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Abstract—Metric learning is a key problem for many data mining and machine learning applications, and has long been dominated
by Mahalanobis methods. Recent advances in nonlinear metric learning have demonstrated the potential power of non-Mahalanobis
distance functions, particularly tree-based functions. We propose a novel nonlinear metric learning method that uses an iterative,
hierarchical variant of semi-supervised max-margin clustering to construct a forest of cluster hierarchies, where each individual
hierarchy can be interpreted as a weak metric over the data. By introducing randomness during hierarchy training and combining the
output of many of the resulting semi-random weak hierarchy metrics, we can obtain a powerful and robust nonlinear metric model. This
method has two primary contributions: first, it is semi-supervised, incorporating information from both constrained and unconstrained
points. Second, we take a relaxed approach to constraint satisfaction, allowing the method to satisfy different subsets of the constraints
at different levels of the hierarchy rather than attempting to simultaneously satisfy all of them. This leads to a more robust learning
algorithm. We compare our method to a number of state-of-the-art benchmarks on k-nearest neighbor classification, large-scale image
retrieval and semi-supervised clustering problems, and find that our algorithm yields results comparable or superior to the state-of-the-
art.

Index Terms—clustering, classification, and association rules; data mining; image/video retrieval; machine learning; similarity
measures
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1 INTRODUCTION

MANY elemental data mining problems—nearest
neighbor classification, retrieval, clustering—are

at their core dependent on the availability of an ef-
fective measure of pairwise distance. Ad hoc selection
of a metric, whether by relying on a standard such as
Euclidean distance or attempting to select a domain-
appropriate kernel, is unreliable and inflexible. It is thus
attractive to approach metric selection as a learning
problem, and attempt to train strong problem-specific
distance measures using data and semantic information.

A wide range of methods have been proposed to
address this learning problem, but the field has tra-
ditionally been dominated by algorithms that assume
a linear model of distance, particularly Mahalanobis
metrics [1]. Linear methods have primarily benefited
from two advantages. First, they are generally easier to
optimize, allowing for faster learning and in many cases
a globally optimal solution to the proposed problem [2],
[3], [4], [5]. Second, they allow the original data to be
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easily projected into the new metric space, meaning the
metric can be used in conjunction with other methods
that operate only on an explicit feature representation
(most notably approximate nearest neighbor methods—
needed if the metric is to be applied efficiently to large-
scale problems).

However, for many types of data a linear approach
is not appropriate. Images, videos, documents and his-
togram representations of all kinds are ill-suited to linear
models. Even an ideal Mahalanobis metric will be unable
to capture the true semantic structure of these types of
data, particularly over larger distances where local lin-
earity breaks down. Kernelized versions of popular Ma-
halanobis methods [2], [6] have been proposed to handle
such data, but these approaches have been limited by
high complexity costs. For this reason, researchers have
begun to seek alternate metric models that are inherently
capable of handling nonlinear data.

These nonlinear metrics are necessarily a broad class
of models, encompassing a range of learning modalities
and metric structures. One early example of nonlinear
metrics (for facial recognition, in this case) by Chopra et
al. [7] was based on deep learning strategies. The method
was effective, but required long training times and exten-
sive tuning of hyperparameters. Other methods sought
to resolve the problem by taking advantage of local
linearity in the data, and learning multiple localized
linear metrics [8], [9], [10], [11]. These techniques have
generally proven superior to single-metric methods, but
have also tended to be expensive.
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Most recently, several works have explored metrics
that take advantage of tree structures to produce flex-
ible nonlinear transformations of the data. Kedem et
al. [12] proposed a method that trained a set of gradient-
boosted regression trees and added the regression out-
puts for each region directly to the data, producing
an explicit nonlinear transformation that shifted similar
points together and dissimilar points apart. However,
this method relies heavily on the (linear) large-margin
nearest neighbor process used to initialize it, and often
closely mirrors its performance.

Finally, our previous work on this topic [13] formu-
lated the pairwise-constrained metric learning problem
as a pair-classification problem, and solved it by di-
rect application of random forests, yielding an implicit
nonlinear transformation of the data. However, while
this metric could be trained efficiently, it suffered from
poor scalability at inference time due to the lack of
an explicit feature representation, which made common
metric tasks such as nearest neighbor search expensive
on larger datasets.

In order to overcome the limitations of these methods,
we propose a novel tree-based nonlinear metric with
several advantages over existing algorithms. Our metric
first constructs a model of the data by computing a forest
of semi-random cluster hierarchies, where each tree is
generated by iteratively applying a partially-randomized
binary semi-supervised max-margin clustering objective.
As a result, each tree directly encodes a particular model
of the data’s full semantic structure, and the structure
of the tree itself can thus be interpreted as a weak
metric. By merging the output from a forest of these
weak metrics, we can produce a final metric model
that is powerful, flexible, and resistant to overtraining
(due to the independent and semi-random nature of the
hierarchy construction).

This methodology provides two significant contribu-
tions: first, unlike previous tree-based nonlinear metrics,
it is semi-supervised, and can incorporate information
from both constrained and unconstrained points into
the learning algorithm. This is an important advantage
in many problem settings, particularly when scaling to
larger datasets where only a tiny proportion of the full
pairwise constraint set can realistically be collected or
used in training.

Second, the iterative, hierarchical nature of our train-
ing process allows us to relax the constraint satisfaction
problem. Rather than attempting to satisfy every avail-
able constraint simultaneously, at each hierarchy node
we can optimize an appropriate constraint subset to
focus on, leaving others to be addressed lower in the
tree (or in other hierarchies in the forest). By selecting
constraints in this way, we can avoid situations where
we are attempting to satisfy incoherent constraints [14],
and thereby better model hierarchical data structures.

Additionally, we propose a scalable and highly accu-
rate algorithm for obtaining approximate nearest neigh-
bors within our learned metric’s space. This renders

the metric tractable for large-scale retrieval or nearest-
neighbor classification problems, and overcomes a major
limitation our previous tree-based metric.

2 SEMI-SUPERVISED MAX-MARGIN HIERAR-
CHY FORESTS

In this section we describe in detail our Hierarchy Forest
Distance (HFD) model, as well as our procedures for
training and inference. First, however, we must clarify
that, despite its name, HFD does not fit the strict defini-
tion of a distance metric. While our proposed measure
is symmetric and nonnegative, it does not satisfy the
triangle inequality. While this is a compromise from a
theoretical perspective, in practical terms it is a necessity.
In order to design a similarity measure capable of mod-
eling complex nonlinear spaces, the triangle inequality
must be violated.

2.1 Hierarchy forests

The structure of the HFD model draws some basic
elements from random forests [15], in that it is com-
posed of T trees trained independently in a semi-random
fashion, with individual nodes in the trees defined by a
splitting function that divides the local space into two or
more segments. Each hierarchy tree represents a distance
function H(a,b), where {a,b} ∈ Rd are points in the
original input space. The overall distance function is then

D(a,b) =
1

T

T∑
t=1

Ht(a,b) . (1)

However, there are significant differences between the
two methods. HFD is conceptually distinct from ran-
dom forests (and the Random Forest Distance (RFD)
metric [13]) in that the individual components of the
forest represent cluster hierarchies rather than decision
trees (we discuss this distinction and its implications in
Section 2.3). HFD also differs from the most common
form of random forest in that it does not do bootstrap
sampling on its training points, and its splitting func-
tions are linear combinations rather than single-feature
thresholds.

We will now describe our Hierarchy Forest Distance
model in detail. For a high-level overview, see Algo-
rithms 1 (learning) and 2 (inference).

2.2 Hierarchy forest distance

The full hierarchy forest distance is effectively the mean
of a number of weak distance functions Ht, each corre-
sponding to one hierarchy in the forest. These distance
functions, in turn, are representations of the structure
of the individual hierarchies—the further apart two in-
stances fall within a hierarchy, the greater the distance
between them (see Fig. 1). Specifically, we formulate
each metric as a modified form of a hierarchy distance
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function we previously proposed for use in hierarchy
comparison [16]:

Ht(a,b) =

{
0 if Htl(a,b)is a leaf node

pt(a,b) ·
|Htl(a,b)|

N otherwise,
(2)

where Ht represents a particular hierarchy, a and b are
input points, Htl denotes the lth node in Ht and Htl(a,b)
is the lowest node in Ht that contains both a and b.
The |·| notation represents the number of training points
(out of the training set of size N ) contained in a node’s
subtree. Pairs that share a leaf node are given a distance
of 0 because they are maximally similar under Ht, and
the size of the leaf nodes is defined by hyperparameter
rather than by data. Each non-leaf node Htl is assigned
(via max-margin clustering) a projection function Ptl and
associated binary linear discriminant Stl that divides the
data in that node between the two child nodes. pt(a, b)
is a certainty term determined by the distance of the
projected points a and b from the decision hyperplane
at Htl(a,b):

pt(a,b) =
1

1 + exp(α · Ptl(a,b)(xa))
−

1

1 + exp(α · Ptl(a,b)(xb))

, (3)

where α is a hyperparameter that controls the sensitivity
of p and Ptl(a,b) is the projection function at Htl(a,b) (see
(5)). Thus, p ranges from 0 to 1, approaching 0 when
the projections of both a and b are near the decision
boundary, and 1 when both are far away. The full
distance formulation for a hierarchy is also confined to
this range, with a distance approaching 1 corresponding
to points that are widely separated at the root node, and
0 to points that share a leaf node.

2.3 HFD learning and inference
The fact that the trees used in HFD represent cluster
hierarchies rather than decision trees has significant
implications for HFD training, imposing stricter require-
ments on the learned splitting functions. While the goal
of decision tree learning is ultimately to yield a set of
pure single-class leaf nodes, a cluster hierarchy instead
seeks to accurately group data elements at every level of
the tree. Thus, if the hierarchy learning algorithm divides
the data poorly at or near the root node, there is no way
for it to recover from this error later on. This is partially
mitigated by learning a forest in place of a single tree,
but even in this case the majority of hierarchies in the
forest must correctly model the high-level semantic re-
lationship between any two data elements.

For this reason, HFD requires a robust approach to
the hierarchy splitting problem that reliably generates
semantically meaningful splits. Additionally, in order to
allow for efficient metric inference, our splitting algo-
rithm must generate explicit and efficiently evaluable
splitting functions at each node.

Fig. 1. A small example of a single hierarchy metric,
illustrating how metric distance between two points is
determined by the tree depth at which the points are
separated and the projected distance of the two points
from their final max-margin splitting hyperplane.

Given these constraints, we approach the hierarchy
learning problem as a series of increasingly fine-grained
flat semi-supervised clustering problems, and we solve
these flat clustering problems via max-margin clustering
(MMC) [17], [18], [19], [20].

Max-margin clustering has a number of advantages
that make it ideal for our problem. In addition to their
widespread use in support vector machines for classi-
fication, max-margin and large-margin techniques have
proven highly effective in the metric learning domain [4],
[21], [22], and many, including MMC, can be solved
in linear time [20], [23], [24]. Most importantly, MMC
returns a simple and explicit splitting function which can
be computed efficiently and applied to points outside the
initial clustering.

We employ a novel relaxed form of semi-supervised
MMC, which uses pairwise must-link (ML) and cannot-
link (CL) constraints to improve semantic clustering
performance. Constraints of this type indicate either
semantic similarity (ML) or dissimilarity (CL) between
pairs of points, and do not require the availability of
class labels.

We describe our semi-supervised MMC technique in
Section 3.

2.3.1 HFD learning
We train each tree in the HFD model independently,
with each tree using the same data and constraint sets.
Training is hence easily parallelized. Assume an unla-
beled training dataset X0 and pairwise constraint set L0.
Denote a must-link constraint set LM0 and cannot-link
constraint set LC0 , such that L0 = LM0 ∪ LC0 .
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Algorithm 1 HFD learning
t← 0
for t < T do

BUILDTREE(t, 0, X0, L0)
t← t+ 1

end for

function BUILDTREE(t, l, Xtl, Ltl)
wtl ← LEARNSPLIT(Xtl, Ltl)
Create child nodes cL and cR
Divide Xtl among cL and cR using (6)
if |XtcL | > minsize then

Use XtcL to determine LtcL
BUILDTREE(t, cL, XtcL , LtcL )

end if
if |XtcR | > minsize then

Use XtcR to determine LtcR
BUILDTREE(t, cR, XtcR , LtcR )

end if
end function

function LEARNSPLIT(Xtl, Ltl)
Select split features Ktl and build XKtl via (4)
if LC 6= ∅ then

Use CCCP to solve (8) for wtl

else
Use block-coord. descent to solve (12) for wtl

end if
return wtl

end function

Training of individual trees proceeds in a top-down
manner. At each node Htl we begin by selecting and
storing a local feature subset Ktl by uniformly sampling
dk < d features from the full feature set. We then use Ktl
to construct our modified local data:

XKtl =
{[

xKtl
j 1

] ∣∣∣ xj ∈ Xtl ∈
}

. (4)

Where the unit feature appended to xKtl
j allows MMC

to learn a bias term.
For each node Htl, our split function learning al-

gorithm can operate in either a semi-supervised or
unsupervised mode, so before we begin learning we
must check for constraint availability. We require at
least 1 cannot-link constraint in order to carry out semi-
supervised MMC, so we check whether LCtl = ∅, and then
apply either semi-supervised or unsupervised MMC (see
Section 3) to XKtl and Ltl. The output of our split learning
algorithm is the weight vector wtl, which, along with Ktl,
forms the splitting function Stl:

Ptl(x) = wT
tl

[
xKtl
j 1

]
(5)

Stl(x) =

{
send x left Ptl(x) ≤ 0

send x right Ptl(x) > 0
. (6)

We then apply Stl to divide Xtl among Htl’s children.

After this, we must also propagate the constraints down
the tree. We do this by iterating through Ltl and checking
the point membership of each child node Htj—if Xtj

contains both points covered by a constraint, then we
add that constraint to Ltj .

As a result, constraints in Ltl whose constrained points
are separated by Htl’s splitting function effectively dis-
appear in the next level of the hierarchy. This results in a
steady narrowing of the constraint-satisfaction problem
as we reach further down the tree, in accordance with
the progressively smaller regions of the data space we
are processing. We continue this process until we reach
a stopping point (in our experiments, a minimum node
size threshold), falling back on unsupervised MMC as
we exhaust the relevant cannot-link constraints.

2.3.2 HFD Inference

Algorithm 2 HFD inference
function INFERDISTANCE(a,b)

t← 0
D ← 0
for t < T do

D ← D + TREEDISTANCE(t, 0,a,b)
t← t+ 1

end for
return D

T
end function

function TREEDISTANCE(t, l,a,b)
Retrieve split features Ktl and build aKtl and bKtl

Apply (6) to aKtl and bKtl to get Stl(a) and Stl(b)
if Stl(a) = Stl(b) then

return TREEDISTANCE(t, Stl(a),a,b)
else

return output of (2) for t, l,a and b
end if

end function

Metric inference on learned HFD structures is straight-
forward. We feed two points x1 and x2 to the metric and
track their progress down each treeHt. At each nodeHtl,
we compute Stl(x1) and Stl(x2). If Stl(x1) = Stl(x2), we
continue the process in the indicated child node. If not,
then we have foundHtl(x1,x2), so we compute and return
Ht(x1,x2) as described in (2). The results from each tree
are then combined as per (1).

3 LEARNING SPLITTING FUNCTIONS
In order to learn strong, optimized Ptl functions at
each hierarchy node, our method relies on the Max-
Margin Clustering (MMC) framework. In most nodes,
our method uses semi-supervised MMC (SSMMC) to
incorporate pairwise constraint information into the split
function learning process. Below, we describe a novel
relaxed SSMMC formulation (based on the state-of-the-
art method described in [24]) designed to function in our
hierarchical problem setting.
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3.1 Relaxed semi-supervised max-margin clustering

Semi-supervised MMC incorporates a set of must-link
(LM) and cannot-link (LC) pairwise semantic constraints
into the clustering problem. SSMMC thus seeks to simul-
taneously maximize the cluster assignment margin of
each point (as in unsupervised MMC) and an additional
set of margin terms reflecting the satisfaction of each
pairwise constraint.

Existing SSMMC formulations, however, are poorly
suited to hierarchy learning. Because cannot-link con-
straints disappear from the hierarchy learning problem
once they are satisfied (see Section 2.3.1), the number of
relevant cannot-link constraints will generally decrease
much more quickly than the number of must-link con-
straints. This will lead to highly imbalanced constraint
sets in lower levels of the hierarchy.

Under the original SSMMC formulation, imbalanced
cases such as these may well yield trivial one-class
solutions wherein the ML constraints are well satisfied,
but the few CL constraints are highly unsatisfied. To
address this problem, we simply separate the ML and
CL constraints into two distinct optimization terms, each
with equal weight.

Second, and more significantly, we must modify SS-
MMC to handle the iterative nature of the hierarchy
splitting problem. Consider a case with 4 semantic
classes: apple, orange, bicycle and motorcycle. In a bi-
nary hierarchical setting, the most reasonable way to
approach this problem is to first separate apples and
oranges from bicycles and motorcycles, then divide the
data into pure leaf nodes lower in the tree.

Standard SSMMC, however, will instead attempt to si-
multaneously satisfy the cannot-link constraints between
all of these classes, which is impossible. As a result, the
optimization algorithm may seek a compromise solution
that weakly violates all or most of the constraints, rather
than one that strongly satisfies a subset of the constraints
and ignores the others (e.g. that separates apples and
oranges from bicycles and motorcycles).

We handle this complication by relaxing the clus-
tering algorithm to focus on only a subset of the CL
constraint set, and integrate the selection of that sub-
set into the optimization problem. Thus, our variant
of semi-supervised MMC simultaneously optimizes the
discriminant w to satisfy a subset of the CL constraint
set LC′ ⊂ LC , and seeks the LC′ that can best be satisfied
by a binary linear discriminant.

For an empirical comparison of baseline SSMMC and
our relaxation, see Section 6.9.

3.1.1 Relaxed SSMMC formulation

First, we define some notation. LM and LC are the sets
of ML and CL constraints, respectively, and LM and LC

are the sizes of those sets. We set the size of the selected
CL constraint subset LC′ via the hyperparameter LC

′
. ηj

denotes a slack variable for pairwise constraint j, U is
the set of unconstrained points (i.e. points not referenced

by any pairwise constraint), U is the size of that set and
ξi are slack variables for the unconstrained points. j1
and j2 represent the two points constrained by pairwise
constraint j.

For convenience, define the following function repre-
senting the joint projection value of two different points
onto two particular cluster labels y1, y2 ∈ {−1, 1}:

φ(x1,x2, y1, y2) = y1w
Tx1 + y2w

Tx2 . (7)

We can now define our relaxed SSMMC formulation
thus:

min
w,η,ξ,LC′

λ

2
‖w‖2 + 1

LM

∑
j∈LM

ηj +
1

LC′
∑
j∈LC′

ηj +
C

U

U∑
i=1

ξi

s.t.
∀j ∈ LM,∀sj1, sj2 ∈ {−1, 1}, sj1 6= sj2 :

max
zj1=zj2

φ(xj1,xj2, zj1, zj2)− φ(xj1,xj2, sj1, sj2)

≥ 1− ηj , ηj ≥ 0

∃ LC′ ⊂ LC of size LC
′

s.t. :
∀j ∈ LC′ ,∀sj1, sj2 ∈ {−1, 1}, sj1 = sj2 :

max
zj1 6=zj2

φ(xj1,xj2, zj1, zj2)− φ(xj1,xj2, sj1, sj2)

≥ 1− ηj , ηj ≥ 0

∀i ∈ U :

max
ys
i
∈{−1,1}

2ysiw
Txi ≥ 1− ξi,

ξi ≥ 0 .
(8)

As in [24], the must-link and cannot-link constraints
each impose a soft margin on the difference in score
between the highest-scoring joint projection that satisfies
the constraint and the highest scoring joint projection
that does not satisfy the constraint. Each unconstrained
point is subject to a separate soft-margin constraint
enforcing strong association with a single cluster. The pa-
rameters λ and C are optimization weighting factors that
determine the relative importance of the max-margin
objective and the unsupervised slack variable objective,
respectively.

3.1.2 Semi-supervised MMC optimization

We optimize our SSMMC formulation via a Constrained
Concave Convex Procedure (CCCP) [25]. In most re-
spects, this is identical to the process used in [24].

The CCCP described in [24] consists of two steps per
iteration. In step one, the best cluster assignments (based
on the current w) for each point and constraint pair are
locked in, reducing the non-convex global optimization
problem to a convex local one. In step two, this convex
problem is solved via subgradient descent, yielding a
new w which is used to initialize the next iteration. This
process continues until the weight vector converges.

In our modified version of this process, step one
contains an additional component: the selection of the
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current LC′ . We define LC′ as the set of cannot-link con-
straints of size LC

′ ≤ LC that minimizes 1
LC′
∑
j∈LC′ ηj

(i.e. the sum of the cannot-link constraint margin vio-
lations). For a given w, this can be trivially optimized
by simply selecting the LC

′ ≤ LC cannot-link constraints
with the largest margins. The following subgradient op-
timization then considers only this constraint subset. As
with the cluster assignments, we update this selection at
each iteration, allowing the algorithm to converge jointly
(albiet locally) on an optimal discriminant function and
optimal set of cannot-link constraints to be satisfied at
the current level of the hierarchy.

Because CCCP finds only a local maximum, it is
sensitive to parameter initialization. We address this
problem in the same way as [24], using an LDA-like
heuristic to initialize w(0) based on the available pairwise
constraints:

SM =
1

LM

∑
j∈LM

(xj1 − xj2)(xj1 − xj2)
T (9)

SC =
1

LC

∑
j∈LC

(xj1 − xj2)(xj1 − xj2)
T (10)

SCw(0) = λeS
Mw(0) , (11)

with (11) being a straightforward general eigenproblem.
This process yields a w(0) that maximizes the ratio of
must-link-pair similarity to cannot-link-pair similarity.
We then initialize our chosen set of cannot-link con-
straints using this heuristically determined w(0).

3.2 Unsupervised MMC

Because HFD progressively eliminates constraints as the
hierarchy grows deeper (see Section 2.3.1), at lower
levels of the hierarchy we may encounter nodes where
there are no cannot-link constraints available, and hence
SSMMC cannot proceed [24]. In these cases, we com-
pute Ptl via the unsupervised Membership Requirement
MMC (MRMMC) formulation proposed in [20]:

min
w,ξ,β

λ

2
‖w‖2 + C

N

N∑
i=1

ξi +
1

2h
(β−1 + β1)

s.t.

∀i : max
ys
i
∈{−1,1}

2ysiw
Txi ≥ 1− ξi,

ξi ≥ 0,

j ∈ {−1, 1} : ∃ a set Lj containing h indices i s.t.

max
Lj

(
min
i∈Lj

2jwTxi

)
≥ 1− βj ,

(12)
This formulation uses (for all points) the same unsu-

pervised margin constraint seen in (8). However, in order
to prevent degenerate solutions in which all elements are
assigned to a single cluster, MRMMC enforces a mem-
bership requirement constraint, applying an additional
soft margin constraint that drives each cluster to have at
least h points strongly assigned to it (in our algorithm

we set h = max(1, U20 )). We optimize this problem via
block-coordinate descent as described in [20].

4 FAST APPROXIMATE NEAREST NEIGHBORS
IN HIERARCHY METRIC SPACE

Algorithm 3 Fast approximate HFD nearest neighbors
t← 0
O ← ∅
for t < T do
O ← O ∪ TREENEIGHBORS(t, 0,a)
t← t+ 1

end for
for {x ∈ O} do

INFERDISTANCE(x,a)
end for
return the k points in O with the smallest distance

function TREENEIGHBORS(t, l,a)
if l is a leaf node then
Otl ← kO points sampled from l
if |Xtl| < kO then

Sample from parent node(s) as needed
end if
return Otl

else
Retrieve split features Ktl and build aKtl

Apply (6) to aKtl to get Stl(a)
return TREENEIGHBORS(t, Stl(a),a)

end if
end function

One problem with this approach is the potentially high
(though still trivially parallelizable) cost of computing
each pairwise distance, as compared to a Euclidean or
even Mahalanobis distance. This is worsened, for many
applications, by the unavailability of traditional fast ap-
proximate nearest-neighbor methods (e.g. kd-trees [26],
hierarchical k-means [27] or hashing [28]), which require
an explicit representation of the data in the metric space
in order to function.

We address the latter problem by introducing our own
fast approximate nearest-neighbor process (described in
Algorithm 3), which takes advantage of the tree-based
structure of the metric to greatly reduce the number of
pairwise distance computations needed to compute a set
of nearest-neighbors for a query point x.

We begin by tracing the path taken by x through
each tree in the forest, and thus identifying each leaf
node containing x. We then seek kO candidate neighbors
from each tree, beginning by sampling other training
points from the identified leaf nodes, then, if necessary,
moving up the tree parent-node-by-parent-node until kO
candidates have been found. The candidate sets from
each tree are then combined to yield a final candidate
neighbor set O, such that |O| ≤ T ·kO. We then compute
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the full hierarchy distance D(x, y) for all y ∈ O, sort the
resulting distances, and return the k closest points.

This approximation method functions by assuming
that, intuitively, a point’s nearest-neighbors within the
full forest metric space are very likely to also be nearest-
neighbors under at least one of the individual tree met-
rics. We evaluate this method empirically on several
small-to-mid-size datasets, and the results strongly sup-
port the validity of this approximation (Section 6.2).

5 COMPLEXITY ANALYSIS

5.1 HFD training

First let q be the number of pairwise constraints, n be
the number of training points. The overall complexity of
standard semi-supervised max-margin clustering is then
O(d3 + d(q + n)) [24], which in our method becomes
O(d3k + dk(q + n)). The d3k component stems from the
initialization step of the optimization process (see Section
3.1.2), while dk(q + n) represents the CCCP procedure.
In our case, we must also compute LC

′
in each CCCP

iteration, adding an additional dk + q log q factor (the
cost of scoring and sorting the cannot-link constraint
margins). Our total cost for computing relaxed SSMMC
is thus O(d3k + dk(q + n) + q log q)

In our hierarchical setting, we are using SSMMC in
a divide-and-conquer fashion, which steadily reduces
n and q as the algorithm proceeds. If we assume that
we divide the data roughly in half with each SSMMC
operation, the second and third complexity components
become dk(q + n) log(q + n) + q log2 q for the whole tree.
The first component depends on the total number of
nodes, which is heavily dependent on the minimum
node size parameter. In the worst case, however, the
number of nodes is O(n), so the first complexity compo-
nent becomes nd3k, yielding a total training complexity
of O(nd3k + dk(q + n) log(q + n) + q log2 q) for each tree.
Given the trivially parallel nature of forest training, this
can also be considered the cost for training a full HFD
model, provided T processors are available.

This does mean that training time is strongly influ-
enced by the dk parameter. Fortunately, in cases where
both d and n are large, HFD can achieve strong perfor-
mance even with dk � d (see Section 6.8).

5.2 HFD inference

Computing a single HFD metric distance requires one
traversal of each tree in the forest, for a complexity
cost of O(Tdk log n). Many of the most common appli-
cations of a metric require computing nearest-neighbors
between the training set and a test set of size m. This re-
quires mn distance evaluations, so a brute force nearest-
neighbor search under HFD costs O(mnTdk log n), or
O(nTdk log n) for a single test point.

Our approximate nearest-neighbor algorithm signifi-
cantly reduces this cost. Computing candidate neighbors
for a single point costs only O(T log n). There will be at

most TkO candidates for each set, so the cost for com-
puting distances to each candidate is O(T 2kOdk log n),
or O(T 2dk log n) if we ignore the parameter. It should
be noted, however, that in practice there is significant
overlap between the candidate sets returned by different
trees, and this overlap increases with T . The actual cost
of this step is thus generally much lower.

Thus, the worst-case complexity of our approximate
nearest-neighbor method, when applied to an entire
dataset, is O(mT 2dk log n), or O(mTdk log n) if fully
parallelized, and in practice the performance is generally
much better than the worst case.

5.3 Memory complexity

In order to represent a trained cluster hierarchy in
memory, we must store the learned weight vector for
each node in each tree. The total number of nodes per
tree, again, is O(n) in the worst case. Storing the weight
vectors for a tree thus has O(ndk) memory complexity.

However, in order to enable our fast approximate
nearest neighbors algorithm, we must also store the set
of training points present in each node. The allocation
of training points to subtrees follows the divide-and-
conquer pattern, so the number of stored points in each
tree is O(n log n). The total memory complexity of HFD
is thus O(Tndk + Tn log n).

6 EXPERIMENTS

Below we present several experiments quantifying
HFD’s performance. First, we validate the accuracy and
efficiency of our approximate nearest-neighbor retrieval
method. We then carry out benchmark comparisons
against other state-of-the-art metric learning techniques
in the k-nearest neighbor classification, large-scale image
retrieval and semi-supervised clustering domains.

6.1 Datasets

Dataset #Samples #Features #Classes
sonar 208 60 2
ionosphere 351 34 2
balance 625 4 3
segmentation 2310 18 7
USPS 11,000 256 10
MAGIC 19,020 10 2
CIFAR 60,000 300 10/20/100
diabetes 768 8 2
breast 683 10 2
german credit 1000 24 2
haberman 306 3 2
DBWorld 64 3721 2
arcene 100 10000 2

TABLE 1
Dataset statistics
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We use a range of datasets, from small- to large-scale,
to evaluate our method. For small to mid-range data,
we use a number of well-known UCI sets [29]: sonar,
ionosphere, balance, segmentation and MAGIC, as well
as the USPS handwritten digits dataset [30].

For our larger scale experiments, we relied on the
CIFAR tiny image datasets [31]. CIFAR-10 consists of
50,000 training and 10,000 test images, spread among
10 classes. CIFAR-100 also contains 50,000 training and
10,000 testing images, but has 2 different label sets—a
coarse set with 20 classes, and a fine set with 100 classes.
All CIFAR instances are 36x36 color images, which we
have reduced to 300 features via PCA.

In all our experiments, the data is normalized to 0
mean and unit variance.

6.2 Approximate nearest-neighbor retrieval
Because we use it for retrieval in all of our other
experiments, we first evaluate the accuracy cost and
efficiency benefits of our approximate nearest-neighbor
method. We evaluate accuracy by training an HFD
model with 100 trees. We then return 50 approximate
nearest-neighbors for each point in the dataset and
compute mean average precision (mAP) relative to the
ground truth 50 nearest-neighbors (obtained via brute
force search). Average precision scores are computed at
10, 20, 30, 40 and 50 nearest-neighbors. We do retrieval
at kO = 1, 3, 5, 10, 20 and 30, and report both the mAP
results and the time taken (as a proportion of the brute
force time) at each value on several datasets.

kO Sonar Seg. USPS
1 0.812 0.715 0.6559
3 0.965 0.904 0.8700
5 0.987 0.956 0.9274
10 0.997 0.987 0.9710
20 0.998 0.994 0.9897
30 0.998 0.995 0.9945

TABLE 2
Approximate nearest-neighbor retrieval mAP scores

kO Sonar Seg. USPS
1 0.499 0.042 0.014
3 0.547 0.074 0.034
5 0.729 0.097 0.049
10 0.860 0.147 0.076
20 1.002 0.221 0.112
30 0.997 0.270 0.136

TABLE 3
Approximate nearest-neighbor retrieval times (as a

proportion of brute force search time)

The results clearly show that our approximation
method yields significant reductions in retrieval time

on larger datasets with minimal loss of accuracy. Note
that all other results we report for HFD are generated
using this approximation method. We use kO = 5 for
the CIFAR datasets, and kO = 10 for all other data.

6.3 Comparison methods and parameters
In the following experiments, we compare our HFD
model against a number of state-of-the-art metric learn-
ing techniques: DCA [32], LMNN [4], [22], GB-LMNN
[12], ITML [2]1, Boostmetric [3] and RFD [13]. With
the exception of RFD and GB-LMNN (both of which
incorporate tree structures into their metrics), all are
Mahalanobis methods that learn purely linear transforms
of the original data.

We did not extensively tune any of the hyperparame-
ters for HFD, instead using a common set of values for
all datasets. We set T = 500 (for HFD, RFD and GB-
LMNN), LC

′
= 0.25LC , λ = 0.01, C = 1, ε1 = ε2 = 0.01

and α = 0.5. We use dk = d
3 on all datasets except

balance, where we use dk = d (this was the only dataset
that appeared to be highly sensitive to this or any other
parameter in HFD). As a stop criterion for tree training,
we set a minimum node size of 5 for all but the CIFAR
dataset, where we use 30 (as a means of saving some
computation time).

6.4 Nearest neighbor classification
We next test our method using k-nearest neighbor clas-
sification (we use k = 5 for all datasets). Each dataset is
evaluated using 5-fold cross-validation. For the weakly-
supervised methods, in each fold we use 1,000 con-
straints per class (333 must-link, 667 cannot-link, drawn
randomly from the training data) for the sonar, iono-
sphere, balance and segmentation datasets. For USPS
and magic, we use 30,000 constraints in each fold. We
repeated each experiment 10 times with different ran-
dom constraint sets, and reported the average result in
Fig. 4.

We found that HFD achieved the best score on 4 out
of the 6 UCI datasets tested, and was competitive on the
remaining two (sonar and USPS). On the CIFAR data,
only the DCA method (which performs poorly on most
of the UCI sets) is competitive with HFD, and on the 100
class problem HFD has a clear advantage.

6.5 Retrieval
To evaluate our method’s performance (as well as, im-
plicitly, the effectiveness of our approximate nearest-
neighbor algorithm) on large-scale tasks, we computed
semantic retrieval precision on labeled CIFAR tiny image
datasets. For the weakly-supervised methods, we sample
600,000 constraints from the training data, again with a
1:2 must-link to cannot-link ratio, sampled evenly from
all classes. Though this does represent a large amount

1. For all ITML experiments, we cross-validated across 9 different γ
values and reported the best results.



1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2015.2507130, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

Fig. 2. 5-nearest neighbor classification accuracy under HFD and benchmark metrics. (View in color)
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Fig. 3. Large-scale semantic image retrieval results for our method and benchmarks. Only DCA is competitive with
our method on the 10 and 20 class datasets, and HFD significantly outperforms all other algorithms on the 100 class
problem. (View in color)

of training data, we note that it contains less than 0.1%
of the full constraint set for this data. We do not report
Boostmetric results on these sets because we were unable
to obtain them.

Our results can be found in Fig. 3, which shows
retrieval accuracy at 5 through 50 images retrieved on
each dataset. HFD is clearly the best-performing method
across all 3 problems. While DCA is competitive with
HFD on the 10-class and 20-class sets, this performance
drops off significantly on the more difficult 100-class
problem.

The particularly strong performance of HFD on the
100-class problem may be due to the relaxed SSMMC for-
mulation, which allows our method to effectively divide
the very difficult 100-class discrimination problem into
a sequence of many broader, easier problems, and thus
make more effective use of its cannot-link constraints
than the other metrics.

6.6 Semi-supervised clustering
In order to analyze the metrics holistically, in a way that
takes into account not just ordered rankings of distances
but the relative values of the distances themselves, we
began by performing semi-supervised clustering experi-
ments. We sampled varying numbers of constraints from
each of the datasets presented and used these constraints
to train the metrics. Note that only weakly- or semi-
supervised metrics could be evaluated in this way, so
only DCA, ITML, RFD and HFD were used in this
experiment.

In order to evaluate the quality of the clusters pro-
duced, we used an external cluster evaluation metric
called V-Measure [33]. V-measure computes two separate
entropy-based scores, representing homogeneity (the ex-
tent to which each cluster contains elements from only
a single class) and completeness (the extent to which all
elements from a given class are assigned to the same

TABLE 4
Semi-supervised clustering results (V-Measure)

Sonar Balance
60 120 180 45 90 180

Euclidean 0.0493 0.0493 0.0493 0.2193 0.2193 0.2193
DCA 0.0959 0.1098 0.1386 0.0490 0.2430 0.3817
ITML 0.0650 0.0555 0.0644 0.2221 0.1915 0.2155
RFD 0.0932 0.1724 0.2699 0.1398 0.1980 0.3004
HFD 0.1267 0.2296 0.3518 0.3059 0.5128 0.6149

Segmentation USPS
70 175 350 3k 5k 10k

Euclidean 0.6393 0.6393 0.6393 0.6493 0.6493 0.6493
DCA 0.0510 0.2537 0.6876 0.5413 0.4359 0.4473
ITML 0.5682 0.6365 0.5931 0.6447 0.6445 0.6420
RFD 0.7887 0.8157 0.8367 0.8248 0.8402 0.8745
HFD 0.7788 0.8090 0.8367 0.7258 0.7397 0.9087

cluster). The final score is a geometric mean of the two
component scores.

After training, the learned metrics were applied to the
dataset and used to retrieve the 50 nearest-neighbors and
corresponding distances for each point. RFD and HFD
return distances on a 0-1 scale, so we converted those to
similarities by simply subtracting from 1. For the other
methods, the distances were converted to similarities by
applying a Gaussian kernel (we used σ = 0.1, 1, 10,
100 or 1000—whichever yielded the best results for that
metric and dataset).

We then used the neighbor and similarity data to
construct a number of sparse similarity matrices from
varying numbers of nearest-neighbors (ranging from 5
to 50) and computed a spectral clustering [34] solution
for each. We recorded the best result for each metric-
dataset pair. Again, we repeated this testing process 10
times for each pair. The average results can be seen in
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Table 4—the numbers below the dataset names indicate
the number of constraints used in that test.

The tree based methods, RFD and HFD, demonstrated
a consistent and significant advantage on this data.
Between the two tree-based methods, HFD yielded better
results on the sonar and balance data, while both were
competitive on the segmentation and USPS datasets.

It is notable that the difference between the euclidean
performance and that of the tree-based metrics is much
more pronounced in the clustering domain. This would
suggest that the actual distance values (as opposed to
the distance rankings) returned by the tree-based metrics
contain much stronger semantic information than those
returned by the linear methods.

6.7 Multimetric methods
Many existing nonlinear metric learning methods take
a multimetric approach, learning a number of different
metrics (often one for each instance) spread through-
out the data space. There are a number of successful
(though generally not scalable) techniques in this class of
methods, and we compare several such metrics against
HFD. We were unable to obtain working code for these
methods, and thus present the comparison data from
[13].

These experiments were conducted on the k-nearest
neighbor classification task, with k = 11, using 3-fold
cross-validation. In each case 1% of all must-link and
1% of all cannot-link pairwise constraints were used.
We repeat each experiment 10 times, using different
constraint sets and cross-validations folds, and report the
average results. The results can be seen in Table 6.

TABLE 5
Nearest neighbor classification accuracy against

multimetric methods

Balance Diabetes Breast German Haberman

HFD 0.892 0.759 0.969 0.748 0.726
ISD [11] (L1) 0.886 0.713 0.969 0.723 0.723
ISD (L2) 0.884 0.731 0.97 0.726 0.727
FSM [8] 0.866 0.658 0.898 0.725 0.724
FSSM [9] 0.857 0.678 0.888 0.725 0.724

In each case HFD matches or outperforms the multi-
metric methods. This may be because, while these meth-
ods are collectively nonlinear, they do assume the exis-
tence of a single linear metric at each instance. Given local
linearity, this is not an unreasonable assumption in most
cases, but may be problematic for points located in more
sparsely populated regions of the data space. By contrast,
HFD is fully nonlinear, and makes no assumptions about
local linearity in the data.

6.8 High-dimensional data
While high-dimensional data (and particularly data
where d� n) presents a challenge to any machine learn-

ing application, it is particularly troublesome for tradi-
tional Mahalanobis metrics. Solving for the Mahalanobis
matrix M requires optimizing d2 independent variables.
When d is large, this quickly becomes both prohibitively
costly and analytically dubious. By contrast, HFD needs
only a subset of the available features in each node, and
computes only a linear combination over this subset.
As a result, high-dimensional data presents no special
challenge to the method.

To illustrate this, we assess HFD’s performance on
the DBWorld emails [29] and arcene [35] datasets. The
DBWorld data consists of 64 emails divided into two
classes, represented by binary vectors indicating pres-
ence or absence of rooted words from the corpus (a total
of 3721 features). As an example text dataset, DBWorld
is comparatively quite small, both in number of samples
and dimensionality, but it is nonetheless an extreme
challenge for traditional metric learning techniques. The
arcene dataset (we use only the training data, because
ground truth labels were not published for the testing
set) consists of 100 mass spectrometer readings of blood
samples taken from either cancerous or healthy patients.
Each reading has 10,000 features, including a number of
artificial ‘’probe” features with no information content.

For both datasets, we performed a 5-nearest neighbor
classification experiment, using 5-fold cross-validation.
For DBWorld, we used 20 must-link and 20 cannot-link
constraints in each fold, while for arcene we used 100.
We report the average results across 10 runs of this
experiment below.

We were unable to obtain results on either dataset for
any of our comparison Mahalanobis metrics (the code
either failed outright or produced no results even after
days of runtime). Baseline Euclidean 5-NN accuracy was
0.546 for DBWorld and 0.720 for arcene. RFD did return
results for this data, but did not perform well, yielding
an accuracy of only 0.577 on DBWorld and 0.616 on
arcene.

TABLE 6
HFD 5-nearest neighbor classification accuracy on

high-dimensional datasets

Dataset dk

5 10 25 50 100 200 500
DBWorld 0.723 0.772 0.792 0.809 0.828 0.861 0.857

arcene 0.755 0.775 0.789 0.786 0.793 0.801 0.765

In both datasets, even with each node using only a
tiny subset of the features (and with only a small subset
of the pairwise constraints), HFD is learning an useful
and effective model of the data, clearly outperforming
the baseline. The learned model progressively increases
in quality up to the dk = 500 level, at which point the
optimization space at each node is likely too large to
obtain any additional information from the very limited
training data. The noticeable decrease in performance at
dk = 500 on the arcene data may be attributable to the
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probe features—as the dimensionality of the optimiza-
tion problem at each node increases relative to n, the
odds of some of these noise features being erroneously
assigned a high weight increases.

6.9 Baseline versus relaxed SSMMC
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Fig. 4. 5-nearest neighbor classification accuracy under
HFD, using baseline or relaxed SSMMC for Ptl function
learning.

In order to empirically evaluate the effects of relax-
ing SSMMC to function in the hierarchical domain, we
trained HFD models on several datasets using baseline
SSMMC [24] to learn the Ptl functions. We then evalu-
ated their performance at the k-nearest neighbor classifi-
cation task, as described in Section 6.4, and compared the
performance to that obtained by our relaxed formulation.
The results are shown in Fig. 4.

The experiment show that our relaxation yields a sig-
nificant improvement in performance for some, though
not all, data. Relaxed SSMMC has a significant advan-
tage on the sonar, ionosphere and diabetes sets, and a
minor advantage on the breast and segmentation sets.
On the USPS set, the two techniques yield essentially
identical results.

These discrepancies can be interpreted in several
ways. One possibility is that a sufficiently large training
set enables the baseline algorithm to overcome the obsta-
cles we identified in Section 3. With enough constraints
and unconstrained points, the algorithm may not en-
counter badly unbalanced constraint sets until it reaches
very low levels of the tree, at which point the learned
hierarchy may already be a reasonably strong metric.
Large numbers of constraints may also reduce the prob-
lem posed by the need for compromise among many
irreconcilable cannot-link constraints—with enough con-
straints, the optimization may be able to achieve a sim-
ilar result to the relaxed method by seeking the “least-
bad” compromise.

Another possible explanation may be the level of
linearity in the data. USPS and segmentation are both
relatively linear sets, compared to sonar and ionosphere.
With a sufficiently linear constraint satisfaction problem,
the difficulties posed by local minima may be greatly

reduced, allowing either algorithm to locate strong solu-
tions.

Regardless, the results demonstrate that our relaxation
approach can provide significant improvements in per-
formance, and even in the worst case is comparable to
the baseline.

7 CONCLUSION

In this paper, we have presented a novel semi-supervised
nonlinear distance metric learning procedure based on
forests of cluster hierarchies constructed via an itera-
tive max-margin clustering procedure. We further pro-
pose a novel relaxed constraint formulation for max-
margin clustering which improves the performance of
the method in hierarchical problem settings. Our results
show that this algorithm is competitive with the state-of-
the-art on small- and medium-scale datasets, and supe-
rior for large-scale problems. We also present a novel in-
metric approximate nearest-neighbor retrieval algorithm
for our method that greatly decreases retrieval times for
large data with little reduction in accuracy.

In the future, we hope to expand this metric to less-
well-explored learning settings, such as those with more
complex semantic relationship structures (e.g., hierar-
chies or “soft” class membership). By extending our
method to incorporate relative similarity constraints, we
could learn semi-supervised metrics even where binary
pairwise constraints are no longer meaningful.
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