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Abstract

We present a new method for tracking planar surfaces based on the direct update of surface param-
eters from two stereo images. The plane tracking algorithm is posed as an optimization problem and
maintains an iteratively re-weighted least squares guess of the plane’s orientation using direct pixel-
measurements. The algorithm is discussed and analyzed, and an application to augmented reality is
presented.

1 Introduction

Inferring properties of the real-world through one or many images is fundamental to the field of
computer vision. Often it is beneficial to have knowledge of a significant surface or set of surfaces
during the inference process. One such surface is the planar surface.

Many methods have been proposed to solve this problem for the monocular [10, 11] and binocular
[17, 15], calibrated and uncalibrated cameras (similar to using sequences of images [3, 2, 5, 19]) .

A common solution involves a disparity map computation. A disparity map is a matrix of correspon-
dence offsets between two images [20]. The disparity map calculation employs expensive neighborhood
correlation routines that often yield sparse maps for typical scenes. However, the method makes no
assumptions about the environment and has been widely used for the case of general stereo vision.

In contrast to the general solution discussed above, our method exploits a property that planar sur-
faces exhibit when viewed through a non-verged stereo camera. A well known transformation, called
a homography, can be employed to warp the plane in one image onto the plane in another image [4].
When using rectified images1, the epipolar geometry reduces the homography to a linear function that
yields the disparity value on the plane between the images. We use a direct method to perform the track-
ing. Direct methods use quantities that are calculated directly from image intensity values [9, 17]. Our

1Rectification is the application of a linear transformation to the image pair that forces collinearity amongst conjugate
epipolar lines and aligns them with the horizontal image axis. The transformation is pre-computed during calibration from
the epipolar geometry. [20, 4]



method has descended from earlier image registration and enhancement techniques [14, 12] and from
visual tracking [6]. Similarly, it poses the tracking problem as one of objective function minimization.
Doing so incorporates a vote from many pixels in the image and computes a least-squares estimate of
the global motion parameters in question to sub-pixel levels.

In the remainder of this paper we motivate and discuss our algorithm. Then, we present an analysis
of its capabilities, our implementation, and some experimental results. Finally, we conclude with an
application to augmented reality and some possible extensions to the algorithm is presented.

2 Planar Disparities

To efficiently track a plane, we can make use of a property that planar surfaces exhibit when viewed
in non-verged stereo images. In general, there is a well-known homography that maps the image plane
of one image to the plane of another image. In the following discussion, let (u,v,w) be image plane
coordinates, (x,y,z) be world coordinates, (α,β ) correspond to an arbitrary image pair, and s be an
arbitrary scale factor. We call the homographic matrix {H : h1 . . .h9}.
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It would suffice to track the nine parameters of H. However, one can simplify the tracking problem
because of the rectified pair of images. Since conjugate epipolar lines are collinear and horizontal, the
mapping becomes a simple linear function in three variables (see Figure 1 for a graphical depiction of
this property).
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Thus, the disparity from this function is uβ −uα .

2.1 Algebraic Derivation

In this section, we show an algebraic derivation of (2). Here, we assume that the image plane lies at
w = 1 without loss of generality. If we first take the equation of a plane in three-dimensional space,

Ax+By+Cz+E = 0, (3)

we can manipulate the equation so that it becomes a linear map. In the following equations, f is the
focal length, sx is the pixel size scale factor, T is the baseline of the stereo system, and D is the disparity.
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Figure 1. When viewed through non-verged stereo, the disparity of a planar surface can be repre-
sented as a linear function. Here, a 2d representation is shown for clarity.
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It becomes apparent in Equation 5 that, because we are viewing a planar surface in a calibrated stereo
camera, we can make use of the known T and remove the z from the equation. The resulting map
(Equation 6) is expressed in image coordinates centered about the known optical center.

h1u+h2v+h3 = −D (6)
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Thus, if we can compute and maintain a good guess of the coefficients in this equation, then we are
effectively tracking the orientation of the planar surface. From Equation 6, we can easily compute the
coefficients of the three-dimensional plane.
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3 Planar Tracking

From the observation made in Section 2, we see that tracking the parameters h = h1,h2,h3 of the
linear map (6) is equivalent to tracking the planar surface. Thus, assuming inter-frame motion is rel-
atively small and both brightness and contrast shifts can be removed, we pose this problem as one of
optimization.

3.1 Optimization Formulation

Consider a rectified pair of stereo images, L and R. Based on (6), we can relate the images with the
following formula. Let D(u,v) = h1u+h2v+h3.

L(u,v) = R(u−D(u,v),v) (7)

Traditionally, similar approaches make use of the so-called brightness constancy constraint to enforce
(7) [8]. Since we use a stereo pair of images taken with different cameras, we enforce the brightness
constancy constraint by performing a zero-mean process on the images. Given an image I, I = I − ∑ I.
The planar parameters for the current pair are estimated through a minimization of the following least-
squares objective function.

E(h) = ∑(L(u,v)−R(u−D(u,v),v))2 (8)

Let δh represent the set of vector offsets. Assuming a small magnitude for δh we can solve the mini-
mization by linearizing the expression through a Taylor expansion about h.

E(δh) ≈ ∑(L(u,v)−R(u−D(u,v),v)+uIxδh1 + vIxδh2 + Ixδh3)
2 (9)

Here, Ix refers to the spatial gradient of the right image. We neglect the higher order terms of the
Taylor series. This method uses quantities directly measurable from pixel values in contrast to feature
based methods; it is a so-called direct method. For a thorough discussion of direct methods, the reader
is encouraged to peruse [9]. Other direct method algorithms are [6, 16, 17, 19].

We solve the system using Singular-Value Decomposition (SVD) [18]. It is first convenient to define
the error term: e(u,v) = L(u,v)−R(u−D(u,v),v).
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3.2 The Weighting Matrix

To increase the solution’s robustness and reduce computation time, we incorporate a binary weighting
scheme into (9). We define a weighting matrix, W , with an entry per pixel. Such a mask removes
inaccurate and poor pixel matches from the SVD solution which decreases its processing demand and
increases its stability. Equation (9) is extended to (11) incorporating such a mask; W(u,v) is the value of
the mask at (u,v).

E(δh) ≈ ∑δW (u,v)=1[(L(u,v)−R(u−D(u,v),v)+uIxδh1 + vIxδh2 + Ixδh3)
2] (11)

In each frame, we compute a normalized cross-correlation (�) measure to fully recompute the mask
matrix based on the current parameters. By fully recomputing the mask each frame in this manner, the
algorithm tracks the plane under arbitrary planar motion and is robust to occlusion.

ηu,v = L(u,v)�R(u−D(u,v),v) (12)

Since (11) is only sensitive to pixels that demonstrate horizontal gradients, we also mask pixels with
low horizontal variance by sampling the correlation response along the epipolar line.

αu,v =
L(u,v)�R(u−D(u,v)+∆,v)

ηu,v

βu,v =
L(u,v)�R(u−D(u,v)−∆,v)

ηu,v
(13)

W (u,v) = (ηu,v > τ) ∧ (αu,v > ε) ∧ (βu,v > ε) (14)

In (14), 0 < τ < 1 and ε > 1. In (13,14), the selection of ∆,τ , and ε is dependent on the imaging
properties of the system and the scene. To increase the robustness of the mask generated in this manner,
we also perform a morphological dilation followed by an erosion [6]. This has the effect of removing
noisy correlation responses and joining contiguous regions.

3.3 The Tracking Algorithm

From the previous section, we see that it is possible refine a guess at the parameters of the planar map.
Since we are interested in tracking the plane through time, we may also use the formulation of (9) to
track a plane. Doing so efficiently will yield small inter-iteration magnitudes of δh which are needed to
guarantee convergence. We use the following algorithm to track in the image.



ALGORITHM PLANAR TRACK

1 Compute an initial guess of h

2 Build a pixel-mask based on this guess

3 For each subsequent frame

4 Zero-Mean the images

5 Convolve with a gaussian and decimate in half

6 Compute the derivative of the right image

7 Build linear system for all pixels that satisfy the mask

8 Solve the system using SVD

9 Update the mask

The tracking begins with a guess for the planar parameters, h. Because of the assumptions made in
(9), the algorithm has a relatively small convergence radius (±1 disparity). Thus, a good initial guess
is required; otherwise, an expensive global optimization step would need to be solved. In this case, a
closed-form solution for the initial guess is possible through the use of an initial disparity map, D̂. Since
the result of this computation is crucial to the success of the algorithm (convergence), we compute a
least-squares estimate and employ only the most confident of disparities.

[

u v 1
. . . . . . .

]





a
b
c



 =

[

D̂u,v

. . .

]

(15)

One might use a different approach to compute the seed by computing a least-squares fit of a plane to
a cloud of reconstructed plane-points. The initial pixel mask, W 0, is created by verifying the disparity in
D̂ against the planar parameters, h1,h2,h3.

4 Analysis

4.1 Theoretical Convergence Radius

We analyze the algorithm for maximum guaranteed convergence. Equation (9) was derived under the
assumption that inter-frame parameter offsets (δh) would be small in magnitude. In discrete terms, we
are restricted to changes of ±1 disparity. Figure (2) depicts the inverse relationship between the depth
and disparity (D = B f

sxz ). To facilitate analysis, we assume an infinite plane.
Under lateral translation, the depth and the disparity are constant and the algorithm is guaranteed to

converge. However, under orthogonal translation, the convergence radius is dependent on the current
depth; the closer to the camera, the smaller the convergence radius. Let ζ be the change in depth for
guaranteed convergence.

B f
sxD±1

− z = ζ (16)
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Figure 2. Disparity is inversely proportional to depth.

Rotations in the plane are also dependent on the current depth. However, for planes at normal depths
(greater than a few centimeters), we make the observation that to cause a disparity change of one for a
given pixel, the plane would have to rotate almost ninety degrees. We can approximate the rotation angle
that would cause a disparity change of one by the following formula:

θ = arctan (
B∆

D±1
−

z
∆

) (17)
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Figure 3. Depiction of the formula for convergence radius under rotation.

In Figure (3), we see a depiction of this formula. We can better simplify (17) for a change of one pixel
off the optical center to



θ = arctan (
1

D±1
−

1
D

). (18)

In (18), we see that for typical disparities we’ll be taking the arctan of a small number resulting
in angles near ninety degrees. Thus, theoretically, the algorithm will converge under large interframe
rotations because change in the disparity is small. However, this analysis assumes the plane is directly
down the optical axis. As we increase our distance off the optical axis the arctan value will increase
resulting in higher disparity shift for the same angle.

4.2 Algorithmic Analysis

The frequency at which we perform an iteration of the algorithm is crucial to its operating well. If
the period of an iteration is too long, the algorithm is impractical for real-time applications because too
little motion will be permitted. The convergence speed is increased if we can perform multiple inner
iterations (steps 7 through 9).

Our algorithm’s complexity is dominated by the SVD solution (step 8), O(n3). All other steps are
at most linear in the number of pixels. While the SVD solution is expensive, in actuality, the size of
the matrix on which we are computing SVD is relatively small: at most 3xN, where N is the number
of overlapping pixels in the decimated images. In practice only a fraction of these pixels satisfy our
constraints (14) and are included in the computation. Since each extra pixel included in this SVD
solution is only contributing to our solution, it is also possible to limit the number of pixels included in
the computation to those in which we hold the highest confidence.

In contrast, if we compare our approach to an algorithm that employs a general disparity map com-
putation, we see that our execution time is smaller even though we employ the SVD. A disparity map
is computed through a correlation process. Once the image pair has been rectified, each pixel in the left
image is matched to a pixel in the right image on the same scan-line. This search is limited to a search
window, typically 32 or 64 pixels. The larger the window the larger the horopter of disparities. Often
to increase confidence the same search is repeated from the right to left. The time complexity of this
process is O(n2w), where w is the size of the search window. Disparity map computation is an expensive
procedure.

5 Implementation and Experiment Results

The algorithm has been implemented on a Pentium III 700MHz PC running Linux (rev. 2.4). We use
a Videre TMMEGA-D Megapixel Digital Stereo Head for the stereo camera. The SVS library is used for
calibration and the computation of the disparity map that seeds our algorithm. The software library we
use for video-acquisition, image-processing, and gui display is the XVision2 library [7, 13]. We also use
the Intel Integrated Performance Primitives library for accelerated image-processing.

For the experiments discussed in this section, we are using a stereo head with 5.18mm lenses, a
92mm baseline, and square pixels 0.06mm wide. The plane being observed, unless otherwise specified,
is roughly orthogonal to the viewing axis and at a depth of one-meter.

In the following sections, experiment results are presented and discussed.



5.1 Convergence Radius

For a controlled environment with a stationary plane and camera, we calculated a initial guess for the
plane parameters and then varied this guess to test the robustness of the tracking algorithm.
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Figure 4. Graph for convergence while introducing error into the seed’s depth by 2, 5 and 10 percent
toward the camera.

In Figure (4), we show the time to convergence when we shift the seed’s depth closer to the camera at
varying levels. The convergence speed is directly proportional to the magnitude of the introduced error.
We note that the convergence speed is only about 5 frames for an error of 10%. In Figure (5), we show
the convergence speed while altering the plane’s normal about a single axis. We see similar convergence
rates to those observed while altering seed depth.

5.2 Accuracy of Parameter Estimation

Assuming a suitably textured scene, the algorithm estimates a plane’s parameters with sub-pixel accu-
racy. However, this estimation accuracy varies with the depth of the plane being tracked (see Figure 2).
Because the depth-per-disparity increases as the distance to the plane increases, the estimation accuracy
degrades with depth. Table 1 shows the statistics for the plane.

For the following experiments, we mounted the camera atop mobile robot and used the robot’s internal
odometry as the ground truth for the rotation and translation of the camera. Figure (6) shows the robot
performing oscillatory rotations in front of a plane (700 mm distance), and figure (7) show the robot
orthogonally translating in a back-and-forth motion. We see that the algorithm performs extremely
well for the rotational motion. The estimated orientation lags minimally behind the odometric values;
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Figure 5. Convergence rates for error in seed normal.

Z Mean Z Std Dev Normal Error Std Dev
1 1064.8mm 2.2359mm 0.2947◦

2 1065.3mm 1.7368mm 0.2673◦

3 1065.2mm 1.5958mm 0.2258◦

Table 1. Parameter estimation accuracy for a plane one meter away.

the length of the lag is proportional to the convergence speed. During the translational motion, the
algorithm oscillates about the control value during motion. As expected, it is apparent from the figure
that the tracking performs better when the robot is closer to the plane.
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Figure 6. Accuracy of estimated orientation.
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6 Application To Augmented Reality

We are very interested in vision-based interaction and its implications in the future state-of-the-art
in human-computer interation. One typical augmented reality mode is video-see-through augmented
reality (VSTAR) [1]. In VSTAR, the user wears a closed head-mounted display (HMD) much like in
typical virtual reality applications. Atop the HMD is a pair of video-cameras that feed live streams of
video through the computer and then into the displays for the HMD. An image of our setup appears in
Figure 8.

Figure 8. Video See-Through Augmented Reality with a 5DT HMD and two Sony Lipstick cameras.

One important component of VSTAR is the ability to process the video during the pipeline (Figure 9).
At this step we can measure important quantities about the environment that enable us to render artificial
objects into to the user’s view. We wish to augment an ordinary desktop environment where the user
dons the HMD and works at an ordinary desk. In order to make the augmented reality configuration
similar to ordinary activity we must be able to render new objects on the desk plane for the user. For
instance, we may wish to render an artificial TODO list onto the desktop, a set of artificial buttons for
the user, or perhaps a piano onto the desktop.

To accomplish such tasks we must know where to render objects in the left and right video streams
such that they lie on the plane; i.e. we must know the map relating the plane in the two images. Con-
veniently, our algorithm tracks precisely this map. Below (10) is a screenshot where a quadrilateral is
rendered onto plane in the video streams.

However, since we are only tracking the orientation of the plane, our approach would have to be
supplemented with knowledge of some origin on the plane. Then, whenever we wish to draw something
on the plane, it would be drawn with respect to the current location of the origin. One simple way to
allow for this functionality is to place a fiducial, perhaps a colored blob or a small template, on the plane
and track its location; to accomodate occlusion multiple fiducials could be placed on the surface even
though only one is thereotically needed.
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Figure 9. VSTAR Processing Pipeline.

7 Conclusion and Future Work

In this paper, we presented a new algorithm that employs objective function minimization to track
the parameters of a plane. The algorithm is a direct method in contrast to more common feature-based
methods; using the disparity map, for instance, relies on pixel correspondences. As is widely understood
[9], direct methods are robust to outliers and incorporate sub-pixel accuracy by the nature of its process.
Our implementation of the approach typically executes at or near frame rate and maintains accurate pa-
rameter estimates. The implementation executes two iterations of the optimization routine every frame.
This operating rate is in contrast to a disparity calculation based system which typically runs at half
frame-rate on the same system.

While the topic of this paper is an algorithm to track the parameters of a planar surface, the algorithm
is extendable to more complex surfaces; in fact, the algorithm could be termed an algebraic surface
tracker. One imagines using it to track the parameters of a quadratic (similar in spirit to [16]) or cubic
surface; even a parametric model, eg. NURBS, could be incorporated into the framework with little
modification. It is the underlying principle of using quantities directly measurable from the images
instead of features that allows such extensions to be proposed with little restraint.

Accurate estimation is highly dependent on the optics of the imaging system and the environment.
These dependencies are fundamental to the set of approaches employed in stereo vision, however, not
specifically our approach. Currently the parameters of our algorithm are chosen on an environment
basis. For instance, the ∆ in (13) is dependent on the texture frequency. However, the imaged texture
frequency may vary from one plane to another and will vary with large depth changes. Such an operation
mode is considered passive by nature. The exploration of algorithms that take more active approaches
(i.e. projecting a suitable pattern depending on the current environment) or more intelligent approaches
(i.e. altering operating parameters and thresholds autonomously by analyzing important scene qualities)
are needed for further advancement of the field.



Figure 10. A quadrilateral drawn on the plane in the augmented desktop.
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