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Abstract Traditionally, gesture-based interaction in virtual éoniments is com-
posed of either static, posture-based gesture primitivesnaporally analyzed dy-
namic primitives. However, it would be ideal to incorporath static and dy-
namic gestures to fully utilize the potential of gesturedzhinteraction. To that
end, we propose a probabilistic framework that incorparaiath static and dy-
namic gesture primitives. We call these primitives GestMoeds (GWords). Using
a probabilistic graphical model (PGM), we integrate thestefogeneous GWords
and a high-level language model in a coherent fashion. Csitgpgestures are rep-
resented as stochastic paths through the PGM. A gesturaliszed by finding the
path that maximizes the likelihood on the PGM with respetii&ovideo sequence.
To facilitate online computation, we propose a greedy étlgarfor performing in-
ference on the PGM. The parameters of the PGM can be leara¢hree different
methods: supervised, unsupervised, and hybrid. We impieedehe PGM model
for a gesture set afo GWords with6 composite gestures. The experimental results
show that the PGM can accurately recognize composite gsstur

Key words human computer interaction — gesture recognition — hantlipes—
vision-based interaction — probabilistic graphical model

1 Introduction

Recently, the development in Virtual Reality (VR) techrgils [5] has taken us
to 3-D virtual worlds and prompted us to develop new humamymater interac-
tion (HCI) techniques. Many of the current VR applicatiomspdoy such tradi-
tional HCI media as joysticks, wands, or other tracking texdbgies (magnetic
trackers [3], optical trackers [1], etc.). However, manyhase techniques encum-
ber the user with hardware that can potentially reduce thésma (and effect)
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of the simulation. These limitations have presented us thighchallenge to de-
sign and implement new HCI techniques that are natural andgtiire. Spoken

language [18], haptics [16,30,44,45,46] and vision [114P% have been popu-
lar choices to replace traditional interaction media. Cotapvision holds great
promise: vision-based interfaces would allow unencunthdexge-scale spatial
motion. Furthermore, rich visual information provide®sig cues to infer the mo-
tion and configuration of the human hands and arms.

Many gesture-based visual interfaces have been develdBe?, 38, 36,43,
47]. According to the nature of the gestures in the vocaluthe gestures in ex-
isting interfaces can be classified into two categoriesicsti@nd postures and dy-
namic gestures. Static postures [4,20,23,28, 35, 39] ntbdgjesture as a single
key frame, thus discarding any dynamic characteristiceekample, in recent re-
search on American Sign Language (ASL) [34,48], static lkmmdiguration is the
only cue used to recognize a subset of the ASL consistingpbiadletical letters
and numerical digits. The advantage of this approach isftlugemcy of recogniz-
ing those gestures that display explicit static spatiafigomation. However, it has
an inherent shortcoming in handling dynamic gestures whersgoral patterns
play a more important role than their static spatial arrameya.

Dynamic gestures contain both spatial and temporal cheniatits, thus pro-
viding more challenges for modeling. Many models have beepgsed to char-
acterize the temporal structure of dynamic gestures: dictutemporal template
matching [7,21,25, 33], rule-based and state-based agipeed3, 28], hidden Markov
models (HMM) [24,29,34,41,42] and its variations [9, 24,3hd Bayesian net-
works [32]. These models combine spatial and temporal @ieddr gestures that
span a stochastic trajectory in a high-dimensional spatigporal space.

Most current systems model dynamic gestures qualitatiVéldgt is, they rep-
resent the identity of the gesture, but they do not incoigoamy quantitative,
parametric information about the geometry or dynamics efrttotion involved.
To overcome this limitation, a parametric HMM (PHMM) [37]dibaeen proposed.
The PHMM includes a global parameter that carries an exteatiative repre-
sentation of each gesture. This parameter is included additiamal variable in
the output probabilities of each state of the traditional MM

It seems clear that to fully harness the representative poiveuman ges-
tures, static postures and non-parametric and paraméymamic gestures must
be integrated into a single coherent gesture model. For pbeawvisual modeling
of ASL is still limited by the lack of capabilities to handleg composite nature
of gestures. To that end, we present a novel framework tiedtates static pos-
tures, unparameterized dynamic gestures and dynamic pteaned gestures into
a coherent model.

In this framework, a graphical model is used to model the sgicgand tem-
poral patterns of different parts of a complex gesture; rags#y, the graphical
model is a high-level language (or behavioral) model. Inrttoelel, each stage of
the gesture is represented as a basic language unit, whichlixe Gesture Word
(GWord). A GWord can be modeled as either a static postungarameterized
dynamic gesture or a parameterized gesture. A compositarges composed
of one or more GWords with semantic constraints. These ring are repre-
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sented in the graphical model, with nodes denoting GWordsdges describing
the temporal and linguistic relationship between GWordwe parameters of the
model can be learned based on heuristics or via a probabfliatmework based

on recorded training data. Online gesture recognitioniigedout via greedy in-

ference on the graphical model. Here, online means thatlgogitam does not

have access to future video frames.

Our proposed framework is related to work in the field of attimodeling.
Bregler [10] abstracted human activity in a three-layeredeh. In the data-driven
approach, regions of coherent motion are used as low-l@atlifes. Dynamic
models capture simple movements at the mid-level, and HMMdehthe high-
level complex actions. Pentland and Liu [27] proposed MaiRgnamic Models
which couple multiple linear dynamic models (e.g. Kalmatefg) with a high-
level Markov model. lvanov and Bobick [17] proposed a prdlistic syntac-
tive approach to activity modeling. In their two-layeredaed a discrete symbol
stream is generated from continuous low-level detectodstaen parsed with a
context-free grammar. Galata et al. [15] proposed an apprtmlearn the size of
structure of the stochastic model for high-level activigtgognition.

The main contribution of this work is to investigate a highdl language
model to integrate the three different low-level gesturetf®in a coherent manner.
We extend the state-of-the-artin gesture modeling by nefpthe assumption that
the low-level gesture primitives have a homogeneous forgaadl can be modeled
with a HMM.

2 Modeling Composite Gestures

Probabilistic graphical models (PGM) are a tool for modgline spatial and tem-
poral characteristics of dynamic processes. For exampi#yisl and Bayesian
networks are commonly used to model such dynamic phenonsespaech and
activity. PGMs provide a mathematically sound framewonkéarning and prob-
abilistic inference.

However, most previous work in gesture and activity rectigniassume a
consistent model for all low-level processes (GWords). \Wppse to use PGMs
to integrate multiple, heterogeneous low-level gestucegsses into a high-level
composite gesture. Intuitively, we combine multiple GWeutd form aGesture
Sentencéhat corresponds to a complete interaction task. For ex@mgphsping a
virtual object— moving it — dropping the object (Figure 1).

In the remainder of this section, we define notation in Sec?d and present
our construction of the composite gestures using PGMs inid®e2.2. In Sec-
tion 2.3 we discuss different types of GWords. We formulate learning of the
PGM in Section 2.4. The gesture inference is discussed iidBez. 5.

2.1 Definitions

Let the imagel = {Z,1,t} be a finite set of pixel locationg (points inR?)
together with a mag : 7 — X, whereX’ is some arbitrary value space, ahid
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grasping | : dropping

Figure 1 Composite gesture example with a corresponding graphiodkem

a time parameter. Defin® = {I; ...1,,} to be a sequence of images with length
m > 1. LetG = {V, &} be a directed graph representing the gesture language
model. Each node € V in the graph corresponds to a GWord which belongs to
a vocabulary of size|V|. Associated with each nodeis a probability function
P(S|v), which measures the observation likelihoodS®for a given GWordv.

Each edge < £ is a probability functionP(v;|v;), wherev;, v; € V. Intuitively,

the edge models the temporal relationship between sugeagssture units in the
composite gesture.

2.2 The Gesture Language

We use abigram modelto capture the dynamic nature of the gesture language.
The bigram model represents the linguistic relationshigvben pairs of GWords.
Formally, given a vocabulary, define a GWord sequent® = {s, v1,..., vk, t}
wherev; € V ands, ¢ are two special noded@mmy gesturgshat act as the graph
source and sink. Thus, a gesture is a path through the PGhihgtat the source
node and ending at the sink node. In Figure 2, we give an exaRBM that can
model 6 gestures. For example, the path~ 1 — 3 — 6 — t is a candidate
Gesture Sentence.

We embed the bigram language model into the PGM by assogiatides with
individual GWords and assigning transition probabilitiesm the bigram model.
For convenience, leP(v;) = P(v1]s), which can be considered as the priors of a
GWord. Then the probability of observing the sequence irbtpeam model is

k
P(W) = P(s,v1,...,05,1) = P(vy) [ [ P(vilvi-1) @)

=2
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Figure 2 Example PGM used to represent the gesture language modélp&t beginning
at node s and ending at node tis a valid Gesture Sentence.

As defined in Section 2.1, each node of the PGM models a sp&itiord
with its corresponding observation likelihood. Given amage sequencg we can
construct a candidate segmentation (Section 2.5) thasdpk sequence intp
subsequence§s; ... S, }. We correspond each of the subsequences to a GWord
thus creating a Gesture Sentente Assuming conditional independence of the
subsequences given the segmentation and the observ&etindod of a subse-
guence only depends the corresponding GWord, the obsemiéelihood of the
sequence is

PSW) = [ P(Silvi) )
=1

Then, the overall probability of observi;lg the Gesture 8ece is

PWIS) oc P(W) - P(S|V) (3)
p p
= P(vy) [[ P(vilvi-1) - [[ P(Silvi)
=2 i=1
with the special source and sink node probabilities defisefl(@) = 1, P(tjv €
V) =1,P(v e Vl|s) = P(v).

2.3 The Three Low-level Gesture Processes

As discussed in Section 1, there are three main approachezsdeling gesturesin
current virtual reality systems: static postures, norapaatric dynamic, or para-
metric dynamic. In the PGM presented earlier, each nodeesponds to one of
these three types of gesture processes.
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2.3.1 Static Posture Static postures are based on the recognition of single dis-
criminative frames of video. Hence, static postures sifpgiesture processing by
discarding all temporal information. For example, in thereuat literature, most
alphanumeric symbols in ASL are represented as static fassid8]. Commonly
used approaches to model the postures include appearased#emplates, shape-
based models, and 3D model-based methods.

2.3.2 Non-parametric DynamicNon-parametric dynamic gestures capture tem-
poral processes that carry only qualitative informatiangoantitative information
(e.g. length of hand-wave) is present. Hence, these gestueepotentially more
discriminative than static postures because of the additiemporal dimension.
For example, the ‘j and ‘'z’ letters in the ASL have a tempaigihature; i.e. the
spatial trajectory of the finger over time is used to discniaté between the ‘i’ and
the j'. Hidden Markov models [29,34,41,42] and motion bistimages [7] are
common methods used to model non-parametric dynamic gsstur

2.3.3 Parametric Dynamic Parametric dynamic gestures are the most complex
among the three types because they not only incorporategotahdimension but
also encode a set of quantitative parameters. For exammgplaining the height

of a person using an outstretched hand, the distance betWegmound and the
hand gives a height estimate. Parametric hidden Markov fe¢8é] have been
proposed to model a single spatial variable. However, mioteotechniques are
based on visual tracking.

The parametric dynamic gestures bring an added degreefwuttif to the
recognition process because they can have too high a dddeseqoral variability
to be captured by a standard model like an HMM. For examptgyreil shows a
composite gesture for grabbing, moving, and dropping a&imbject. In general,
the moving gesture will appear quite arbitrary because $lee las the freedom to
navigate the entire workspace and also pause for variabbeiais of time before
dropping the object.

2.4 Learning the PGM

In this paper, we assume that the learning and the implerti@mtz the individual
low-level gesture units are handled separately (in Se&iwe discuss our imple-
mentations) and the observation probabilities of thestsame normalized on the
same scale. Here, we address the problem of learning armémai on the high-
level gesture model. Specifically, we learn the parameteitsecbigram language
model (Equation 1). We describe three basic techniquesita the bigram model:
supervised, unsupervised, and hybrid.

2.4.1 Supervised LearningGiven a set ofn labeled GWord sequences =
{Wr.. Wy}t with Wi = {5,061, .-+, V(36,m,), t} Wherem; 4 2 is the length
of sequenceV; andv(; ;) € V. The GWord prior is given by
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Z?:l 6(”]61 ’U(i,l))

n

P(Uk) = (4)

whered(-) is the Kronecker delta function ang € V. The prior computes the
probability that a Gesture Sentence begins with a certain@W he bigram tran-
sition probability is given by the following equation.

n m;—1
P(ulvg) = 2iz1 2521 Ok Vi) - 00 Vi j41) (5)
iy 2 8 (ks v g))

Intuitively, Equation 5 measures the transition probapiffom a GWorduv,, to
another GWord); € V by accumulating the number of bigram paifs— v; and
normalizing by the number of bigrams beginning with

2.4.2 Unsupervised LearningGiven a set oz unlabeled image sequendés=
{U1...U,}. We generate an initial bigram modef, in a uniform fashion based
on the PGM. We can use additional heuristics based on théfispmgaplication to
refine the uniform initialization. We train the bigram modsing an EM-like [22]
iterative algorithm.

1. M «— M,

2. Compute the best labeling (Section 2.5) for each sequeri¢dbased on the
current bigram model/.

3. Using the supervised learning algorithm (discussedipusly), refine the bi-
gram modelM.

4. Repeatuntil a fixed number of iterations is reached orliamge of the bigram
model in successive iterations is small.

2.4.3 Hybrid Learning Given a set of labeled GWord sequendgeand a set of
unlabeled image sequendésWe generate an initial bigram modef, using the
labeled sequences with the supervised learning algoriiboussed above. Then,
we refine the bigram model in an iterative manner similar éodhe used in unsu-
pervised learning.

1. M «— M,

2. Compute the best labeling (Section 2.5) for each sequeri¢dbased on the
current bigram model/. Call the labeled sequendls

3.7 =U(L,U.

4. Using the dat& perform the supervised learning algorithm (discussediprev
ously) to refine the bigram modéaf .

5. Repeat until a fixed number of iterations is reached orla@ge of the bigram
model in successive iterations is small.
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2.5 Inference on the PGM

Given an image sequenckof lengthm and a PGM with an embedded bigram
model, we construct the inference problem as the searchhéobést labelingC

of S that maximizes the overall probability given in EquationFarmally, the
inference problem is stated as

{vi .. vy} = arg anl?zcs) P(W) - P(S|W) (6)

whereS = {S:...5,}, f(S) = {vi...vp} is a one-to-one mapping from a
sequence segmentation to a Gesture Sentences snagnknown. Lety(-) be the
mapping from subsequen&eto a GWordu;; it is computed using the maximum-
likelihood criterion:

9(5i) = arg max P(S;[v;) (7

Theoretically, the inference problem in Equation 6 couldsblred by an ex-
haustive search. However, the combinatorial complexitgrhibitive. Further-
more, the fundamental differences in the three types ofléwe! gesture proces-
sors makes the optimization more difficult. In addition,inalprocessing is a pre-
requisite for human-computer interfaces. Thus, we propag-optimal, greedy
algorithm.

Initialize the algorithm by settingg = s andSy = (. At staget in the
algorithm processing, we search for the best transitiomftg to v;,; which
maximizes path probability, defined as the product of thasiteon probability
P(v¢41|v:) and the observation probabilif(S;1|v:+1). The beginning of sub-
sequences; 1 is set as the end &f;. To determine the end of the subsequence
St+1 and thus make the greedy path choice, we incrementallyaserthe length
of the subsequence until the path to one of the childmaeet both of the following
two conditions.

1. The observation probability of the child passes a threlsho We discuss a
supervised technique for learning the node thresholdswbelo

2. The path probability of is highest among all of the children of nodge For-
mally,c = argmax, ,, P(vit1|ve) - P(Sp41]vet1)-

In Figure 3 we show a graphical depiction of a stage in the taidfithe greedy
algorithm. In the figure, at staget 1, child c; of nodew, is chosen. We see that
at the end of stage+ 1 the end of sequenc® ;; has been determined.

We learn the individual node thresholds using a supervisgaique. Given a
set of labeled GWord sequences and segmented image seqansg@V;, S;) €
D. we pose the problem of determining the threshaldor GWordv € V as
finding the minimum observation probability for all occuroes ofv:

P(S;|v) (8)

T, = min min
(Wi,si)E'D v; EW; andé(vi,v)

First, we initialize all the thresholds ty 7, = 0,Vv € V, to handle the case
wherev does not occur if. Then, for all GWords € V we compute-, according
to Equation 8.
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End of Stage t+1

During Stage t+1

“/7 :

Sequence S Sequence S

_

St St+1 St SI+1

Figure 3 Graphical depiction of two stages of the proposed greedyritgn for computing
the inference on the PGM. Dark gray nodes are not on the b#siapa are disregarded,
and blue represents past objects on the best path.

3 Experimental Setup

We analyze the proposed model for recognizing compositigesby construct-
ing a gesture set and the corresponding PGM. We employ theaMsteraction
Cues (VICs) paradigm [42] (Section 3.1) to structure thewviprocessing and use
the 4D Touchpad [13] (Section 3.2) as the experimentalquiiaf

3.1 The Visual Interaction Cues Paradigm

The VICs paradigm [42] is a methodology for vision-baseeériattion operating
on the fundamental premise that, in general vision-basetahucomputer inter-
action (VBI) settings, global user modeling and tracking aot necessary. As
discussed earlier, typical vision-based interaction w@srattempt to perform con-
tinuous, global user tracking to model the interaction.tSiechniques are com-
putationally expensive, prone to error and the re-initition problem, prohibit
the inclusion of arbitrary numbers of users, and often negaicomplex gesture-
language the user must learn. However, under the VICs garaaie focus on the
components of the interface itself instead of on the user.
We motivate the paradigm with a simple, real-world examjlnen a per-

son presses the keys of a telephone while making a teleptadhe¢he telephone
maintains no notion of the user. Instead, it only recognibhesesult of a key on
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the keypad being pressed. In contrast, typical methods Binkbuld attempt to
construct a model of the user’s finger, track it through spand perform some
action recognition as the user pressed the keys on the taleplt is likely that
in such processing, the computer system would also have awhee of the real-
world geometric structure of the telephone itself. We cl#iett this processing is
not necessary.

Let W be the space in which the components of the interface rdsideneral,
W is the 3D Euclidean spad®® but it can be the Projective plarie? or the
Euclidean plané&?. Define an interface component mappihg: C — X, where
C Cc WandX = {Z Vv A(Z)} with 7 the image as defined in Section 2.1 and
A(+) being an arbitrary functiodd : P2 — IP2. Intuitively, the mapping defines a
region in the image to which an interface component proj@gts Figure 4).

Figure 4 Schematic explaining the principle of local image analf@ishe VICs paradigm:
M is the component mapping that yields a region of intereshénimageZ for analyzing
actions on componeigt

If, for each interface component and the currentimage, aistamwn, detect-
ing a user action reduces to analyzing a local region in tlagenThis fundamental
idea of local image analysis is the first principle of the Vig2sadigm.

The second principle of the VICs paradigm concerns the coatipmal meth-
ods involved in analyzing the image(s). Each interface comept defines a function-
specific set of image processing components that are oraeaesimple-to-complex
fashion such that each level of increasing interactiorat&in precision (and in-
creasing computational cost) is executed only if the prievievels have validated
the likely existence of an expected object in this ROI. Suctotion of simple-
to-complex processing is not novel; for example, in earlgd® processing, pyra-
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midal schemes were invented that perform coarse-to-finlysiaaf images [2].
However, it is integral to the VICs paradigm.

3.2 The 4D Touchpad

In this section, we explain a VICs platform [13] that has beenstructed based
on the 3D-2D Projection interaction mode [42]. Here, a phwide-baseline cam-
eras is directed at a flat-panel display. This setup is shavigure 5 (left). The

platform incorporates four dimensions of data: two for thggical screen, a third
from the binocular vision, and a fourth from the temporal ¥l@ocessing.

4D-Touchpad 4D-Touchpad
1280 x 1024 1280 x 1024

Calibration Pattern Calibration Pattern

Figure 5 (left) 4D Touchpad Platform. (right) Example rectificatiprocess for the 4D
Touchpad. Upper row contains the original images with tleéified images below.

Since the cameras= 1, 2 are fixed, the interface component mapping for the
system can be computed during an initial calibration sté¥¢gassume the optics
can be modeled by perspective projection. Fet- P? be the coordinate frame
of the flat-panel screen. Defidé. : Z. — F the mapping from each input image
Z. to the flat-panel frame=. We employ a homography [14] for the mapping.
Since the VICons exist in fram#&, each interface component mapping is simply
the identity. This transformation process is known as fieation, and we show
an example of it in Figure 5 (right). Radial distortion is @&t in the rectified
images; in the current system, we do not include any rad&bdion correction.
While doing so would complete the rectification proceduneggiactice we find it
unnecessary.
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The rectification process warps both camera images in a watyathpoints
in the plane of the flat-panel screen appear at the same @ositiboth camera
images. This can be used for stereo calculation; the ragudpace i? x Z with
0 disparity being in the plane of the flat-panel. Disparitdédined as the absolute
distance between corresponding points in the two rectiffeies.

3.3 Gesture Set

The goal of the proposed framework is to facilitate the iraitign of different types
of gestures (Section 2.3) and thus, natural interactioririnal environments. To
that end, we present an experimental gesture set with tereeks (GWords) with
each of the three gesture types represented.

3.3.1 Low-Level Gwords The gesture set is designed to be used in general ma-
nipulative interfaces where actions such as selectingping, and translating are
required. Table 1 contains graphical depictions of each @B\Weor dynamic ges-
tures, we show three example images during the progress gftsture.

— Press Press is the static posture of a single finger activatingntteeface com-
ponent.

— Left. Left is a dynamic, non-parametric motion of a finger to thi \th
respect to the interface component.

— Right. Right is a dynamic, non-parametric motion of a finger to ihatrwith
respect to the interface component.

— Back Back is a dynamic, non-parametric retraction of the findethe inter-
face component.

— Twist. Twist is a clockwise twisting motion of a finger atop the ifdee com-
ponent (dynamic, non-parametric).

— Grab 1. The first grabbing gesture is the dynamic, non-parametoiton of
two fingers approaching the interface component open arsingmnce they
have reached it.

— Grab 2. The second grabbing gesture is the dynamic, non-paranmetition
of two fingers approaching the interface component open @méining open
upon reaching it.

— Track. Track is a parametric gesture that tracks two translatidegrees-of-
freedom.

— Rotate Rotate is a parametric gesture that tracks one rotaticegtea-of-
freedom.

— Stop Stop is a static posture represented by an open hand atapt¢iniace
component.

3.3.2 Probabilistic Graphical Model With the algorithms presented in Section 2,
we construct and train a probabilistic graphical model taHeinteraction lan-
guage Figure 6 is a graphical depiction of the PGM; for clarity, hgve not drawn
any edges with zero probability in the bigram language mdmeh supervised
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GWord | Press Left Right Twist Grabl | Grab2
Stage 1 '—'

Stage 2 '

Stage 3 'l

Track

Rotate

Stop

|- |
it
ich

Table 1 Example images of basic GWords.

Rotate

P

Figure 6 The probabilistic graphical model we constructed for oupezimental setup.
Edges with zero probability are not drawn. The nodes arelddbas per the discussion
in Section 3.3. Additionally, each node is labeled as eifh@ametric,Dynamic, non-
parametric, ofStatic posture.

learning. A simple Gesture Sentence is tRusss— Left: the user approaches an
interface component with an outstretched finger and thepeswliis or her finger
to the left. For example, such composite gesture could be tasdelete an inter-
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action component. A more complex Gesture Sentence ingbidirthree types of
low-level GWords isGrab 1 — Track — Stop. This Gesture Sentence could be
widely used in VR to grab and move virtual objects.

3.3.3 Implementation of Low-Level GWord#s discussed in Section 2.3, we in-
clude three types of low-level gesture processing: stai&tyre, non-parametric
dynamic, or parametric dynamic. In this section we dischgsdonstruction of
these low-level processors for our experimental setup.dv¥ew from the perspec-
tive of the PGM framework, the specific construction of the-level processors
is arbitrary.

Static Posture Static postures are based on the recognition of singleiglisc
inative frames of video. A multitude of potential methodssein the literature for
such recognition: SIFT keys [19] and Shape Contexts [6] f@neple. Exploit-
ing the principle of local image analysis from the VICs pagad (Section 3.1),
we use a common technique from machine learning called heataork pro-
cessing [31]. We train a standard three-layer binary (éhfaftwork. We fix a
local image neighborhood of 128 x 128 pixels correspondinthe VICon re-
gion in the image defined by its interface component mappisginput to the
network, we choose a coarse sub-sampling (16 x 16) and takeverlapping
pixel-neighborhood averages. We employ the intensity ¢vilghannel in YUV
images).

Non-parametric Dynamic. We model the dynamics of the motion of the fin-
ger using discrete forward HMMs. For a complete discussibaun technique,
refer to [42,43]. Instead of directly tracking the hand, wket an object-centered
approach that efficiently computes the 3D appearance usiegi@n-based coarse
stereo matching algorithm in a volume around the interactmmponent. The ap-
pearance feature is represented as a discrete volume withcell describing the
similarity between corresponding image patches of thestpair. The motion cue
is captured via differentiating the appearance featuraédet frames. A K-means
based vector quantization [18] algorithm is used to leamndhuster structure of
these raw visual features. Then, the image sequence of @géstonverted to a
series of symbols that indicate the cluster identities chdeage pair. A6-state
forward HMM is used to model the dynamics of each gestures.perameters of
the HMM are learned via the standard forward-backward #lyorbased on the
recorded gesture sequences. The gesture recognitionad basthe probability
that each HMM generates the given gesture image sequence.

Parametric Dynamic. The implementation of a parametric, dynamic proces-
sor is dependent on the task for which it is to be used. For plgnm our gesture
set, we require both a translational and a rotational psmreg\gain, many po-
tential techniques exist for tracking the local motion ofiemage patch or pair of
image patches. In our experiments, we usétiexed-detectiomlgorithm [12]: for
each frame of video, we detect the feature(s) of interestumeda linear Kalman
filter to model the dynamics of motion. For example, in theecat the trans-
lational processor, we detect the image point where the masping fingertips
(thumb and index finger) meet. Assuming we can detect the saa point ev-
ery frame, tracking this grasping-point provides the tvamsiational degrees-of-
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Prior
GWord | Left | Right | Back | Twist | Grab 1| Grab 2| Track | Rotate| Press| Stop| ¢
0 0 0 0.167 | 0.167 | 0.167 0 0 0.5 0 0
Bigram Model

GWord | Left | Right | Back | Twist | Grab 1| Grab 2| Track | Rotate| Press| Stop| ¢
Left 0.94 0 0 0 0 0 0 0 0 0 0.06
Right 0 0.93 0 0 0 0 0 0 0 0 0.07
Back 0 0 0.84 0 0 0 0 0 0 0 0.16
Twist 0 0 0 0.93 0 0 0 0 0 0 0.07

Grabl| O 0 0 0 0.94 0 0.06 0 0 0 0

Grab2| 0 0 0 0 0 0.94 0 0.06 0 0 0

Track 0 0 0 0 0 0 0.96 0 0 004| O

Rotate | 0O 0 0 0 0 0 0 0.95 0 005| O

Press | 0.33| 0.33 | 0.33 0 0 0 0 0 0 0 0
Stop 0 0 0 0 0 0 0 0 0 0.7 | 0.3

t 0 0 0 0 0 0 0 0 0 0 1

Table 2 Language Model (Priors and Bigram) using supervised lagrni

freedom. While it is difficult (or impossible) to detect eXlsche same point every
frame, in practice, the Kalman filter handles small variagim the point detection.

4 Experimental Results

Figure 6 shows our vocabulary 6fossible composite gestures. To quantitatively
analyze the PGM, we recorded a training set @ video sequences each corre-
sponding to one of thé gestures. The length of the sequences vary f80no

90 frames (atl0 frames-per-second). These sequences were not used imdrain
the low-level gesture units. For the supervised training manually labeled each
frame of the video sequences with a GWord. For unsupervesgding, we initial-
ized a uniform language model and used the algorithm in @e&i4.2 to refine
the model. After iterations, the bigram model converged.

We compare the language models after supervised and unggeblearning
in Tables 2 and 3, respectively. The bigram models are predas adjacency ma-
trices such that each row represents the probability ofttianing from a GWord
(leftmost column) to other GWords (or itself). It can be séeat the2 PGM bi-
gram models have similar structure. It shows that even withood heuristics or
labeled data, our unsupervised learning algorithm calncsgiiture the underlying
language model from raw gesture sequences.

However, there are differences worth mentioning. For exentpe prior for
Stopfrom unsupervised learning 503, but there are no sequences in the training
corpus that begin with it. This is caused by the failure ofitiference algorithm
given a uniform bigram language model. Second, we see adiffe in the self-
transition probability for thé’ressGWord. In the labeled data, we fixed the dura-
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Prior
GWord | Left | Right | Back | Twist | Grab 1| Grab 2| Track | Rotate| Press| Stop| ¢
0 0 0 0.1 0.11 0.16 0 0 06 | 003| O
Bigram Model

GWord | Left | Right | Back | Twist | Grab 1| Grab 2| Track | Rotate| Press| Stop| ¢
Left 0.91 0 0 0 0 0 0 0 0 0 0.09
Right 0 0.88 0 0 0 0 0 0 0.0 0 0.12
Back 0 0 0.83 0 0.01 0 0 0 0 0 0.16
Twist 0 0 0.0 | 0.95 0 0 0 0 0 0 0.05
Grabl| O 0 0 0 0.82 0 0.14 0 0 0.02 | 0.02

Grab2| 0 0 0 0 0 0.77 0.04 | 0.15 0 0.04| O
Track 0 0 0 0 0.02 0 0.77 | 0.03 0 0.16 | 0.02

Rotate | 0O 0 0 0 0 0.01 0.03 | 0.90 0 0.06| O
Press | 0.02| 0.02 | 0.03 0 0 0 0 0 0.91 0 0.02
Stop 0 0 0 0 0 0 0 0 0 0.77 | 0.23

t 0 0 0 0 0 0 0 0 0 0 1

Table 3 Language Model (Priors and Bigram) using unsupervisediegr

Gesture Sentence Supervised %| Unsupervised %
Press— Left 97.3 97.3
Press— Right 85.7 78.6
Press— Back 88.9 90.4

Twist 96.4 96.4
Grab 1— Track— Stop 93.3 82.1
Grab 2— Rotate— Stop 97.9 97.9

Table 4 Recognition accuracy of the PGM used in our experimentation

tion of Pressto one frame, but with a uniform bigram model, a static pastan
last for several consecutive frame via self-transition.

During testing, we used the proposed greedy inferenceittigoto analyze the
video sequences. In Table 4, we present the recognitiorrancior the gestures
for both language models. For each sequence, we compatatbitsr composite
gesture identity with the GWord output of the PGM. We constlle output correct
if it matches the GWord sentence at every stage.

We can see from the results that the proposed high-levelgesinguage mod-
eling can recognize compositions of heterogeneous loetgstures. These com-
posite gestures would be impossible to recognize usingitvadl unimodal tech-
nigues, while the PGM formulation takes advantage of heytell linguistic con-
straints to integrate fundamentally different low-levekture units in a coherent
probabilistic model.

However, the recognition accuracy for gestiess — Right and gesture
Press— Back are relatively poor. From visual inspection of the recognital-
gorithm’s output, we find that this is due to the greedy aliponi. TheLeft, Right,
andBack are modeled with HMMs and trained with relatively long senges (e.g.
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20 frames). However, during inference, the greedy algarilhmps to a conclu-
sion based on an shorter subsequences (e.g. 7 frames).érmanments, we see
a bias toward théeft GWord for these incomplete subsequences.

The recognition results from the supervised and the unsigsetlearning are
comparable. This suggests that our linguistic approaclestuge recognition can
perform well without a heuristic prior or manually labeleata. Hence, our method
is less susceptible to the curse of dimensionality whichgun case, is that the
amount of data (labeled, for supervised learning) requioedearning generally
increases exponentially with the number of GWords.

5 Conclusion

We have presented a linguistic approach to recognize catepgsstures. The
composite gestures consist of three different types oflewet units (GWords):
static, posture-based primitives; non-parametric dyeagestures; and paramet-
ric, dynamic gestures. We construct a coherent model by gontpthe GWords
and a high-level language model in a probabilistic framdwahich is defined as
a graphical model. We have proposed unsupervised and ssefearning algo-
rithms; our results show that even with a random initialzatthe PGM can learn
the underlying gesture language model. By combining the RaBilthe greedy
inference algorithm, our method can model gestures condpafsketerogeneous
primitives.

Our approach allows the inference of composite gestureaths through the
PGM and uses the high-level linguistic constraints to gth@eecognition of com-
posite gestures. However, the proposed greedy inferegoeithim will make lo-
cally optimal decisions since it is operating online. Farthore, even in the offline
case, the heterogeneous, low-level gesture processesanakehaustive search
through all composite gesture sequences computationalhjlmtive.

The experiments in this paper include a relatively smaltgesvocabulary
of 10 low-level GWords and composite gestures. While we have found the bi-
gram model sufficient to capture the linguistic constragftthis vocabulary, it is
unclear if it will scale well with larger gesture vocabuksi In future work, we
intend to investigate its scalability and other more conteh language models.
In addition, we are currently integrating the gesture maatel a VR system. We
plan to perform human factors experiments to analyze theaeffiof our gestural
modeling in the system.

AcknowledgementsWe thank Darius Burschka for his help with the Visual Int¢i@c
Cues project. This work was in part funded by a Link FoundeEellowship in Simulation
and Training and by the National Science Foundation undanGyo. 0112882.

References

1. 3rd Tech. Hiball-3100 sensdrt t p: / / www. 3r dt ech. conf Hi Bal | . ht m



18

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

Jason J. Corso et al.

P. Anandan. A Computational Framework and an Algorithnttie Measurement of
Visual Motion. International Journal of Computer Visio2(3):283—-310, 1989.

. Ascension Technology Corporation. Flock of bird§itt p:// waw.

ascensi on-tech. com product s/ fl ockof bi rds. php.

. Vassilis Athitsos and Stan Sclaroff. Estimating 3D Haondd*from a Cluttered Image.

In Computer Vision and Pattern Recognitjasmolume 2, pages 432—-439, 2003.

. Ronald T. Azuma. A Survey of Augmented RealitPresence: Teleoperators and

Virtual Environments6(11):1-38, 1997.

. Serge Belongie, Jitendra Malik, and Jan Puzicha. Shapéeto A New Descriptor

for Shape Matching and Object Recognition.Naural Information Processingages
831-837, 2000.

. Aaron Bobick and James Davis. The Recognition of Humanevtent Using Tem-

poral Templates.IEEE Transactions on Pattern Analysis and Machine Intelige
23(3):257-267, 2001.

. Aaron Bobick and Andrew Wilson. A State-based Approachht Representation

and Recognition of GesturelEEE Transactions on Pattern Analysis and Machine
Intelligence 19(12):1325-1337, 1997.

. M. Brand, N. Oliver, and A.P. Pentland. Coupled Hidden kéarModels for Complex

Action Recognition. InComputer Vision and Pattern Recognitjgpages 994-999,
1997.

Christoph Bregler. Learning and Recognizing Human Byina in Video Sequences.
In IEEE Conference on Computer Vision and Pattern Recognifi®a7.

Q. Cai and J. K. Aggarwal. Human Motion Analysis: A Revidournal of Computer
Vision and Image Understanding3(3):428—440, 1999.

Jason J. Corso. Vision-Based Techniques for Dynamiltal@wative Mixed-Realities.
In Research Papers of the Link Foundation Fellows. Ed. Briathdmpson. University
of Rochestor Press in association with The Link Foundatofume 4. 2004.

Jason J. Corso, Darius Burschka, and Gregory D. Hagee. 4D: Unencumbered
HCI with VICs. In IEEE Workshop on Human Computer Interaction at Conferemce o
Computer Vision and Pattern Recognitj@003.

Olivier FaugerasThree-Dimensional Computer Visiomhe MIT Press, 1993.
Aphrodite Galata, Neil Johnson, and David Hogg. LearMariable-Length Markov
Models of Behavior. Computer Vision and Image Understandir@(1):398-413,
2001.

B. Insko, M. Meehan, M. Whitton, and F. Brooks. Passivptiba significantly en-
hances virtual environments. Technical Report 01-10, Bepnt of Computer Sci-
ence, UNC Chapel Hill, 2001.

Y. A. lvanov and Aaron F. Bobick. Recognition of Visualtidties and Interactions by
Stochastic ParsindEEE Transactions on Pattern Analysis and Machine Inteltige
22(8):852-872, 2000.

Frederick JelinekStatistical Methods for Speech RecognitidiT Press, 1999.
David Lowe. Distinctive Image Features from Scale-tiarg KeypointsInternational
Journal of Computer Visiqr60(2):91-110, 2004.

S. Malassiotis, N. Aifanti, and M. Strintzis. A Gestured@gnition System Using 3D
Data. InProceedings of the First International Symposium on 3D DRtacessing
Visualization and Transmisssippages 190-193, 2002.

Stephen J. Mckenna and Kenny Morrison. A Comparison aéh $kstory and
Trajectory-Based Representation Schemes for the Regmymit User-Specific Ges-
tures. Pattern Recognition37:999-1009, 2004.

Todd K. Moon. The Expectation-Maximization AlgorithniEEE Signal Processing
Magazine pages 47—-60, 1996.



Analysis of Composite Gestures with a Coherent Probaicil&taphical Model 19

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Kai Nickel and Rainer Stiefelnagen. Pointing Gesturedgaition based on 3D-
Tracking of Face, Hands and Head OrientationWaorkshop on Perceptive User Inter-
faces pages 140-146, 2003.

Kenji Oka, Yoichi Sato, and Hideki Koike. Real-Time Famgp Tracking and Gesture
Recognition.IEEE Computer Graphics and Applicatiqriz2(6):64—71, 2002.

Vasu Parameswaran and Rama Chellappa. View Invariank$uiman Action Recog-
nition. In Computer Vision and Pattern Recognitjaslume 2, pages 613-619, 2003.
Vladimir I. Pavlovic, Rajeev Sharma, and Thomas S. Huafigual Interpretation of
Hand Gestures for Human-Computer Interaction: A ReviedlwEE Transactions on
Pattern Analysis and Machine Intelligended(7):677-695, 1997.

Alex Pentland and Andrew Liu. Modeling and Predicitotdoiman BehaviorNeural
Computation11(1):229-242, 1999.

F. Quek. Unnencumbered Gesture InteraciBEE Multimedia 3(3):36—47, 1996.
Lawrence Rabiner. A Tutorial on Hidden Markov Models &wdected Applications
in Speech RecognitiorRProceedings of the IEEE7(2):257-286, 1989.

M. Salada, J. E. Colgate, M. Lee, and P. Vishton. Validpt novel approach to
rendering fingertip contact sensations Pimceedings of the 10th IEEE Virtual Reality
Haptics Symposiunpages 217-224, 2002.

Robert J. SchalkoffArtificial Neural Networks The McGraw-Hill Companies, Inc.,
1997.

Yifan Shi, Yan Huang, David Minnen, Aaron Bobick, andahfEssa. Propagation
Networks for Recognition of Partially Ordered Sequentiatidn. In Computer Vision
and Pattern Recognitigrvolume 2, pages 862-869, 2004.

Min C. Shin, Leonid V. Tsap, and DMitry B. Goldgof. GestURecognition Using
Bezier Curvers for Visualization Navigation from Regis@B-D DataPattern Recog-
nition, 37(0):1011-1024, 2004.

T. Starner and A. Pentland. Real-time american sigrulaaeg recognition from video
using hidden markov models. Technical Report TR-375, MIM&dia Laboratory,
1996.

Carlo Tomasi, Slav Petrov, and Arvind Sastry. 3D TragkirClassification + Interpo-
lation. InProc. Int'l Conf. Computer Visiarpages 1441-1448, 2003.

Christian von Hardenberg and Francois Berard. Baredttarman-Computer Interac-
tion. In Workshop on Perceptive User Interfac2801.

Andrew Wilson and Aaron Bobick. Parametric Hidden Markdodels for Ges-
ture Recognition.|IEEE Transactions on Pattern Analysis and Machine Intellice
21(9):884-900, 1999.

Christopher Wren, Ali Azarbayejani, Trevor Darrelldaflex Paul Pentland. Pfinder:
Real-time tracking of the Human BodyEEE Transactions on Pattern Analysis and
Machine Intelligencel9(7):780-784, 1997.

Ying Wu and Thomas S. Huang. View-independent Recagndaf Hand Postures. In
Computer Vision and Pattern Recognitjarolume 2, pages 88—94, 2000.

Ying Wu and Thomas S. Huang. Hand Modeling, Analysis, Radognition. IEEE
Signal Processing Magazin&8(3):51-60, 2001.

Junji Yamato, Jun Ohya, and Kenichiro Ishii. Recogmjzituman Actions in Time-
sequential Images Using Hidden Markov Model. Gomputer Vision and Pattern
Recognitionpages 379-385, 1992.

Guanggi Ye, Jason J. Corso, Darius Burschka, and Gr&gatgger. VICs: A Modular
HCI Framework Using Spatio-Temporal Dynamigdachine Vision and Applications
2005. to appear.



20

43.

44,

45.

46.

47.

48.

Jason J. Corso et al.

Guanggi Ye, Jason J. Corso, and Gregory D. Hager. GeRegegnition Using 3D
Appearance and Motion Features. Rmoceedings of CVPR Workshop on Real-Time
Vision for Human-Computer Interactip@004.

Guanggi Ye, Jason J. Corso, Gregory D. Hager, and Allido®kamura. VisHap:
Augmented Reality Combining Haptics and Vision. Rroceedings of IEEE Interna-
tional Conference on Systems, Man and Cyberngpiages 3425-3431, 2003.

Y. Yokokohji, J. Kinoshita, and T. Yoshikawa. Path plemgnfor encountered-type
haptic devices that render multiple objects in 3d spd@mceedings of IEEE Virtual
Reality, pages 271-278, 2001.

T. Yoshikawa and A. Nagura. A touch/force display systernhaptic interface Pres-
ence 10(2):225-235, 2001.

Zhengyou Zhang, Ying Wu, Ying Shan, and Steven ShafsualiPanel: Virtual Mouse
Keyboard and 3D Controller with an Ordinary Piece of Pape¥Vbrkshop on Percep-
tive User Interfaces2001.

H. Zhou, D.J. Lin, and Thomas S. Huang. Static Hand PestRecognition based
on Local Orientation Histogram Feature Distribution Model Proceedings of CVPR
Workshop on Real-Time Vision for Human-Computer Intecsc2004.



