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Abstract— This paper proposes a novel tool detection and
tracking approach using uncalibrated monocular surgical videos
for computer-aided surgical interventions. We hypothesize sur-
gical tool end-effector to be the most distinguishable part of
a tool and employ state-of-the-art object detection methods to
learn the shape and localize the tool in images. For tracking,
we propose a Product of Tracking Experts (PoTE) based gener-
alized object tracking framework by probabilistically-merging
tracking outputs (probabilistic/non-probabilistic) from time-
varying numbers of trackers. In the current implementation
of PoTE, we use three tracking experts – point-feature-based,
region-based and object detection-based. A novel point feature-
based tracker is also proposed in the form of a voting based
bounding box geometry estimation technique building upon
point-feature correspondences. Our tracker is causal which
makes it suitable for real-time applications. This framework has
been tested on real surgical videos and is shown to significantly
improve upon the baseline results.

I. INTRODUCTION

The field of surgical robotics had witnessed tremendous
advancements over the last decade, transforming both the
operating surgical teams as well as the operating rooms.
Increasingly surgeries are being performed by teleoperated
devices on patients with remote manipulators through small
incisions while providing the surgeon at master end with
‘look-and-feel’ of an open surgery. Such robotic laparoscopic
(or minimally invasive) procedures result in minimal pre- and
post- surgical trauma and faster recovery for the patients.
However, at the current stage, this robotic surgery paradigm
does not adequately leverage the ‘information-assist’ possi-
ble by analyzing the enormous data-stream generated from
endoscopic cameras and recorded manipulator motions.

At the same time, adoption of the robotic-surgery contin-
ues to raise serious questions about shortcomings in patient
safety and surgical training. Major causes of concern includ-
ing reduced field of view (FoV), loss of depth perception,
lack of force-feedback and more importantly, lack of surgical
training and assessment still remain unsolved [22]. With
increasing number of legal claims due to robotic surgical
failures and relatively outdated surgical training curriculum,
the current situation in robotic surgeries can only be expected
to worsen. Therefore, devising robust, feasible and advanced
technologies for enhancing surgical safety and aiding the
decision-support for surgeons without requiring major mod-
ifications to existing system has received greater attention.

Recently there has been significant interest in video un-
derstanding techniques applied to recorded or online surgical
video streams (for use in anatomic reconstruction, surface
registration, hand and/or tool motion tracking, etc.). Such

techniques have potential use in providing in-vivo surgical
guidance information and semantic feedback to surgeons,
thus improving their visual awareness and target reachability,
thereby enhancing the overall patients safety in robotic
surgeries. The complexities posed by typical surgical sce-
narios (such as tissue deformations, image specularities and
clutter, tool open/closed states, occlusion of tools due to
blood and/or organs and tool out-of-view) offer the usual
constraints hindering implementation of a robust video-based
tool tracking method.

A few authors have begun exploration of video-analysis
and understanding methods to enhance the interactions. Jun
et al. [13] discuss how video-based motion analysis methods
can be useful in surgical expertise evaluation. Voros et al.
[24] use tool location data for identifying surgical gestures
and providing context specific feedback. These approaches
show promise for developing a unified plan to tackle a range
of challenges in modern surgical robotics workflow based on
reliable video understanding. In this work, we are motivated
by the diverse perspectives to develop a novel, robust and
efficient tool tracking solution for use in challenging real
surgical videos.

II. RELATED WORK

Tracking surgical tools in general has been used for a
wide range of applications including safety, decision-support
as well as skill assessment. Most tool tracking approaches
are either colour marker based or based on the geometric
model of the instrument . Former techniques employ fiducial
markers on the tool, using color marker and thresholding
in HSV space to detect tools [11], attaching light emitting
diodes to the tip of instruments and then detecting these
markers in endoscopic images [15], color coding tips of
surgical instruments and using a simple color segmentation
[25]. Using such marker-based methods for surgical tool
tracking has issues with manufacturing, bio-compatibility
and additional instrumentation. While geometry based ap-
proaches use knowledge of the model of tool to find its pose
from images [7].

Other approaches (that do not necessarily modify the tool
itself) include: using color space for classification of pixel
into instruments and organs, performing shape analysis of
these classification labels and then predicting the location of
tool in next frame using an Auto Regressive Model [23].
McKenna et al. [19] use similar method for classification
of surgical tools but use particle filter to track instruments
in a video. These approaches are limited to detecting a tool



when a significant area of tool is present in an image frame
and there is a good distinction between its background and
instruments in color space. Other recent work focuses on
locating specific landmarks on the surgical tools by learning
a Random Forest based classifier to classify these landmarks
from images and using an Extended Kalman Filter (EKF) to
smooth the tool poses [21]. However this method requires
knowledge of 3D CAD model and extensive image labeling
for a single tool.

For surgical tool tracking to succeed and be widely em-
ployed in a typical surgical setting, there are several key
challenges that need to addressed as summarized below:

• Tool Detection: Tool tracking approaches need to ro-
bustly determine the presence of different surgical tools
in images as surgeons move their tools in- and out-
of the FoV of an endoscopic camera. It becomes im-
portant for a tracking framework to incorporate this
knowledge to reduce the number of false alarms. This is
a critical problem especially in markerless tracking as
color segmentation [11], [25], [7] will produce outliers
in tool end-effector detection in presence of tool-tissue
interaction, blood stains and many other factors. We
address this problem robustly by learning state-of-the
art object detectors [9] for different tool types.

• End-Effector Pose: Some model based approaches [7]
ignore the pose of end-effector while tracking the tool.
Since, end-effector in many surgical tools is articulated
and always the point of contact with tissues, it is vital to
track the end-effector and its articulation in the tracking
framework. Our approach to detection and tracking
directly models end-effector which is in general most
distinguishable part of a surgical tool and employ a
detection method that captures its articulation.

• Generalized Approach: The tracking algorithm also
needs to be generalizable to different types of tools used
in various surgical procedures. Model based approaches
which model end-effector are very specific [21] to a
particular surgical tool. In contrast, our approach is
easily generalizable as it only needs annotated bounding
boxes to learn a detector for that specific tool [9] and
tracking is invariant to tool-types.

• Tool Tracking Framework: Different tool-tracking meth-
ods have been proposed to solve the problem with
clear trade-off. The important issue that needs to be
addressed is the effective combination of trackers that
can optimally combine the strengths of various methods.

We aim to model the tracking task independent of features/
types of individual tracker and focus on optimally fusing the
information from all the available trackers. Hence, we pro-
pose a Product of Tracking Experts (PoTE) based generalized
object tracking framework which probabilistically merges
tracking outputs from time-varying number of trackers to
produce robust identity-maintained tracking under varied
conditions in unconstrained scenarios.

III. SYSTEM OVERVIEW

Our aim is to achieve robust tracking in challenging testing
scenarios in a causal way i.e. not using any information from
future frames. To address the challenge of detecting presence
of surgical tool in images, we learn different detectors for
each type of surgical tool end-effectors using state-of-the-art
object detector [9]. This object detector essentially captures
the shape of the object by using Deformable Part Models
(DPM) consisting of star-structured pictorial structure model
which links root of an object to its parts using deformable
springs. Hence this model captures articulation which is
invariably present in the surgical tool and allows for learning
a detector for different tool end-effector configurations. We
annotated surgical tools in real surgical videos obtained
from da Vinci Surgical System (dVSS) and learn a Latent
Support Vector Machine (LSVM) [5] classifier by extracting
Histogram of Oriented Gradients (HOG) [6] from annotated
bounding boxes. This type of learning classifiers is highly
generalizable and extensible, enabling one to find tools in
videos without making any restrictive assumptions about the
type, shape, color of tool, view etc. Figure 1 shows HOG

(c) Tool (d) Clamp

Fig. 1: Learned HOG Templates with a representative bound-
ing box for different tool types

template model learned using ground truth annotations.
A high level flow chart of proposed framework is shown

in Figure 2. Our method bootstraps from high confidence
detection to start tracks of various tools. We empirically
obtain a very low false positive rate by increasing the
detection threshold on learned object detector for different
tools.

Fig. 2: System Flow Diagram

Each entity is tracked independently by various trackers
T1, T2, ..., TK . These trackers could be based on either
discriminative (data association techniques [10],detector con-
fidence etc.), generative (particle filter [20], Kalman Filter



[26], KLT [17] etc.), model based or a combination of gener-
ative and discriminative techniques [14], [3]. Tracking solely
by using either generative or discriminative approaches in
unconstrained scenes is hard because generative approaches
make assumptions about the motion of entity whereas dis-
criminative approaches make assumption of having a robust
detector.

IV. PRODUCT OF TRACKING EXPERTS

We adapt a time evolving Product of Experts (PoE) [12]
model to optimally fuse hypothesis from various trackers at
each instant in time to propose a Product of Tracking Experts
(PoTE). We consider each tracker T1, T2, ..., TK as experts
for predicting the location of target center. Product of experts
model for tracker ensures that the resulting model for track
is explained by all the experts. Let θk be the parameters
associated with probability distribution of each expert ( =
[µk,Σk]T in current case). Probability of any point x to be
true center of a bounding box as explained by all the expert
trackers is given by Equation 1.

p(x|θT1
, θT2

, ..., θTK
) =

K∏
k=1

pk(x|θk)

∫ K∏
k=1

pk(x|θk)dx

(1)

Denominator in Equation 1 is a normalization constant and
can be ignored to choose best x. This model is very useful
for robust tracking because it allows to incorporate (or
leave out) arbitrary number of trackers. For example, for a
discriminative classifier, detection score is commonly used
to guide tracking. This classifier could be included in the
tracking mix by modeling its distribution using an indicator
function, which determines if this detection score is greater
than a predetermined threshold. Tracking frameworks using
particle/Kalman filter provide a probability distribution as
output which is very suitable for this method. Additionally,
any individual tracker is not required to give a probabilistic
output but is only required to give a bounding box which
could then be modeled as a probability distribution using
Equation 4. Breitenstein et al.[3] propose using continuous
class confidence density because current object detectors
such as HOG [6] provide a score at discrete spatial locations
and scale, this could be easily incorporated in the presented
framework. Hence, our proposed framework is highly general
method of combining results from different types of trackers
and easily extensible.

If all the experts have normal distribution with µk,Σk

as mean and covariance matrix, the resulting best location
of center of bounding box x can be obtained analytically
because product of normal distributions yields a normal
distribution.

p(x|θT1 , θT2 , ..., θTK
) =

K∏
k=1

1

2π|Σk|
1
2

exp(− 1
2 [x− µk]TΣk

−1[x− µk])

∫ K∏
k=1

pk(x|θk)dx

(2)

The resulting probability density function (pdf) can be ob-
tained after some algebraic manipulation as

p(x|θT1 , θT2 , ..., θTK
) ∼ N (µ,Σ), where

Σ−1 =

K∑
k=1

Σk
−1, µ = Σ

(
K∑
k=1

Σk
−1µk

)
(3)

Intuition behind this model is shown in Figure 3. In the
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Fig. 3: Two tracking experts on sides and resulting POTE
model in middle with Gaussian pdfcontours on right. One
tracker has associated Gaussian with mean = [245, 270]T and
variance = diag([16.66, 25]), second tracker has associated
Gaussian with mean = [255, 275]T with same variance, when
combined using PoTE model results into a Gaussian with
mean = [250, 272.5]T and variance =diag([8.33, 12.5])

current implementation, we focus on a PoTE based genera-
tive - discriminative tracking method. We exploit combina-
tion of interest points, dense optical flow for tool end-effector
tracking from low-level tool detection algorithms. Bounding
box produced by each tracker (BBk) is represented as a
2D spatial Gaussian BBk ∼ N (µk,Σk). We hypothesize
location of the bounding box to be normally distributed in
the image plane with its centroid [xkCB , y

k
CB ]T as mean, and

width (wB) and height (hB) as uncertainty in its location (6
× variance).

µk = [xkCB , y
k
CB ]T ,Σk =

1

6

[
wkB 0
0 hkB

]
(4)

Hence, outputs of point tracking and dense optical flow track-
ing is converted to probability distributions using Equation 4.
DPM based detector (det) provides many bounding boxes
along with their corresponding detection score τ as output.
A detection is included in tracking experts mix only if it is
deemed reliable, which is evaluated by an indicator function.
This indicator function I is defined in Equation 5 as

I =

{
1 if(τ ≥ τthresh) ∧ (BBdet

⋂
BBet−1)

0 otherwise
(5)

In Equation 5, τthresh is a predetermined threshold on
detection scores for including only reliable detections. Ad-
ditionally, only relevant detections are considered to track
a tool e on current frame (time t) by evaluating whether a
particular detector predicted bounding box BBdet intersects
with bounding box of tool end-effector in last frame (time
t− 1). If multiple detections have indicator function I as 1,
we select the bounding box which has the maximum score.



Additional ways of selecting a bounding box given by a tool
detector could be based on velocity and size information as
proposed by [3]. Once a particular detection bounding box
is selected, the detector is modeled as an expert by using
Equation 4. The size of the finally generated track is selected
as the size of last associated detection.

The key benefits in our current implementation ensue from
complementary nature of the two constituent probabilistically
merged approaches – Point feature based tracking, which is
robust for small motion and Region based tracking, which
works well in case of significant motion. As a result, our
tracker shows robust tracking for scenarios which involve
unconstrained surgical tool activities as shown in Figure 5.
We now describe individual experts apart from tool detection
in our current implementation.

A. Point Feature Based Tracking

Kanade-Lucas-Tomasi (KLT) first introduced by Lucas
and Kanade [17], is a point feature tracker extensively used
for computer vision tasks. This algorithm finds good spatial
features to track by locating Harris corners in an image.
To track a particular feature, a window centered on feature
point in current image is matched in next image by Newton-
Raphson method of minimization. This can be made robust
by performing the matching across an image pyramid. We
use Stan Birchfield’s [2] implementation of KLT to achieve
tracking of feature points. KLT based tracker needs an
initialization from tool detection to identify the region in
current image that has to be tracked in subsequent images.
Process of tracking using KLT is pictorially depicted in
Figure 4.

To initialize the KLT tracker, we evaluate feature points
inside the bounding box in current frame. Assuming
[xB(t), yB(t), wB(t), hB(t)] is the axis aligned bounding
box, where [xB(t), yB(t)]T is left top corner of bounding box
in the image and (wB(t), hB(t)) specify width and height of
the bounding box respectively at frame t. Geometric location
of each feature point is obtained relative to top left point
of the bounding box, thus encoding relative geometrical
location of all the features with respect to bounding box.

Gx(t, j) = (xB(t)− xf (t, j)),

Gy(t, j) = (yB(t)− yf (t, j))
(6)

Gx(t, j), Gy(t, j) stores relative (x, y) location of j th fea-
ture on frame t. In second step, these features are tracked in
next image using KLT. Since robotic surgical tools are highly
articulated systems, only a part of original feature points are
tracked and considered after this step.

xB(t+ 1, j) = (Gx(t, j) + xf (t+ 1, j)),

yB(t+ 1, j) = (Gy(t, j) + yf (t+ 1, j))

xB(t+ 1) =

J∑
j=1

wjxB(t+ 1, j),

yB(t+ 1) =

J∑
j=1

wjyB(t+ 1, j)

(7)

where wj is the weight associated with each feature point
as obtained from the normalized objective residual in KLT
minimization such that

∑J
j=1 wj = 1. Each tracked feature

carries the geometrical relationship from previous frame and
votes for current location of bounding box by assuming that
collection of large number of features can diminish the effect
of noise in location of bounding box using (7), where (xB(t+
1, j), yB(t + 1, j)) is location of the top-left corner of the
bounding box as predicted by j th feature on frame t + 1.
Width and height of bounding box are updated based on the
tracking output from the previous time step.

B. Dense Optical Flow

This tracker is based on extracting dense optical flow [4]
and predict the bounding box in next frame. Optical flow
measures apparent motion of a pixel between two images
assuming that its brightness remains constant in both images.
We start tracking by using the detections with confidence
measure above a given threshold τthresh. In each frame,
we obtain the optical flow between two frames for all the
pixels belonging to the desired bounding box. The location
of bounding box in next frame is a result of flow in all the
pixels and is approximated by the mean flow of all the pixels.
Width and height of the bounding box is updated based on
tracking output from the previous associated detection with
current tool end-effector track.

V. EXPERIMENTS

We propose a new dataset consisting of 8 small sequences
(1500 frames) for “Clamp” class and 8 sequences (1650
frames) for “Tool” class acquired while performing Hys-
terectomy surgery using dVSS to conduct our evaluation.
To the best of our knowledge, there are no publicly available
datasets for testing our tool tracking algorithm. The proposed
dataset has real-world video-sequences with various artefacts
including tool articulations, occlusions, rapid appearance
changes, fast camera motion, motion blur, smoke and spec-
ular reflections. This dataset was then manually annotated
for the bounding boxes of the tools in every frame. The
overall accuracy of our PoTE method is then evaluated using
standard performance measures [18] by calculating True
Positive (TP), False Positive (FP), True Negatives (TN) and
False Negatives (FN). We treat a bounding box in image to be
True Positive if the pascal measure (ratio of area intersection
and area union) in image frame is greater than 0.5, which is
commonly used for measuring accuracy of object detection
detection methods [8]. We test a baseline tracker using
detection and KLT tracking for both tool classes on the
proposed dataset and PoTE tracker with detection, optical
flow and KLT as experts. As shown in Table I, our algorithm

Tool Type Baseline PoTE
Clamp 68.27% 75.81%
Tool 28.04% 63.31%

TABLE I: Accuracy using Baseline and PoTE tracker

outperforms the baseline method on this challenging dataset



(a) Step 1 - Corner Detection (b) Step 2 - Feature Tracking (c) Step 3 - Reconstruction

Fig. 4: Flow diagram of tracking using KLT

for both the tool types. Baseline method’s performance
worsens on “Tool” class because of rapid perceived motion
associated camera pose/zoom changes, articulation and tool
motion. “Clamp” is usually kept stationary in surgery to
hold the tissue while “Tool” is used to perform tissue
cutting as can be seen from results in Figure 5. Additionally,
the proposed point feature based tracking method is only
suitable for rigid motion in image frame as can be observed
in reconstruction step in Equation 7. We will release the
annotated dataset and our code upon publication to encourage
further research into this problem.

VI. DISCUSSION

This paper proposed a novel tool detection and tracking
approach using uncalibrated monocular surgical videos for
computer-aided surgical interventions. The resulting detec-
tion and tracking PoTE framework gives good results by
probabilistically-merging tracking outputs. This framework
has been tested on real surgeries and shows improvement
upon the baseline results. In our future work, we plan to
investigate hierarchical coarse-to-fine flow techniques [1]
and feature matching techniques [16] that can handle rapid
motions for incorporation into PoTE model.
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Fig. 5: Tracking results for “Tool” and “Clamp” on various surgical operation videos in proposed dataset. (Please view in
color)


