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Abstract Traditionally, gesture-based interaction in virtual environments is com-
posed of either static, posture-based gesture primitives or temporally analyzed dy-
namic primitives. However, it would be ideal to incorporateboth static and dy-
namic gestures to fully utilize the potential of gesture-based interaction. To that
end, we propose a probabilistic framework that incorporates both static and dy-
namic gesture primitives. We call these primitives GestureWords (GWords). Using
a probabilistic graphical model (PGM), we integrate these heterogeneous GWords
and a high-level language model in a coherent fashion. Composite gestures are rep-
resented as stochastic paths through the PGM. A gesture is analyzed by finding the
path that maximizes the likelihood on the PGM with respect tothe video sequence.
To facilitate online computation, we propose a greedy algorithm for performing in-
ference on the PGM. The parameters of the PGM can be learned via three different
methods: supervised, unsupervised, and hybrid. We implemented the PGM model
for a gesture set of10 GWords with6 composite gestures. The experimental results
show that the PGM can accurately recognize composite gestures.

Key words human computer interaction – gesture recognition – hand postures –
vision-based interaction – probabilistic graphical model

1 Introduction

Recently, the development in Virtual Reality (VR) technologies [5] has taken us
to 3-D virtual worlds and prompted us to develop new human-computer interac-
tion (HCI) techniques. Many of the current VR applications employ such tradi-
tional HCI media as joysticks, wands, or other tracking technologies (magnetic
trackers [3], optical trackers [1], etc.). However, many ofthese techniques encum-
ber the user with hardware that can potentially reduce the realism (and effect)
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of the simulation. These limitations have presented us withthe challenge to de-
sign and implement new HCI techniques that are natural and intuitive. Spoken
language [18], haptics [16,30,44,45,46] and vision [11,26,40] have been popu-
lar choices to replace traditional interaction media. Computer vision holds great
promise: vision-based interfaces would allow unencumbered, large-scale spatial
motion. Furthermore, rich visual information provides strong cues to infer the mo-
tion and configuration of the human hands and arms.

Many gesture-based visual interfaces have been developed [13,24,38,36,43,
47]. According to the nature of the gestures in the vocabulary, the gestures in ex-
isting interfaces can be classified into two categories: static hand postures and dy-
namic gestures. Static postures [4,20,23,28,35,39] modelthe gesture as a single
key frame, thus discarding any dynamic characteristics. For example, in recent re-
search on American Sign Language (ASL) [34,48], static handconfiguration is the
only cue used to recognize a subset of the ASL consisting of alphabetical letters
and numerical digits. The advantage of this approach is the efficiency of recogniz-
ing those gestures that display explicit static spatial configuration. However, it has
an inherent shortcoming in handling dynamic gestures whosetemporal patterns
play a more important role than their static spatial arrangement.

Dynamic gestures contain both spatial and temporal characteristics, thus pro-
viding more challenges for modeling. Many models have been proposed to char-
acterize the temporal structure of dynamic gestures: including temporal template
matching [7,21,25,33], rule-based and state-based approaches [8,28], hidden Markov
models (HMM) [24,29,34,41,42] and its variations [9,24,37], and Bayesian net-
works [32]. These models combine spatial and temporal cues to infer gestures that
span a stochastic trajectory in a high-dimensional spatio-temporal space.

Most current systems model dynamic gestures qualitatively. That is, they rep-
resent the identity of the gesture, but they do not incorporate any quantitative,
parametric information about the geometry or dynamics of the motion involved.
To overcome this limitation, a parametric HMM (PHMM) [37] has been proposed.
The PHMM includes a global parameter that carries an extra quantitative repre-
sentation of each gesture. This parameter is included as an additional variable in
the output probabilities of each state of the traditional HMM.

It seems clear that to fully harness the representative power of human ges-
tures, static postures and non-parametric and parametric,dynamic gestures must
be integrated into a single coherent gesture model. For example, visual modeling
of ASL is still limited by the lack of capabilities to handle the composite nature
of gestures. To that end, we present a novel framework that integrates static pos-
tures, unparameterized dynamic gestures and dynamic parameterized gestures into
a coherent model.

In this framework, a graphical model is used to model the semantics and tem-
poral patterns of different parts of a complex gesture; essentially, the graphical
model is a high-level language (or behavioral) model. In themodel, each stage of
the gesture is represented as a basic language unit, which wecall a Gesture Word
(GWord). A GWord can be modeled as either a static posture, unparameterized
dynamic gesture or a parameterized gesture. A composite gesture is composed
of one or more GWords with semantic constraints. These constraints are repre-
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sented in the graphical model, with nodes denoting GWords and edges describing
the temporal and linguistic relationship between GWords. The parameters of the
model can be learned based on heuristics or via a probabilistic framework based
on recorded training data. Online gesture recognition is carried out via greedy in-
ference on the graphical model. Here, online means that the algorithm does not
have access to future video frames.

Our proposed framework is related to work in the field of activity modeling.
Bregler [10] abstracted human activity in a three-layered model. In the data-driven
approach, regions of coherent motion are used as low-level features. Dynamic
models capture simple movements at the mid-level, and HMMs model the high-
level complex actions. Pentland and Liu [27] proposed Markov Dynamic Models
which couple multiple linear dynamic models (e.g. Kalman filters) with a high-
level Markov model. Ivanov and Bobick [17] proposed a probabilistic syntac-
tive approach to activity modeling. In their two-layered model, a discrete symbol
stream is generated from continuous low-level detectors and then parsed with a
context-free grammar. Galata et al. [15] proposed an approach to learn the size of
structure of the stochastic model for high-level activity recognition.

The main contribution of this work is to investigate a high-level language
model to integrate the three different low-level gesture forms in a coherent manner.
We extend the state-of-the-art in gesture modeling by relaxing the assumption that
the low-level gesture primitives have a homogeneous form: e.g. all can be modeled
with a HMM.

2 Modeling Composite Gestures

Probabilistic graphical models (PGM) are a tool for modeling the spatial and tem-
poral characteristics of dynamic processes. For example, HMMs and Bayesian
networks are commonly used to model such dynamic phenomena as speech and
activity. PGMs provide a mathematically sound framework for learning and prob-
abilistic inference.

However, most previous work in gesture and activity recognition assume a
consistent model for all low-level processes (GWords). We propose to use PGMs
to integrate multiple, heterogeneous low-level gesture processes into a high-level
composite gesture. Intuitively, we combine multiple GWords to form aGesture
Sentencethat corresponds to a complete interaction task. For example, grasping a
virtual object→ moving it→ dropping the object (Figure 1).

In the remainder of this section, we define notation in Section 2.1 and present
our construction of the composite gestures using PGMs in Section 2.2. In Sec-
tion 2.3 we discuss different types of GWords. We formulate the learning of the
PGM in Section 2.4. The gesture inference is discussed in Section 2.5.

2.1 Definitions

Let the imageI
.
= {I, I, t} be a finite set of pixel locationsI (points inR

2)
together with a mapI : I → X , whereX is some arbitrary value space, andt is
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Figure 1 Composite gesture example with a corresponding graphical model.

a time parameter. DefineS = {I1 . . . Im} to be a sequence of images with length
m ≥ 1. Let G = {V , E} be a directed graph representing the gesture language
model. Each nodev ∈ V in the graph corresponds to a GWord which belongs to
a vocabularyV of size|V|. Associated with each nodev is a probability function
P (S|v), which measures the observation likelihood ofS for a given GWordv.
Each edgee ∈ E is a probability functionP (vj |vi), wherevj , vi ∈ V . Intuitively,
the edge models the temporal relationship between successive gesture units in the
composite gesture.

2.2 The Gesture Language

We use abigram modelto capture the dynamic nature of the gesture language.
The bigram model represents the linguistic relationship between pairs of GWords.
Formally, given a vocabularyV , define a GWord sequenceW = {s, v1, . . . , vk, t}
wherevi ∈ V ands, t are two special nodes (dummy gestures) that act as the graph
source and sink. Thus, a gesture is a path through the PGM starting at the source
node and ending at the sink node. In Figure 2, we give an example PGM that can
model 6 gestures. For example, the paths → 1 → 3 → 6 → t is a candidate
Gesture Sentence.

We embed the bigram language model into the PGM by associating nodes with
individual GWords and assigning transition probabilitiesfrom the bigram model.
For convenience, letP (v1)

.
= P (v1|s), which can be considered as the priors of a

GWord. Then the probability of observing the sequence in thebigram model is

P (W)
.
= P (s, v1, . . . , vk, t) = P (v1)

k∏

i=2

P (vi|vi−1) (1)
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Figure 2 Example PGM used to represent the gesture language model. Each path beginning
at node s and ending at node t is a valid Gesture Sentence.

As defined in Section 2.1, each node of the PGM models a specificGWord
with its corresponding observation likelihood. Given an image sequenceS we can
construct a candidate segmentation (Section 2.5) that splits the sequence intop
subsequences{S1 . . .Sp}. We correspond each of the subsequences to a GWord
thus creating a Gesture SentenceW . Assuming conditional independence of the
subsequences given the segmentation and the observation likelihood of a subse-
quence only depends the corresponding GWord, the observation likelihood of the
sequence is

P (S|W) =

p∏

i=1

P (Si|vi) (2)

Then, the overall probability of observing the Gesture Sentence is

P (W|S) ∝ P (W) · P (S|W) (3)

= P (v1)

p∏

i=2

P (vi|vi−1) ·

p∏

i=1

P (Si|vi)

with the special source and sink node probabilities defined as P (s) = 1, P (t|v ∈
V) = 1, P (v ∈ V|s) = P (v).

2.3 The Three Low-level Gesture Processes

As discussed in Section 1, there are three main approaches tomodeling gestures in
current virtual reality systems: static postures, non-parametric dynamic, or para-
metric dynamic. In the PGM presented earlier, each node corresponds to one of
these three types of gesture processes.
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2.3.1 Static Posture Static postures are based on the recognition of single dis-
criminative frames of video. Hence, static postures simplify gesture processing by
discarding all temporal information. For example, in the current literature, most
alphanumeric symbols in ASL are represented as static postures [48]. Commonly
used approaches to model the postures include appearance-based templates, shape-
based models, and 3D model-based methods.

2.3.2 Non-parametric DynamicNon-parametric dynamic gestures capture tem-
poral processes that carry only qualitative information; no quantitative information
(e.g. length of hand-wave) is present. Hence, these gestures are potentially more
discriminative than static postures because of the additional temporal dimension.
For example, the ‘j’ and ‘z’ letters in the ASL have a temporalsignature; i.e. the
spatial trajectory of the finger over time is used to discriminate between the ‘i’ and
the ‘j’. Hidden Markov models [29,34,41,42] and motion history images [7] are
common methods used to model non-parametric dynamic gestures.

2.3.3 Parametric Dynamic Parametric dynamic gestures are the most complex
among the three types because they not only incorporate a temporal dimension but
also encode a set of quantitative parameters. For example, in explaining the height
of a person using an outstretched hand, the distance betweenthe ground and the
hand gives a height estimate. Parametric hidden Markov models [37] have been
proposed to model a single spatial variable. However, most of the techniques are
based on visual tracking.

The parametric dynamic gestures bring an added degree of difficulty to the
recognition process because they can have too high a degree of temporal variability
to be captured by a standard model like an HMM. For example, Figure 1 shows a
composite gesture for grabbing, moving, and dropping a virtual object. In general,
the moving gesture will appear quite arbitrary because the user has the freedom to
navigate the entire workspace and also pause for variable amounts of time before
dropping the object.

2.4 Learning the PGM

In this paper, we assume that the learning and the implementation of the individual
low-level gesture units are handled separately (in Section3 we discuss our imple-
mentations) and the observation probabilities of these units are normalized on the
same scale. Here, we address the problem of learning and inference on the high-
level gesture model. Specifically, we learn the parameters of the bigram language
model (Equation 1). We describe three basic techniques to learn the bigram model:
supervised, unsupervised, and hybrid.

2.4.1 Supervised LearningGiven a set ofn labeled GWord sequencesL =
{W1 . . .Wn} with Wi = {s, v(i,1), . . . , v(i,mi), t} wheremi + 2 is the length
of sequenceWi andv(i,j) ∈ V . The GWord prior is given by
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P (vk) =

∑n

i=1 δ(vk, v(i,1))

n
(4)

whereδ(·) is the Kronecker delta function andvk ∈ V . The prior computes the
probability that a Gesture Sentence begins with a certain GWord. The bigram tran-
sition probability is given by the following equation.

P (vl|vk) =

∑n

i=1

∑mi−1
j=1 δ(vk, v(i,j)) · δ(vl, v(i,j+1))

∑n
i=1

∑mi−1
j=1 δ(vk, v(i,j))

(5)

Intuitively, Equation 5 measures the transition probability from a GWordvk to
another GWordvl ∈ V by accumulating the number of bigram pairsvk → vl and
normalizing by the number of bigrams beginning withvk.

2.4.2 Unsupervised LearningGiven a set ofn unlabeled image sequencesU =
{U1 . . . Un}. We generate an initial bigram modelM0 in a uniform fashion based
on the PGM. We can use additional heuristics based on the specific application to
refine the uniform initialization. We train the bigram modelusing an EM-like [22]
iterative algorithm.

1. M ←M0

2. Compute the best labeling (Section 2.5) for each sequencein U based on the
current bigram modelM .

3. Using the supervised learning algorithm (discussed previously), refine the bi-
gram modelM .

4. Repeat until a fixed number of iterations is reached or the change of the bigram
model in successive iterations is small.

2.4.3 Hybrid Learning Given a set of labeled GWord sequencesL and a set of
unlabeled image sequencesU . We generate an initial bigram modelM0 using the
labeled sequences with the supervised learning algorithm discussed above. Then,
we refine the bigram model in an iterative manner similar to the one used in unsu-
pervised learning.

1. M ←M0

2. Compute the best labeling (Section 2.5) for each sequencein U based on the
current bigram modelM . Call the labeled sequencesÛ .

3. T =
⋃

(L, Û).
4. Using the dataT perform the supervised learning algorithm (discussed previ-

ously) to refine the bigram modelM .
5. Repeat until a fixed number of iterations is reached or the change of the bigram

model in successive iterations is small.
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2.5 Inference on the PGM

Given an image sequenceS of lengthm and a PGM with an embedded bigram
model, we construct the inference problem as the search for the best labelingL
of S that maximizes the overall probability given in Equation 3.Formally, the
inference problem is stated as

{v∗1 . . . v∗p} = arg max
W=f(S)

P (W) · P (S|W) (6)

whereS
.
= {S1 . . .Sp}, f(S) = {v1 . . . vp} is a one-to-one mapping from a

sequence segmentation to a Gesture Sentence, andp is unknown. Letg(·) be the
mapping from subsequenceSi to a GWordvi; it is computed using the maximum-
likelihood criterion:

g(Si) = arg max
vj∈V

P (Si|vj) (7)

Theoretically, the inference problem in Equation 6 could besolved by an ex-
haustive search. However, the combinatorial complexity isprohibitive. Further-
more, the fundamental differences in the three types of low-level gesture proces-
sors makes the optimization more difficult. In addition, online processing is a pre-
requisite for human-computer interfaces. Thus, we proposea sub-optimal, greedy
algorithm.

Initialize the algorithm by settingv0 = s andS0 = ∅. At staget in the
algorithm processing, we search for the best transition from vt to vt+1 which
maximizes path probability, defined as the product of the transition probability
P (vt+1|vt) and the observation probabilityP (St+1|vt+1). The beginning of sub-
sequenceSt+1 is set as the end ofSt. To determine the end of the subsequence
St+1 and thus make the greedy path choice, we incrementally increase the length
of the subsequence until the path to one of the childrenc meet both of the following
two conditions.

1. The observation probability of the child passes a threshold τc. We discuss a
supervised technique for learning the node thresholds below.

2. The path probability ofc is highest among all of the children of nodevt. For-
mally, c = arg maxvt+1

P (vt+1|vt) · P (St+1|vt+1).

In Figure 3 we show a graphical depiction of a stage in the middle of the greedy
algorithm. In the figure, at staget + 1, child c2 of nodevt is chosen. We see that
at the end of staget + 1 the end of sequenceSt+1 has been determined.

We learn the individual node thresholds using a supervised technique. Given a
set of labeled GWord sequences and segmented image sequencepairs(Wi,Si) ∈
D. we pose the problem of determining the thresholdτv for GWord v ∈ V as
finding the minimum observation probability for all occurrences ofv:

τv = min
(Wi,Si)∈D

min
vi∈Wi andδ(vi,v)

P (Si|v) (8)

First, we initialize all the thresholds to0, τv = 0, ∀v ∈ V , to handle the case
wherev does not occur inL. Then, for all GWordsv ∈ V we computeτv according
to Equation 8.
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vt

c1

c2

P(c1|vt)

P(c2|vt)

St St+1

Sequence S

During Stage t+1

vt

vt+1

St St+1

Sequence S

End of Stage t+1

c1

c3

c2

P(c3|vt+1)

P(c2|vt+1)

P(c1|vt+1)

Figure 3 Graphical depiction of two stages of the proposed greedy algorithm for computing
the inference on the PGM. Dark gray nodes are not on the best path and are disregarded,
and blue represents past objects on the best path.

3 Experimental Setup

We analyze the proposed model for recognizing composite gestures by construct-
ing a gesture set and the corresponding PGM. We employ the Visual Interaction
Cues (VICs) paradigm [42] (Section 3.1) to structure the vision processing and use
the 4D Touchpad [13] (Section 3.2) as the experimental platform.

3.1 The Visual Interaction Cues Paradigm

The VICs paradigm [42] is a methodology for vision-based interaction operating
on the fundamental premise that, in general vision-based human computer inter-
action (VBI) settings, global user modeling and tracking are not necessary. As
discussed earlier, typical vision-based interaction methods attempt to perform con-
tinuous, global user tracking to model the interaction. Such techniques are com-
putationally expensive, prone to error and the re-initialization problem, prohibit
the inclusion of arbitrary numbers of users, and often require a complex gesture-
language the user must learn. However, under the VICs paradigm, we focus on the
components of the interface itself instead of on the user.

We motivate the paradigm with a simple, real-world example.When a per-
son presses the keys of a telephone while making a telephone-call, the telephone
maintains no notion of the user. Instead, it only recognizesthe result of a key on
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the keypad being pressed. In contrast, typical methods for VBI would attempt to
construct a model of the user’s finger, track it through space, and perform some
action recognition as the user pressed the keys on the telephone. It is likely that
in such processing, the computer system would also have to beaware of the real-
world geometric structure of the telephone itself. We claimthat this processing is
not necessary.

LetW be the space in which the components of the interface reside.In general,
W is the 3D Euclidean spaceR3 but it can be the Projective planeP2 or the
Euclidean planeR2. Define an interface component mappingM : C → X , where
C ⊂ W andX

.
= {I ∨ A(I)} with I the image as defined in Section 2.1 and

A(·) being an arbitrary function,A : P2 → P
2. Intuitively, the mapping defines a

region in the image to which an interface component projects(see Figure 4).

W

C I
M

Cam
era

Figure 4 Schematic explaining the principle of local image analysisfor the VICs paradigm:
M is the component mapping that yields a region of interest in the imageI for analyzing
actions on componentC

If, for each interface component and the current image, a mapis known, detect-
ing a user action reduces to analyzing a local region in the image. This fundamental
idea of local image analysis is the first principle of the VICsparadigm.

The second principle of the VICs paradigm concerns the computational meth-
ods involved in analyzing the image(s). Each interface component defines a function-
specific set of image processing components that are orderedin a simple-to-complex
fashion such that each level of increasing interaction-detection precision (and in-
creasing computational cost) is executed only if the previous levels have validated
the likely existence of an expected object in this ROI. Such anotion of simple-
to-complex processing is not novel; for example, in early image processing, pyra-
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midal schemes were invented that perform coarse-to-fine analysis of images [2].
However, it is integral to the VICs paradigm.

3.2 The 4D Touchpad

In this section, we explain a VICs platform [13] that has beenconstructed based
on the 3D-2D Projection interaction mode [42]. Here, a pair of wide-baseline cam-
eras is directed at a flat-panel display. This setup is shown in Figure 5 (left). The
platform incorporates four dimensions of data: two for the physical screen, a third
from the binocular vision, and a fourth from the temporal VICs processing.

Figure 5 (left) 4D Touchpad Platform. (right) Example rectificationprocess for the 4D
Touchpad. Upper row contains the original images with the rectified images below.

Since the camerasc = 1, 2 are fixed, the interface component mapping for the
system can be computed during an initial calibration stage.We assume the optics
can be modeled by perspective projection. LetF ⊂ P

2 be the coordinate frame
of the flat-panel screen. DefineHc : Ic → F the mapping from each input image
Ic to the flat-panel frameF . We employ a homography [14] for the mapping.
Since the VICons exist in frameF , each interface component mapping is simply
the identity. This transformation process is known as rectification, and we show
an example of it in Figure 5 (right). Radial distortion is evident in the rectified
images; in the current system, we do not include any radial distortion correction.
While doing so would complete the rectification procedure, in practice we find it
unnecessary.
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The rectification process warps both camera images in a way that all points
in the plane of the flat-panel screen appear at the same position in both camera
images. This can be used for stereo calculation; the resulting space isP2×Z with
0 disparity being in the plane of the flat-panel. Disparity isdefined as the absolute
distance between corresponding points in the two rectified images.

3.3 Gesture Set

The goal of the proposed framework is to facilitate the integration of different types
of gestures (Section 2.3) and thus, natural interaction in virtual environments. To
that end, we present an experimental gesture set with ten elements (GWords) with
each of the three gesture types represented.

3.3.1 Low-Level Gwords The gesture set is designed to be used in general ma-
nipulative interfaces where actions such as selecting, grasping, and translating are
required. Table 1 contains graphical depictions of each GWord. For dynamic ges-
tures, we show three example images during the progress of the gesture.

– Press. Press is the static posture of a single finger activating theinterface com-
ponent.

– Left. Left is a dynamic, non-parametric motion of a finger to the left with
respect to the interface component.

– Right. Right is a dynamic, non-parametric motion of a finger to the right with
respect to the interface component.

– Back. Back is a dynamic, non-parametric retraction of the finger off the inter-
face component.

– Twist. Twist is a clockwise twisting motion of a finger atop the interface com-
ponent (dynamic, non-parametric).

– Grab 1. The first grabbing gesture is the dynamic, non-parametric motion of
two fingers approaching the interface component open and closing once they
have reached it.

– Grab 2. The second grabbing gesture is the dynamic, non-parametric motion
of two fingers approaching the interface component open and remaining open
upon reaching it.

– Track. Track is a parametric gesture that tracks two translational degrees-of-
freedom.

– Rotate. Rotate is a parametric gesture that tracks one rotational degree-of-
freedom.

– Stop. Stop is a static posture represented by an open hand atop theinterface
component.

3.3.2 Probabilistic Graphical Model With the algorithms presented in Section 2,
we construct and train a probabilistic graphical model to bethe interaction lan-
guage. Figure 6 is a graphical depiction of the PGM; for clarity, wehave not drawn
any edges with zero probability in the bigram language modelfrom supervised
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GWord Press Left Right Back Twist Grab 1 Grab 2 Track Rotate Stop

Stage 1

Stage 2

Stage 3

Table 1 Example images of basic GWords.

s t

Grab 1

D

Press

S

Stop

S

Left

D

Right

D

Back

D
Twist

D

Track

P

Rotate

P

Grab 2

D

Figure 6 The probabilistic graphical model we constructed for our experimental setup.
Edges with zero probability are not drawn. The nodes are labeled as per the discussion
in Section 3.3. Additionally, each node is labeled as eitherParametric,Dynamic, non-
parametric, orStatic posture.

learning. A simple Gesture Sentence is thusPress→ Left : the user approaches an
interface component with an outstretched finger and then swipes his or her finger
to the left. For example, such composite gesture could be used to delete an inter-
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action component. A more complex Gesture Sentence involving all three types of
low-level GWords isGrab 1→ Track → Stop. This Gesture Sentence could be
widely used in VR to grab and move virtual objects.

3.3.3 Implementation of Low-Level GWordsAs discussed in Section 2.3, we in-
clude three types of low-level gesture processing: static posture, non-parametric
dynamic, or parametric dynamic. In this section we discuss the construction of
these low-level processors for our experimental setup. However, from the perspec-
tive of the PGM framework, the specific construction of the low-level processors
is arbitrary.

Static Posture. Static postures are based on the recognition of single discrim-
inative frames of video. A multitude of potential methods exist in the literature for
such recognition: SIFT keys [19] and Shape Contexts [6] for example. Exploit-
ing the principle of local image analysis from the VICs paradigm (Section 3.1),
we use a common technique from machine learning called neural network pro-
cessing [31]. We train a standard three-layer binary (on/off) network. We fix a
local image neighborhood of 128 x 128 pixels corresponding to the VICon re-
gion in the image defined by its interface component mapping.As input to the
network, we choose a coarse sub-sampling (16 x 16) and take non-overlapping
pixel-neighborhood averages. We employ the intensity only(Y channel in YUV
images).

Non-parametric Dynamic. We model the dynamics of the motion of the fin-
ger using discrete forward HMMs. For a complete discussion of our technique,
refer to [42,43]. Instead of directly tracking the hand, we take an object-centered
approach that efficiently computes the 3D appearance using aregion-based coarse
stereo matching algorithm in a volume around the interaction component. The ap-
pearance feature is represented as a discrete volume with each cell describing the
similarity between corresponding image patches of the stereo pair. The motion cue
is captured via differentiating the appearance feature between frames. A K-means
based vector quantization [18] algorithm is used to learn the cluster structure of
these raw visual features. Then, the image sequence of a gesture is converted to a
series of symbols that indicate the cluster identities of each image pair. A6-state
forward HMM is used to model the dynamics of each gestures. The parameters of
the HMM are learned via the standard forward-backward algorithm based on the
recorded gesture sequences. The gesture recognition is based on the probability
that each HMM generates the given gesture image sequence.

Parametric Dynamic. The implementation of a parametric, dynamic proces-
sor is dependent on the task for which it is to be used. For example, in our gesture
set, we require both a translational and a rotational processor. Again, many po-
tential techniques exist for tracking the local motion of animage patch or pair of
image patches. In our experiments, we used afiltered-detectionalgorithm [12]: for
each frame of video, we detect the feature(s) of interest anduse a linear Kalman
filter to model the dynamics of motion. For example, in the case of the trans-
lational processor, we detect the image point where the two grasping fingertips
(thumb and index finger) meet. Assuming we can detect the sameexact point ev-
ery frame, tracking this grasping-point provides the two translational degrees-of-
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Prior
GWord Left Right Back Twist Grab 1 Grab 2 Track Rotate Press Stop t

0 0 0 0.167 0.167 0.167 0 0 0.5 0 0

Bigram Model
GWord Left Right Back Twist Grab 1 Grab 2 Track Rotate Press Stop t

Left 0.94 0 0 0 0 0 0 0 0 0 0.06
Right 0 0.93 0 0 0 0 0 0 0 0 0.07
Back 0 0 0.84 0 0 0 0 0 0 0 0.16
Twist 0 0 0 0.93 0 0 0 0 0 0 0.07

Grab 1 0 0 0 0 0.94 0 0.06 0 0 0 0
Grab 2 0 0 0 0 0 0.94 0 0.06 0 0 0
Track 0 0 0 0 0 0 0.96 0 0 0.04 0
Rotate 0 0 0 0 0 0 0 0.95 0 0.05 0
Press 0.33 0.33 0.33 0 0 0 0 0 0 0 0
Stop 0 0 0 0 0 0 0 0 0 0.7 0.3

t 0 0 0 0 0 0 0 0 0 0 1

Table 2 Language Model (Priors and Bigram) using supervised learning.

freedom. While it is difficult (or impossible) to detect exactly the same point every
frame, in practice, the Kalman filter handles small variations in the point detection.

4 Experimental Results

Figure 6 shows our vocabulary of6 possible composite gestures. To quantitatively
analyze the PGM, we recorded a training set of100 video sequences each corre-
sponding to one of the6 gestures. The length of the sequences vary from30 to
90 frames (at10 frames-per-second). These sequences were not used in training
the low-level gesture units. For the supervised training, we manually labeled each
frame of the video sequences with a GWord. For unsupervised learning, we initial-
ized a uniform language model and used the algorithm in Section 2.4.2 to refine
the model. After2 iterations, the bigram model converged.

We compare the language models after supervised and unsupervised learning
in Tables 2 and 3, respectively. The bigram models are presented as adjacency ma-
trices such that each row represents the probability of transitioning from a GWord
(leftmost column) to other GWords (or itself). It can be seenthat the2 PGM bi-
gram models have similar structure. It shows that even without good heuristics or
labeled data, our unsupervised learning algorithm can still capture the underlying
language model from raw gesture sequences.

However, there are differences worth mentioning. For example, the prior for
Stop from unsupervised learning is0.03, but there are no sequences in the training
corpus that begin with it. This is caused by the failure of theinference algorithm
given a uniform bigram language model. Second, we see a difference in the self-
transition probability for thePressGWord. In the labeled data, we fixed the dura-
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Prior
GWord Left Right Back Twist Grab 1 Grab 2 Track Rotate Press Stop t

0 0 0 0.1 0.11 0.16 0 0 0.6 0.03 0

Bigram Model
GWord Left Right Back Twist Grab 1 Grab 2 Track Rotate Press Stop t

Left 0.91 0 0 0 0 0 0 0 0 0 0.09
Right 0 0.88 0 0 0 0 0 0 0.0 0 0.12
Back 0 0 0.83 0 0.01 0 0 0 0 0 0.16
Twist 0 0 0.0 0.95 0 0 0 0 0 0 0.05

Grab 1 0 0 0 0 0.82 0 0.14 0 0 0.02 0.02
Grab 2 0 0 0 0 0 0.77 0.04 0.15 0 0.04 0
Track 0 0 0 0 0.02 0 0.77 0.03 0 0.16 0.02
Rotate 0 0 0 0 0 0.01 0.03 0.90 0 0.06 0
Press 0.02 0.02 0.03 0 0 0 0 0 0.91 0 0.02
Stop 0 0 0 0 0 0 0 0 0 0.77 0.23

t 0 0 0 0 0 0 0 0 0 0 1

Table 3 Language Model (Priors and Bigram) using unsupervised learning.

Gesture Sentence Supervised % Unsupervised %
Press→ Left 97.3 97.3

Press→ Right 85.7 78.6

Press→ Back 88.9 90.4

Twist 96.4 96.4

Grab 1→ Track→ Stop 93.3 82.1

Grab 2→ Rotate→ Stop 97.9 97.9

Table 4 Recognition accuracy of the PGM used in our experimentation.

tion of Pressto one frame, but with a uniform bigram model, a static posture can
last for several consecutive frame via self-transition.

During testing, we used the proposed greedy inference algorithm to analyze the
video sequences. In Table 4, we present the recognition accuracy for the gestures
for both language models. For each sequence, we compared itsknown composite
gesture identity with the GWord output of the PGM. We consider the output correct
if it matches the GWord sentence at every stage.

We can see from the results that the proposed high-level gesture language mod-
eling can recognize compositions of heterogeneous low-level gestures. These com-
posite gestures would be impossible to recognize using traditional unimodal tech-
niques, while the PGM formulation takes advantage of high-level linguistic con-
straints to integrate fundamentally different low-level gesture units in a coherent
probabilistic model.

However, the recognition accuracy for gesturePress→ Right and gesture
Press→ Back are relatively poor. From visual inspection of the recognition al-
gorithm’s output, we find that this is due to the greedy algorithm. TheLeft , Right,
andBackare modeled with HMMs and trained with relatively long sequences (e.g.
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20 frames). However, during inference, the greedy algorithm jumps to a conclu-
sion based on an shorter subsequences (e.g. 7 frames). In ourexperiments, we see
a bias toward theLeft GWord for these incomplete subsequences.

The recognition results from the supervised and the unsupervised learning are
comparable. This suggests that our linguistic approach to gesture recognition can
perform well without a heuristic prior or manually labeled data. Hence, our method
is less susceptible to the curse of dimensionality which, inour case, is that the
amount of data (labeled, for supervised learning) requiredfor learning generally
increases exponentially with the number of GWords.

5 Conclusion

We have presented a linguistic approach to recognize composite gestures. The
composite gestures consist of three different types of low-level units (GWords):
static, posture-based primitives; non-parametric dynamic gestures; and paramet-
ric, dynamic gestures. We construct a coherent model by combining the GWords
and a high-level language model in a probabilistic framework which is defined as
a graphical model. We have proposed unsupervised and supervised learning algo-
rithms; our results show that even with a random initialization, the PGM can learn
the underlying gesture language model. By combining the PGMand the greedy
inference algorithm, our method can model gestures composed of heterogeneous
primitives.

Our approach allows the inference of composite gestures as paths through the
PGM and uses the high-level linguistic constraints to guidethe recognition of com-
posite gestures. However, the proposed greedy inference algorithm will make lo-
cally optimal decisions since it is operating online. Furthermore, even in the offline
case, the heterogeneous, low-level gesture processes makean exhaustive search
through all composite gesture sequences computationally prohibitive.

The experiments in this paper include a relatively small gesture vocabulary
of 10 low-level GWords and6 composite gestures. While we have found the bi-
gram model sufficient to capture the linguistic constraintsof this vocabulary, it is
unclear if it will scale well with larger gesture vocabularies. In future work, we
intend to investigate its scalability and other more context-rich language models.
In addition, we are currently integrating the gesture modelinto a VR system. We
plan to perform human factors experiments to analyze the efficacy of our gestural
modeling in the system.
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