia-
bility of motion and appearance information then automat-
ically weigh between them. Our experiments show that
the “dragging effect” of pure optical-flow-based methods
are effectively avoided, while the weakness of appearance-
based methods such the as large intra-class-variance is also
effectively handled.
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Figure 6. Qualitative comparison of the propagation results.
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Figure 7. Quantitative comparison of the propagation results.
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