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Abstract—Temporal evolution in the generative distribution
of nonstationary sequential data is challenging to model. This
paper presents a method for retaining the information in
prior distributions of matrix variate dynamic linear models
(MVDLMs) as the eigenspace of sequential data evolves. The
method starts by constructing sliding windows — matrices
composed of a fixed number of columns containing the most
recent point-in-time multivariate observation vectors. Charac-
teristic time series, the right singular vectors, are extracted
from a window using singular value decomposition (SVD).
Then, a sequence of matrices capturing the rotation and
scaling of the eigenspace is specified as a function of adjacent
windows’ characteristic time series. The method is tested on
observations derived from daily US stock prices spanning 25
years. The results indicate that models constructed using sliding
window SVD and MVDLMs, as extended in this paper, are
resistant to over-fitting and perform well when used in portfolio
construction applications.

Keywords-Online regression methods; unsupervised meth-
ods; applications of dynamic, online, incremental learning.

I. INTRODUCTION

We present a comprehensive, self-contained, unsupervised
approach to modeling nonstationary sequential distributions
using state space models with multivariate Gaussian latent
variables. We require greater flexibility than the linear dy-
namical systems (LDS) discussed by Bishop [1, Ch. 13.3],
where the models are intended for stationary sequential dis-
tributions. In particular, we specify time-varying transition
and emission matrices. A static transition matrix is typically
used to deterministically update components of a state vec-
tor, for example (position, velocity, acceleration)T, as the
sequence progresses. In a novel extension, we specify time-
varying transition matrices to accommodate data sequences
with an evolving eigenspace. In essence, the definition of
the state vector evolves as the sequence advances. We use
transition matrices to transform a posterior distribution from
the coordinate system of a previous window, into a prior
distribution in the coordinate system of a current window.
We use time-varying emission matrices, specified by charac-
teristic time series extracted using singular value decompo-
sition in the current window, to model common variation
across the multivariate sequence. Figure 1 illustrates the
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Figure 1. The dominant common factor in a high dimensional nonstation-
ary sequential data set, the first difference of daily log prices (“returns”) for
approximately 1500 large US stocks, January 1987 to July 2012. The 25+
year daily time series is constructed by splicing characteristic time series
— right singular vectors extracted using SVD — from sliding windows 252
trading days (approximately 1 year) in length. The construction maintains
the relative magnitude of adjacent values throughout the sequence. The
crash of ’87, dot-com era, and recent financial crisis are clearly visible.
Scaling shows the most recent 252 trading days with unit variance.

extraction of the dominant common source of variation from
a data sequence we use to demonstrate our approach, a real
nonstationary multivariate data set obtained from the Mar-
ketMap Analytic Platform North American Pricing database
[2]. The sequential observations are the first difference of log
prices, log(pi,t/pi,t−1), for approximately 1500 large US
stocks over a 25 year period (6300 trading days). We show
evidence that our approach successfully resists over-fitting,
yielding parameter estimates with a significantly greater
density of zero entries. This approximately sparse estimated
parameter structure arises naturally, without resorting to the
forced imposition of a sparse graphical structure. We use
the parameter estimates to construct evolving covariance
matrices for the data stream; and, ultimately we use the
sequence of estimated covariance matrices to construct two
strategy portfolios each day. We report attractive back test
performance of the portfolios built using our daily estimated
parameters.



II. BACKGROUND

A. Investment management

Successful portfolio construction requires robust multi-
variate statistical models to quantify the individual and joint
distribution of asset price movements. Investment manage-
ment seeks to maximize return and to minimize risk. Return
is the change in an investment’s value over a period of time,
calculated as the first difference of log prices, log(pt/pt−1),
a transformation that yields a distribution approximately
normal [3, Ch. 3]. Factor returns are common sources
of returns. The return of a stock is modeled as a linear
function of factor returns and residual stock specific return.
Risk is the standard deviation of return. Risk models are
estimated return covariance matrices. The trade-off between
maximizing return and minimizing risk is initially explored
by Markowitz [4], and combined in a statistic known as the
Sharpe ratio [5] that measures return per unit of risk.

B. Risk models

The construction of risk models is challenging due to the
non-stationary, high dimensional nature of financial time
series [6]. Furthermore, the number of stocks nt is not
constant, evolving as companies arise through IPOs or spin-
offs, and disappear due to events such as mergers, takeovers,
buyouts and bankruptcy. We subscript nt to emphasize the
fact that the number of companies varies over time. The
characteristics of individual companies also change due
to innovation and obsolesce of products, acquisitions, and
divestitures. At the portfolio level, factors broadly impacting
prices vary as well. Pervasive evolution forces a local
focus in the return series, reducing the effective number
of observations τ . The combined effects of non-stationarity,
high stock dimension nt, and low number of observations
τ , τ � nt, makes the direct estimation of the nt × nt
return covariance matrix impractical. Practitioners resort to
factor models and structured covariance matrices [7, Ch. 9]
to overcome these challenges.

C. Factor sources

A variety of sources for factor returns are considered in
the literature. A comparison of macroeconomic, fundamen-
tal, and statistical factors appears in [8]. Macroeconomic
factor models use observable economic series for the factor
returns, and estimate factor loadings. Fundamental factor
models use observable attributes such as industry, earnings
and dividends for the factor loadings, and estimate factor
returns cross sectionally. Statistical factor models extract
latent times series such as those identified by principal
components analysis (PCA) or singular value decomposition
(SVD) for use as factor returns, and estimate factor loadings
by some form of regression. Financial index models [9]
are somewhat a hybrid of fundamental factor and statistical
factor models, in that the explanatory time series arise from
portfolios constructed based on observable stock attributes;

Table I
TRANSLATING THE NOTATION OF LDS TO MVDLMS

Matrix variate
Linear dynamical systems dynamic linear models

zt latent variables Θt p× nt system matrix
A transition matrix Gt p× p evolution matrix
Γ transition variance matrix W t p× p left variance matrix

Ψt nt × nt right variance matrix
transition distribution system distribution
(zt|zt−1) ∼ (Θt|Θt−1) ∼

N [Azt−1,Γ] N [GtΘt−1,W t,Ψt]
matrix normal distribution

[11, Ch. 16.4.2]

xt observed variables Y t nt × 1 observation matrix
C emission matrix F t p× 1 design matrix
Σ emission variance matrix Ψt nt × nt observation variance

same as right variance ↑
emission distribution observation distribution
(xt|zt) ∼ (Y T

t |Θt) ∼
N [Czt,Σ] N

[
F T

tΘt,Ψt

]
µ0 initial latent variable mean m0 initial information mean
V 0 initial latent variable varianceC0 initial information variance

but, the factor loadings are determined by regression. Using
the Connor [8] taxonomy, our approach is statistical. We
extract explanatory series from a data stream, and model
the dependence of individual assets on these evolving char-
acteristic series using a matrix variate dynamic linear model.

D. Constructing portfolios

An analytic methodology for maximizing the Sharpe ratio
is presented by Chen et al. [10]. Given an estimated return
vector α̂ and an estimated covariance matrix Σ̂, the asset
weight vector w defining the portfolio with the maximum
Sharpe ratio is:

w ∝ Σ̂
−1
α̂ . (1)

Constraining the sum of the weights, 1Tw = 1, we identify
a unique vector w given α̂ and Σ̂.

E. Matrix variate dynamic linear models

We will describe our application primarily in the frame-
work of matrix variate dynamic linear models (MVDLMs)
[9, 11], due to the established notation and extensive liter-
ature for modeling nonstationary sequential data, including
the routine treatment of time varying transition and emission
matrices. Table I provides a quick summary of notational dif-
ferences between the two equivalent frameworks, LDS and
DLMs. The matrix variate DLM form allows consideration
of multiple observation series simultaneously. The observed
response Yt is an nt-vector of asset returns Yi,t. The time
t observation equation is:

Y T
t = F

T
tΘt + ε

T
t , εt ∼ N [0,Ψt] (2)



Θt is the p×nt latent parameter matrix. F t is a p×1 design
matrix. εt is an nt-vector of observation errors. Ψt is a
nt × nt diagonal observation variance matrix. (2) expresses
the view that we observe a linear function of the system
matrix Θt, a design matrix F t, and noise vector εt.

In our application described below, Λt, the covariance of
the design matrix Ft is the identity matrix by construction.
The time t asset covariance matrix is:

Σt = ΘT
tΛtΘt + Ψt = ΘT

tΘt + Ψt (3)

The time t evolution equation for the system matrix is:

Θt = GtΘt−1 + Ωt, Ωt ∼ N [0,W t,Ψt] , (4)

where Ωt is matrix normal [12] with row covariance W t

and column covariance Ψt. (4) describes the evolution of
the system matrix Θt. Gt is a deterministic component, the
specification of which we will propose and discuss in detail
in §III-E. Ωt captures stochastic evolution of the system
matrix.

III. METHODOLOGY

A. Constructing sliding windows

Subsequent to each trading day t, we construct a sliding
window, the nt× τ matrix of asset returns Xt . Columns 1
to τ correspond to time periods t − τ + 1 to t. Rows 1 to
nt contain transposed individual asset return vectors, scaled
to unit length for the window. We use τ = 252 periods
(approximately 1 year), nt ≈ 1500 assets, and p = 10
common factors. The value of nt is determined by including
the top 95% of the market capitalization of US stocks from
the historical pricing data base [2] on day t.

B. Singular value decomposition (SVD)

The font in (5) is to emphasize that the SVD scale matrix
St is unrelated to the DLM estimated observation variance
matrix St used elsewhere in this paper. We use SVD [13]
to extract characteristic time series from the sliding window
Xt. Our approach to identifying characteristic time series
is similar to [14], although Connor and Korajczyk use
asymptotic principal components. Connor and Korajczyk
propose a two pass approach, down-weighting outlier asset
return series in the second pass. They note the results change
little with the second pass when the characteristic series are
extracted from a large matrix of asset returns. Informally,
this implies that a few noisy time series do not materially
degrade the identification of pervasive time series; and, that
the inherent noise reduction of a PCA or SVD approach
is effective. A discussion of SVD and its relation to PCA
appears in [13]. Using SVD, we factor Xt:

Xt = U tStVT
t (5)

The first p columns of right singular vectors Vt correspond
to the p largest singular values in diagonal matrix St.

These p vectors are orthonormal, and explain the maximum
variation in the rows of Xt possible when limiting an
approximation to rank p.

C. Specifying the design matrix

The first p entries from the last row of Vt, transposed
and scaled by

√
τ to attain unit variance, define our p × 1

design matrix Ft. In §III-E, we will need to access several
rows from Vt similarly scaled and transposed. We will refer
to the larger p× τ design matrix as F t.

D. Achieving continuity across sliding windows

The SVD’s right singular vectors, interpreted as charac-
teristic time series (factors) in this application, rotate, scale,
permute order, and rise or fall from consideration as the
data window slides forward in time. In a novel contribution
of this paper, we accommodate these transformations of
parameter space using the evolution matrices Gt. This
permits the latent parameter posterior distributions from one
period to be carried forward as prior distributions in the
next period. PCA or SVD typically identify a distinct eigen
basis in each window. Discussions in the literature focus
on eigenspace tracking [15]. We want to track the current
eigenspace and retain accumulated knowledge in the form
of prior distributions as the eigenspace evolves. We address
the second requirement by specifying a series of evolution
matrices Gt.

E. Specifying the evolution matrices

It is desirable to require approximately equal predictions
in adjacent windows, when using each window’s distinct
basis, parameter estimates, and design matrix:

FT
tat ≈ FT

t−1mt−1 . (6)

As discussed in §III-F below, matrix at is the mean of
the prior distribution at time t; and mt is the mean of
the posterior distribution at time t− 1. Matrix F t provides
characteristic returns for the period t − τ + 1 to t. Matrix
F t−1 provides characteristic returns for the period t− τ to
t−1. To avoid excessively intricate notation in (6), we refer
implicitly to the overlapping (τ − 1)× p matrices of scaled
right singular vectors from adjacent data windows, for the
common period t− τ + 1 to t− 1.

Pre-multiplying (6) by the left inverse of FT
t , we express

the time t prior distribution mean at as a function of the
matrices F t−1, F t, and mt−1:

at ≈
(
F tFT

t

)−1

F tFT
t−1mt−1 , (7)

and identify the evolution matrix Gt required by (4) and (9)
as:

Gt =
(
F tFT

t

)−1

F tFT
t−1 . (8)



F. Estimating latent parameters

1) Prior distribution: Following [11, Ch. 16.4] and [9,
§7], the joint matrix normal / inverse Wishart prior with
δνt−1 degrees of freedom for Θt and Ψt at time t is:

(Θt,Ψt|Dt−1) ∼ NW−1
δνt−1

[at,Rt, δSt−1] where

at = Gtmt−1 and Rt = GtCt−1G
T
t +W t.

(9)

Particular to our approach, Gt performs a change of basis
operation on the posterior distribution from the previous
period. Then, as is standard, the prior variance is inflated
with the addition of the W t term to capture evolution
variance entering the system. In this application, we specify
W t ≈ 4× 10−6I .

2) Forecast distribution: Using the most recently ob-
served p × 1 design matrix F t discussed in §III-C, the
multivariate normal conditional / multivariate T marginal
one-step forecast distributions for Yt are:

(Y t|Ψt, Dt−1) ∼ N [f t, QtΨt] and

(Y t|Dt−1) ∼ Tδνt−1
[f t, δQtSt−1] where

f t = a
T
tF t and Qt = F T

tRtF t + 1.

(10)

3) Posterior distribution: The joint matrix normal / in-
verse Wishart posterior with νt degrees of freedom for Θt

and Ψt at time t is:

(Θt,Ψt|Dt) ∼ NW−1
νt [mt,Ct,St] where

mt = at +Ate
T
t , Ct = Rt −AtA

T
tQt,

νt = δνt−1 + 1, St = δSt−1 + ν−1
t ete

T
t /Qt,

At = RtF t/Qt, and et = Y t − f t.
(11)

(Θt−1,Ψt−1|Dt−1) ∼ NW−1
νt−1

[mt−1,Ct−1,St−1]
(12)

Given our assumption that Ψt is diagonal, we only
maintain the diagonal elements of St.

G. Constructing risk models

We construct an nt × nt structured covariance matrix
after each trading day t using estimates from (9); and,
to obtain the next period’s estimated observation variance
matrix Σ̂t+1 before observing the p × 1 vector F t+1, we
use the random regression vector DLM framework of Wang
and Carvalho [9, §7]. We assume Gt+1 = I (no change to
the eigenspace), and following [9, Thrm. 2.(iii)], obtain:

Σ̂t+1 = aT
t+1at+1 + (1 + tr(Rt+1))St . (13)

Comparing (13) with (3), it is apparent we increase the
scale of the estimated observation variance matrix St to

account for parameter uncertainty expressed in the prior
variance Rt+1. Note that we really need Σ̂

−1

t+1 rather than
Σ̂t+1 for portfolio construction as noted in (1) and (14). To
invert the structured covariance matrix (13), we exploit the
ease of inverting diagonal matrix St, and use the Sherman-
Morrison-Woodbury formula [16].

IV. DISCUSSION OF MVDLM FACTOR LOADINGS

The matrix variate DLM appears to resist over-fitting.
When reviewing the distribution of elements in the estimated
latent parameter matrices, the increase in the density of zero
elements in Figure 2 relative to the estimates obtained from
PCA is striking. While PCA seeks to concisely duplicate the
data presented, the matrix variate DLM appears to be well
regularized by its prior distribution. Note the distribution of
loadings on the first characteristic time series are similar
across methods. For the remaining factor loadings, the ma-
trix variate DLM output is significantly more concentrated
around zero.

Upon reflection, this property is perhaps expected. The
explanatory time series are independent by construction.
The superposition principle [11] permits the composition
of independent univariate models. To the extent that the
superposition principle is valid, we would expect a DLM
to produce zero loadings on irrelevant series in univariate
components; and, similarly to produce zero loadings in
an equivalent multivariate composite. This approximately
sparse output and its explanation deserve further study.

V. PORTFOLIO STRATEGIES

A. Obtaining the asset weight vectors

For each trading day during the 25 year period January
1987 to December 2011, we construct four portfolios: maxi-
mum Sharpe ratio (MSR), global minimum variance (GMV),
equal weight (EW), and capitalization weight (CW). The first
two portfolios require a risk model, the second two portfolios
do not. Using our unsupervised approach, composed of
sliding window SVD and matrix variate DLMs, we construct
risk models each day for approximately 1500 assets for 25
years (approximately 6300 trading days) using a historical
data set [2]. The risk models are then used to construct
the GMV and MSR portfolios; and, we construct the CW
and EW portfolios without a risk model. The CW weights
are proportional to each asset’s capitalization, i.e. shares
outstanding × price per share. The EW weights are simply
n−1
t for each asset.
For GMV and MSR, we must specify an estimated return

vector α̂t. The GMV strategy [17] assumes that all assets
have equivalent expected returns, so we specify a constant
positive value for all entries of α̂GMV. The MSR strategy [18]
assumes that all assets have equivalent risk adjusted returns,
αi
σi

=
αj
σj
∀ i, j, so we specify the estimated individual

standard deviations σ̂i for the entries of α̂MSR.
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Figure 2. Comparison of the distribution of factor loading (latent parameter) estimates for December 30, 2011. Estimates obtained using the method of
Connor and Korajczyk [14] are labeled pca / ols. Estimates obtained using the method proposed in this paper are labeled svd / mvdlm. Our method results
in a greater density of zero factor loading estimates. Four of ten factor loading spectra shown. Omitted factor loading spectra show a similar progression
towards sparsity.

Given Σ̂t, α̂GMV, and α̂MSR, portfolio weights are computed
using the appropriate choice for vector α̂t:

wt =
Σ̂

−1

t α̂t

1TΣ̂
−1

t α̂t
(14)

where 1 is a nt-vector of ones, and the denominator scales
the weights such that 1Twt = 1.

B. Results

We compare the Sharpe ratios of the four strategies during
sub-periods of 5 years, and for the entire 25 year period. The
results are for zero-investment strategies. We deduct funding
expenses: the long positions are charged the risk-free rate
plus 25 basis points (bp); cash from short positions receives
the risk-free rate less 25 bp. We deduct transaction costs of
10 bp when rebalancing.

CW is the default diversified benchmark for the capital
asset pricing model (CAPM) [19]. The current popularity
of the other three strategies — EW, GMV, and MSR — is
indicative of the fact that the efficient market hypothesis is
questioned by practitioners and investors. In fact, all three
alternative strategies beat the CW results on a risk adjusted

basis (Sharpe ratio) over the 25 year back test, as shown in
Figure 3(b) and Table II. The GMV and MSR portfolios
are broadly similar in risk, with MSR having generally
higher returns than GMV. The CW and EW portfolios are
similar in risk, with EW having generally higher return
than CW. Relative to the CW and EW portfolios, the risk
model exploited by the GMV and MSR portfolios resulted in
dramatically lower risk in each of sub-period. Surprisingly,
the ex post risk of the MSR portfolio was similar or lower
than the GMV portfolio in several sub-periods and for
the full period. The MSR portfolio lived up to its name,
maximum Sharpe ratio, in 3 of the 5 periods and overall.
When MSR did not dominate, it remained competitive with
the dominant strategy for the period.

VI. SUMMARY

We proposed a novel method to specify the evolution
matrices required to convey prior information across an
evolving eigenspace in matrix variate dynamic linear mod-
els. We demonstrated the effective implementation of this
method in a portfolio construction application requiring the
estimation of a high dimensional statistical model. We noted
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Figure 3. Results of a 25 year back test for four portfolio strategies. CW – capitalization weighted portfolio; EW – equal weighted portfolio; GMV –
global minimum variance portfolio; and, MSR – maximum Sharpe ratio portfolio. The CW and EW portfolios do not require a risk model. The GMV and
MSR portfolios are constructed using the risk model specified in §III.

Table II
STRATEGY PERFORMANCE

Maximum Sharpe Global Minimum Equal Weight Capitalization
Ratio Portfolio Variance Portfolio Portfolio Weight Portfolio

Annualized Sharpe Annualized Sharpe Annualized Sharpe Annualized Sharpe
Dates Return Volatility Ratio Return Volatility Ratio Return Volatility Ratio Return Volatility Ratio

1987 - 1991 2.19 3.99 0.55 1.08 3.66 0.30 9.96 15.00 0.66 10.02 17.67 0.57
1992 - 1996 5.93 2.86 2.07 4.11 2.89 1.42 13.69 8.58 1.60 9.52 8.72 1.09
1997 - 2001 3.44 4.62 0.74 1.60 4.34 0.37 12.79 18.34 0.70 7.01 19.76 0.35
2002 - 2006 7.13 3.30 2.16 6.94 3.81 1.82 14.94 15.77 0.95 7.20 15.64 0.46
2007 - 2011 0.91 3.80 0.24 -1.41 5.72 -0.25 9.79 29.62 0.33 1.91 27.28 0.07
1987 - 2011 3.99 3.77 1.06 2.40 4.20 0.57 12.30 18.51 0.66 7.15 18.63 0.38

a high density of zeros in the estimated parameter matrices,
particularly in contrast with existing methods. We hope our
technique, in expanding the utility of standard tools such as
SVD and matrix variate DLMs, will encourage their use in
other challenging high dimensional, dynamic domains.
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