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Abstract. We propose a novel algorithm called graph-shifts for performing im-
age segmentation and labeling. This algorithm makes use of a dynamic hierar-
chical representation of the image. This representation allows each iteration of
the algorithm to make both small and large changes in the segmentation, similar
to PDE and split-and-merge methods, respectively. In particular, at each iteration
we are able to rapidly compute and select the optimal change to be performed.
We apply graph-shifts to the task of segmenting sub-cortical brain structures.
First we formalize this task as energy function minimization where the energy
terms are learned from a training set of labeled images. Then we apply the graph-
shifts algorithm. We show that the labeling results are comparable in quantitative
accuracy to other approaches but are obtained considerably faster: by orders of
magnitude (roughly one minute). We also quantitatively demonstrate robustness
to initialization and avoidance of local minima in which conventional boundary
PDE methods fall.

1 Introduction
Segmenting an image into a number of labeled regions is a classic vision and medical
imaging problem, see [1,2,3,4,5,6] for an introduction to the enormous literature. The
problem is typically formulated in terms of minimizing an energy function or, equiv-
alently, maximizing a posterior probability distribution. In this paper, we deal with a
special case where the number of labels is fixed. Our specific application is to segment
the sub-cortical structures of the brain, see section (2). The contribution of this paper is
to provide a novel algorithm called graph-shifts which is extremely fast and effective
for sub-cortical segmentation.

A variety of algorithms, reviewed in section (2), have been proposed to solve the
energy minimization task for segmentation and labeling. For most of these algorithms,
each iteration is restricted to small changes in the segmentation. For those methods
which allow large changes, there is no procedure for rapidly calculating and selecting
the change that most decreases the energy.

Graph-shifts is a novel algorithm that builds a dynamic hierarchical representation
of the image. This representation enables the algorithm to make large changes in the
segmentation which can be thought of as a combined split and merge (see [4] for recent
work on split and merge). Moreover, the graph-shifts algorithm is able to exploit the
hierarchy to rapidly calculate and select the best change to make at each iteration. This
gives an extremely fast algorithm which also has the ability to avoid local minima that
might trap algorithms which rely on small local changes to the segmentation.

The hierarchy is structured as a set of nodes at a series of layers, see figure (1). The
nodes at the bottom layer form the image lattice. Each node is constrained to have a
single parent. All nodes are assigned a model label which is required to be the same as
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Fig. 1. Intuitive Graph-
Shifts Example.

its parent’s label. There is a neighborhood structure defined at
all layers of the graph. A graph shift alters the hierarchy by
changing the parent of a node, which alters the model label of
the node and of all its descendants. This is illustrated in fig-
ure (1), which shows three steps in a three layer graph coloring
potential shifts that would change the energy black and others
gray. The algorithm can be understood intuitively in terms of
competing crime families as portrayed in films like the Godfa-
ther. There is a hierarchical organization where each node owes
allegiance to its unique parent node (or boss) and, in turn, to its
boss’s boss. This gives families of nodes which share the same
allegiance (i.e. have the same model label). Each node has a
subfamily of descendants. The top level nodes are the “bosses
of all bosses” of the families. The graph-shifts algorithm pro-
ceeds by selecting a node to switch allegiance (i.e. model label)
to the boss of a neighboring node. This causes the subfamily of
the node to also switch allegiance. The algorithm minimizes a
global energy and at each iteration selects the change of alle-
giance that maximally decreases the energy.

The structure of this paper is as follows. In section (2) we
give a brief background on segmentation. Section (3) describes
the graph-shifts algorithm for a general class of segmentation
problems. In section (4), we formulate the task of sub-cortical
labeling in terms of energy function minimization and derive a graph-shifts algorithm.
Section (5) gives experimental results and comparisons to other approaches.

2 Background
Many algorithms have been applied to segmentation, so we restrict our review to those
methods most related to this paper. A common approach includes taking local gradients
of the energy function at the region boundaries and thereby moving the boundaries. This
region competition approach [2] can be successful when used with good initialization,
but its local nature means that at each iteration step it can only make small changes to
the segmentation. This can cause slowness and also risks getting stuck in local min-
ima. See [7] for similar types of partial differential equations (PDE) algorithms using
level sets and related methods. Graph cuts [3] is an alternative deterministic energy
minimization algorithm that can take large leaps in the energy space, but it can only
be applied to a restricted class of energy functions (and is only guaranteed to converge
for a subset of these) [8]. Simulated annealing [1] can in theory converge to the opti-
mal solution of any energy function but, in practice, is extremely slow. The data-driven
Markov chain Monte Carlo method [4] can combine classic methods, including split
and merge, to make large changes in the segmentation at each iteration, but remains
comparatively slow.

There have been surprisingly few attempts to define segmentation algorithms based
on dynamic hierarchical representations. But we are influenced by two recent papers.
Segmentation by Weighted Aggregation (SWA) [9] is a remarkably fast algorithm that
builds a hierarchical representation of an image, but does not attempt to minimize a
global energy function. Instead it outputs a hierarchy of segments which satisfy certain
homogeneity properties. Moreover, its hierarchy is fixed and not dynamic. The multi-



scale Swendson-Wang algorithm [10] does attempt to provide samples from a global
probability distribution. But it has only limited hierarchy dynamics and its convergence
rate is comparatively slow compared to SWA. A third related hierarchical segmentation
approach is proposed in [11], where a hyperstack, a Gaussian scale-space representation
of the image, is used to perform a probabilistic linking (similar to region growing) of
voxels and partial volumes in the scale-space. Finally, Tu [12] proposed a related seg-
mentation algorithm that was similarly capable of making both small-scale boundary
adjustments and large-scale split-merge moves. In his approach, however, a fixed size
hierarchy is used, and the split-merge moves are attempted by a stochastic algorithm,
which requires the evaluation of (often difficult to compute) proposal distributions.

Our application is the important task of sub-cortical segmentation from three-
dimensional medical images. Recent work on this task includes [5,6,13,14,15,16]. These
approaches typically formulate the task in terms of probabilistic estimation or, equiva-
lently, energy function minimization. The approaches differ by the form of the energy
function that they use and the algorithm chosen to minimize it. The algorithms are usu-
ally similar to those described above and suffer similar limitations in terms of conver-
gence rates. In this paper, we will use a comparatively simple energy function similar
to conditional random fields [17], where the energy terms are learned from training
examples by the probabilistic boosting tree (PBT) learning algorithm [18].

3 Graph-Shifts

This section describes the basic ideas of the graph-shifts algorithm. We first describe
the class of energy models that it can be applied to in section (3.1). Next we describe
the hierarchy in section (3.2), show how the energy can be computed recursively in
section (3.3), and specify the general graph-shifts algorithm in section (3.4).

3.1 The Energy Models

The input image I is defined on a lattice D of pixels/voxels. For medical image ap-
plications this is a three-dimensional lattice. The lattice has the standard neighborhood
structure and we define the notation N(µ, ν) = 1 if µ ∈ D and ν ∈ D are neighbors
on the lattice, and N(µ, ν) = 0 otherwise. The task is to assign each voxel µ ∈ D to
one of a fixed set of K models mµ ∈ {1, ...,K}. This assignment corresponds to a
segmentation of the image into K, or more, connected regions.

We want the segmentation to minimize an energy function criterion:

E[{mω : ω ∈ D}] =
∑
ν∈D

E1(φ(I)(ν),mν) +
1
2

∑
ν∈D,µ∈D:
N(ν,µ)=1

E2(I(ν), I(µ),mν ,mµ).

(1)
In this paper, the second term E2 is chosen to be a boundary term that pays a penalty
only for neighboring pixels/voxels which have different model labels (i.e.
E2(I(ν), I(µ),mν ,mµ) = 0 if mν = mµ). This penalty can either be a penalty for the
length of the boundary, or may include a measure of the strength of local edge cues. It
includes discretized versions of standard segmentation criteria such as boundary length∫

δR
ds and edge strength along boundary

∫
δR
|∇I|2ds. (Here s denotes arc length, R

denotes the regions with constant labels, and δR is their boundaries).



The first termE1 gives local evidence that the pixel µ takes modelmµ, where φ(I)(µ)
denotes a nonlinear filter of the image evaluated at µ. In this paper, the nonlinear fil-
ter will give local context information and will be learned from training samples, as
described in section (4.1). The model given in equation (1) includes a large class of
existing models. It is restricted, however, by the requirement that the number of models
is fixed and that the models have no unknown parameters.

3.2 The Hierarchy

We define a graph G to be a set of nodes µ ∈ U and a set of edges. The graph is
hierarchical and composed of multiple layers. The nodes at the lowest layer are the
elements of the lattice D and the edges are defined to link neighbors on the lattice. The
coarser layers are computed recursively, as will be described in section (4.2). Two nodes
at a coarse layer are joined by an edge if any of their children are joined by an edge.

The nodes are constrained to have a single parent (except for the nodes at the top
layer which have no parent) and every node has at least one child (except for nodes at
the bottom layer). We use the notation C(µ) for the children of µ, and A(µ) for the
parent. A node µ on the bottom layer (i.e. on the lattice) has no children, and hence
C(µ) = ∅. We use the notation N(µ, ν) = 1 to indicate that nodes µ, ν on the same
layer are neighbors, with N(µ, ν) = 0 otherwise.

At the top of the hierarchy, we define a special root layer of nodes comprised of a
single node for each of theK model labels. We write µk for these root nodes and use the
notation mµk

to denote the model variable associated with it. Each node is assigned a
label that is constrained to be the label of its parent. Since, by construction, all non-root
nodes can trace their ancestry back to a single root node, an instance of the graph G is
equivalent to a labeled segmentation {mµ : µ ∈ D} of the image, see equation (1).

3.3 Recursive Computation of Energy

This section shows that we can decompose the energy into terms that can be assigned
to each node of the hierarchy and computed recursively. This will be exploited in sec-
tion (3.4) to enable us to rapidly compute the changes in energy caused by different
graph shifts.

The energy function consists of regional and edge parts. These depend on the node
descendants and, for the edge part, on the descendants of the neighbors. The regional
energy E1 for assigning a model mµ to a node µ is defined recursively by:

E1(µ,mµ) =


E1 (φ(I)(µ),mµ) if C(µ) = ∅∑
ν∈C(µ)

E1(ν,mµ) otherwise (2)

where E1 (φ(I)(µ),mµ) is the energy at the voxel from equation (1). The edge energy
E2 between nodes µ1 and µ2, with models mµ1 and mµ2 is defined recursively by:

E2(µ1, µ2,mµ1 ,mµ2) =
E2(I(µ1), I(µ2),mµ1 ,mµ2) if C(µ1) = C(µ2) = ∅∑
ν1∈C(µ1), ν2∈C(µ2) :

N(ν1,ν2)=1

E2(ν1, ν2,mµ1 ,mµ2) otherwise (3)



where E2(I(µ1), I(µ2),mµ1 ,mµ2) is the edge energy for pixels/voxels in equation (1).
The overall energy (1) was specified at the voxel layer, but it can be computed at any

layer of the hierarchy. For example, it can be computed at the top layer by:

E
(
{mµk

: k = 1, ...,K}
)

=
K∑

k=1

E1(µk,mµk
) +

1
2

∑
i,j:1,..,K

N(µi,µj)=1

E2(µi, µj ,mµi
,mµj

).

(4)
3.4 Graph-Shifts

The basic idea of the graph-shifts algorithm is to allow a node µ to change its parent to
the parent A(ν) of a neighboring node ν, as shown in figure (1). We will represent this
shift as µ→ ν.

This shift not have any effect on the labeling of nodes unless the new parent has a
different label than the old one (i.e. when mA(µ) 6= mA(ν), or equivalently, mµ 6= mν).
In this case, the change in parents will cause the node and its descendants to change
their labels to that of the new parent. This will alter the labeling of the nodes on the
image lattice and hence will change the energy.

Consequently, we only need consider shifts between neighbors which have different
labels. We can compute the changes in energy, or shift-gradient caused by these shifts
by using the energy functions assigned to the nodes, as described in section (3.3). For
example, the shift from µ to ν corresponds to a shift-gradient ∆E(µ→ ν):

∆E(µ→ ν) = E1(µ,mν)− E1(µ,mµ) +∑
η:N(µ,η)=1

[E2(µ, η,mν ,mη)− E2(µ, η,mµ,mη)] . (5)

The graph-shifts algorithm begins by initializing the graph hierarchy (section 4.2). Then
we calculate the shift-gradients of all the shifts using equations (2),(3), and (5). We
exploit recursion to calculate these shift-gradients extremely rapidly, see section (4.3).
In practice, very few of the neighbors in the hierarchy have different labels and so the
shift-gradients only need be computed for a small fraction of the total nodes. We throw
away all shift-gradients which are positive or zero, since these shifts do not decrease the
energy. The remaining shift-gradients are stored in a sorted, or unsorted, shift-gradient
list, denoted S in figure 2 (we discuss the tradeoffs in section 4.3).

GRAPH-SHIFTS
Input: Volume I on lattice D.
Output: Label volume L on lattice D.
0 Initialize graph hierarchy (figure 3).
1 Compute exhaustive set of potential shifts S.
2 while S is not empty
3 s← the shift in S that best reduces the energy.
4 Apply shift s to the graph.
5 Update affected region and edge properties.
6 Recompute affected shifts on boundary and

update S. (5 & 6 discussed in section 4)
7 Compute label volume L from final hierarchy.

Fig. 2. Graph-shifts pseudo-code.

Graph-shifts proceeds by selecting
the steepest shift-gradient in the list
and makes the corresponding shift in
the hierarchy. This changes the labels
in the part of the hierarchy where the
shift occurs, but leaves the remainder
of the hierarchy unchanged. The al-
gorithm recomputes the shift-gradients
in the changed part of the hierarchy
and updates the weight list. We repeat
the process until convergence, when the
shift-gradient list is empty (i.e. all shift-
gradients in the graph are positive or zero).



Each shift is chosen to maximally decrease the energy, and so the algorithm is guar-
anteed to converge to, at least, a local minimum of the energy function. The algorithm
prefers to select shifts at the coarser layers of the hierarchy, because these typically alter
the labels of many nodes on the lattice and cause large changes in energy. These large
changes can ensure that the algorithm can escape from some bad local minima.

4 Segmentation of 3D Medical Images

Now we describe the specific application to sub-cortical structures. The specific energy
function is given in section (4.1). Sections (4.2) and (4.3) describe the initialization and
how the shifts are computed and selected for the graph-shifts algorithm.

4.1 The Energy

Our implementation uses eight models for sub-cortical structures together with a back-
ground model for everything else. The regional terms E1(µ,mµ) in the energy func-
tion (1) contain local evidence that a voxel µ is assigned a labelmµ. This local evidence
will depend on a small region surrounding the voxel and hence is influenced by the lo-
cal image context. We learn this local evidence from training data where the labeling is
given by an expert.

We apply the probabilistic boosting tree (PBT) algorithm [18] to output a probability
distribution P (mµ|φ(I)(µ)) for the label mµ at voxel µ ∈ D conditioned on the re-
sponse of a nonlinear filter φ(I)(µ). This filter depends on voxels within an 11×11×11
window centered on µ, and hence takes local image context into account. The non-linear
filter φ is learned by the PBT algorithm which is an extension of the AdaBoost algo-
rithm [19], [20]. PBT builds the filter φ(.) by combining a large number of elementary
image features. These are selected from a set of 5,000 features which include Haar ba-
sis functions and histograms of the intensity gradient. The features are combined using
weights which are also learned by the training algorithm.

We define the regional energy term by:

E1(µ,mµ) = − logP (mµ|φ(I)(µ)), (6)

which can be thought of as a pseudolikelihood approximation [18].
The edge energy term can take two forms. We can use it to either penalize the length

of the segmentation boundaries, or to penalize the intensity edge strength along the
segmentation boundaries. This gives two alternatives:

E2(I(ν), I(µ),mν ,mµ) = 1− δmν ,mµ , (7)
E2(I(ν), I(µ),mν ,mµ) = {1− δmν ,mµ}ψ(I(µ), I(ν)), . (8)

where ψ(I(µ), I(ν)) is a statistical likelihood measure of an edge between µ and ν; a
simple example of such a measure is given in equation (9).

4.2 Initializing the Hierarchy

We propose a stochastic algorithm to quickly initialize the graph hierarchy that will be
used during the graph shifts process. The algorithm recursively coarsens the graph by
activating some edges according to the intensity gradient in the volume and grouping
the resulting connected components up to a single node in the coarser graph layer. The
coarsening procedure begins by defining a binary edge activation variable eµν on each



edge in the current graph layer Gt between neighboring nodes µ and ν (i.e., N(µ, ν) =
1). The edge activation variables are then sampled according to

eµν ∼ γU({0, 1}) + (1− γ) exp [−α |I(µ)− I(ν)|] (9)

where U is the uniform distribution on the binary set and γ is a relative weight between
U and the conventional edge gradient affinity (right-hand side).

After the edge activation variables are sampled, a connected components algorithm
is used to form node-groups based on the edge activation variables. The size of a con-
nected component is constrained by a threshold τ , which governs the relative degree
of coarsening between two graph layers. On the next graph layer, a node is created for
each component. Following, edges in the new graph layer are induced by the connectiv-
ity on the current layer; i.e., two nodes in the coarse graph are connected if any two of
their children are connected. The algorithm recursively executes this coarsening proce-
dure until the size of the coarsened graph is within the range of the number of models,
specified by a scalar β. Complete pseudo-code for this hierarchy initialization is given
in figure 3.

Let GT be the top layer of the graph hierarchy after initialization (example in fig-
ure 3(b)). Then, we append a model layer GM on the hierarchy that contains a single
node per model. Each node in GT becomes the child of the node in GM to which it has
best fit, which is determined by evaluating the model fit P (m|µ) defined in section 4.1.
One necessary constraint is that each node in GM has at least one child in GT , which
is enforced by first linking each node in GM to the node in GT with highest probability
to its model and the remaining links are created as described earlier.

HIERARCHY INITIALIZATION
Input: Volume I on lattice D.
Output: Graph hierarchy with layers G0, . . . , GT .
0 Initialize graph G0 from lattice D.
1 t← 0.
2 repeat
3 Sample edge activation variables in Gt using (9).
4 Label every node in Gt as OPEN.
5 while OPEN nodes remain in Gt.
6 Create new, empty connected component C.
7 Put a random OPEN node into queue Q.
8 while Q is not empty and |C| < 1/τ .
9 µ← removed head of Q.
10 Add ν to Q, s.t. N(µ, ν) = 1 and eµν = 1.
11 Add µ to C, label µ as CLOSED.
12 Create Gt+1 with a node for each C.
13 Define I(C) as mean intensity of its children.
14 Inherit connectivity in Gt+1 from Gt.
15 t← t + 1.
16 until

˛̨
Gt

˛̨
< β ∗K.

(b) Example initialization. Top-left is coronal,
top-right is sagittal, bottom-left is axial, and
bottom-right is a 3D view.

Fig. 3. Initialization pseudo-code (left) and example (right).

4.3 Computing and Selecting Graph-Shifts
The efficiency of the graph-shifts algorithm relies on fast computation of potential shifts
and fast selection of the optimal shift every iteration. We now describe how to satisfy
these two requirements. To quickly compute potential shifts, we use an energy caching
strategy that evaluates the recursive energy formulas (2) and (3) for the entire graph hi-
erarchy following its creation (section 4.2). At each node, we evaluate and store the en-



ergies, denoted Ê1(µ,mµ) .= E1(µ,mµ) and Ê2(µ, ν,mµ,mν) .= E2(µ, ν,mµ,mν)
for all µ, ν : N(µ, ν) = 1. These are quickly calculated in a recursive fashion. The
computational cost of initializing the energy cache is O(n log n).

Subsequently, we apply the cached energy to evaluate the shift-gradient (5) in the
entire hierarchy; this computation is O(1) with the cache. At each node, we store the
shift with the steepest gradient (largest negative ∆E), and discard any shift with non-
negative gradient. The remaining shifts are stored in the potential shift list, denoted S
in figure 2. In the volumes we have been studying, this list is quite small: typically only
about 2% of all edges numbering about 60, 000 for volumes with 4 million voxels. The
entire initialization including caching energies in the whole hierarchy takes 10 – 15
seconds on these volumes, which amounts to about 30% of the total execution time.

At step 3 in the graph-shifts algorithm (figure 2), we must find the optimal shift in the
potential shift list. One can use a sorted or unsorted list to store the potential shifts, with
tradeoffs to both; an unsorted list requires no initial computation, no extra computation
to add to the list, but anO(n) search at each iteration to find the best shift. The sorted list
carries an initial O(n log n) cost, an O(log n) cost for adding, but is O(1) for selecting
the optimal shift. Since every shift will cause modifications to the potential shift list,
and the size of the list decreases with time (as fewer potential shifts exist), we choose
to store an unsorted list and expend the linear search at each iteration.

As the graph shifts are applied, it is necessary to dynamically keep the hierarchy in
synch with the energy landscape. Recomputing the entire energy cache and potential
shift set is prohibitively expensive. Fortunately, it is not necessary: by construction, a
shift is a very local change to the solution and only affects nodes along the boundary
of the recently shifted subgraph. The number of affected nodes is dependent on the
node connectivity and the height of the graph (it is O(log n)); the node connectivity is
relatively small and constant since the coarsening is roughly isotropic, and the height
of the graph is logarithmic in the number of input voxels.

First, we update the energy cache associated with each affected node. This amounts
to propagating the energy change up the graph to the roots. Let µ→ ν be the executed
shift. The region energy update must remove the energy contribution to A(µ) and add
it to A(ν), which is the new parent of µ after the shift. The update rule is

Ê1(A(µ),mµ))′ = Ê1(A(µ),mµ)− Ê1(µ,mµ) (10)

Ê1(A(ν),mν))′ = Ê1(A(ν),mν) + Ê1(µ,mν) , (11)

and it must be applied recursively to each parent until the root layer. Due to limited
space, we do not discuss the details of the similar but more complicated procedure to
update the edge energy cache terms Ê2. Both procedures are also O(log n).

Second, we update the potential shifts given the change in the hierarchy. All nodes
along the shift boundary both below and above the shift layer must be updated because
the change in the energy could result in changes to the shift-gradients, new potential
shifts, and expired potential shifts (between two now nodes with the same model). Gen-
erally, this remains a small set since the shifts are local moves. As before, at each of
these nodes, we compute and store the shift with the steepest negative gradient using
the cached energies and discard any shift with a non-negative gradient or between two
nodes with the same model. There are O(log n) affected shifts.
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Fig. 4. Example of the graph-shifts process sampled during the minimization. Coronal and sagittal planes are
shown, top and bottom respectively.
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Fig. 5. (a) Graph shows the number of voxels (mass) that are moved per shift for 5000 shifts. (b) Graph shows
the level in the hierarchy at which at shift occurs. (c) Graph shows the cumulative fraction of the total energy
reduction that each shift effects.

5 Experimental Results
A dataset of 28 high-resolution 3D SPGR T1-weighted MR images was acquired on
a GE Signa 1.5T scanner as series of 124 contiguous 1.5 mm coronal slices (256x256
matrix; 20cm FOV). Brain volumes were roughly aligned and linearly scaled to perform
9 parameter registration. Four control points were manually given to perform this global
registration. Expert neuro-anatomists manually labeled each volume into the following
sub-cortical structures: hippocampus (LH, RH for left and right, resp. shown in green
in figures), caudate (LC, RC in blue), putamen (LP, RP in purple), and ventricles (LV,
RV, in red). We arbitrarily split the dataset in half and use 14 subjects for training and
14 for testing. The training volumes are used to learn the PBT region models and the
boundary presence models. During the hierarchy initialization, we set the τ parameter
to 0.15. We experimented with different values for τ , and found that varying it does not
greatly affect the segmentation result.

The graph-shifts algorithm is very fast. We show an example process in figure 4 (this
is the same volume as in figure 3(b)). Initialization, including the computation of the
initial potential shift set, takes about 15 seconds. The remaining part of the graph shifts
normally takes another 35 seconds to converge on a standard Linux PC workstation
(2GB memory, 3Ghz cpu). Convergence occurs when no potential energy-reducing shift
remains. Our speed is orders of magnitude faster than reported estimates on 3D medical
segmentation: Yang et al. [13] is 120 minutes, FreeSurfer [5] is 30 minutes, Region
Competition (PDE, obtained from a local implementation) is 5 minutes.

In figure 5-(c), we show the cumulative weight percentage of the same sequence
of graph-shifts as figure 4. Here, we see that about 75% of the total energy reduction
occurs within the first 1000 graph shifts. This large, early energy reduction corresponds



Table 1. Segmentation accuracy using volume and surface measurements. A comparison to the
FreeSurfer method run on the same data is included for the volume measurements in table 2.

Training Set Testing Set
LH RH LC RC LP RP LV RV LH RH LC RC LP RP LV RV

Prec. 82% 70% 86% 86% 77% 81% 86% 86% 80% 58% 82% 84% 74% 74% 85% 85%
Rec. 60% 58% 82% 78% 72% 72% 88% 87% 61% 49% 81% 76% 67% 68% 87% 86%

Haus. 11.4 21.6 10.1 11.7 14.7 11.6 26.9 19.0 17.1 26.8 10.4 10.1 15.7 13.7 20.8 21.5
Mean 1.6 4.0 1.1 1.1 2.3 1.8 1.0 0.8 1.8 7.6 1.2 1.2 2.7 2.5 0.9 0.9
Med. 1.1 3.1 1.0 1.0 1.4 1.2 0.4 0.3 1.1 6.9 1.0 1.0 1.6 1.6 0.4 0.5

to the shifts that occur at high layers in the hierarchy and have large masses as depicted
in figure 5-(a) and (b). The mass of a shift is the number of voxels that are relabeled
as a result of the operation. Yet, it is also clear from the plots that the graph-shifts
at all levels at considered throughout the minimization process; recall, at any given
time the potential shift list stores all energy reducing shifts and chooses the best one.
Considering the majority of the energy reduction happens in the early stages of the
graph-shift process, it is possible to stop the algorithm early when the shift gradient
drops below a certain threshold.
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Fig. 6. Total energy reduction comparison of
graph-shifts to a PDE method.

In figure 6, we compare the total energy re-
duction of the dynamic hierarchical graph-shifts
algorithm to the more conventional PDE-type
energy minimization approach. To keep a fair
comparison, we use the same structure and ini-
tial conditions in both cases. However, to ap-
proximate a PDE-type approach, we restrict the
graph shifts to occur across single voxel bound-
aries (at the lowest layer in the hierarchy) only.
As expected, the large-mass moves effect an ex-
ponential decrease in energy while the decrease
from the single voxel moves is roughly linear.

To quantify the accuracy of the segmentation, we use the standard volume (precision
and recall), and surface distance (Hausdorff, mean and median) measurements. These
are presented in table 1; in each case, the average over the set is given. In these exper-
iments, we weighted the unary term four times as strong as the binary term; the power
of the discriminative, context-sensitive models takes the majority of the energy while
the binary term enforces local continuity and smoothness. Our accuracy is comparable

Table 2. FreeSurfer [5] accuracy.
LH RH LC RC LP RP LV RV

Prec. 48% 51% 77% 78% 70% 76% 81% 69%
Rec. 67% 75% 78% 76% 83% 83% 76% 71%

Haus. 25.3 11.5 23.0 26.1 13.1 10.8 31.9 51.8
Mean 3.9 2.1 1.9 2.0 1.8 1.4 1.8 9.6
Med. 2.1 1.5 1.0 1.0 1.3 1.0 0.9 3.9

or superior to the current state of the
art in sub-cortical segmentation. To make
a quantitative comparison, we computed
the same scores using the FreeSurfer [5]
method on the same data (results in ta-
ble 2). We show a visual example of the
segmentation in figure 7.

Next, we show the graph-shifts algorithm is robust to initialization. We systemati-
cally perturbed the initial hierarchy by taking random shifts with positive gradient to
increase the energy by 50%. Then, we started the graph-shifts from the degraded ini-
tial condition. In all cases, graph-shifts converged to (roughly) the same minimum; to
quantify it, we calculated the standard deviation (SD) of the precision + recall score
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Fig. 7. An example of the sub-cortical structure segmentation result using the graph-shifts algorithm.

for over 100 instances. For all structures the SD is very small: LH: 0.0040, RH: 0.0011,
LC: 0.0009, RC: 0.0013, LP: 0.0014, RP: 0.0013, LV: 0.0009, RV: 0.0014.

1

2
Truth Init GS PDE

Fig. 8. Graph-shifts (GS) can avoid local min-
ima. See text for details.

We now show that the large shifts provided
by the hierarchical representation help avoid lo-
cal minima in which PDE methods fall. We cre-
ated a synthetic test image containing three sep-
arate i.i.d. Gaussian-distributed brightness mod-
els (depicted as red, green, and blue regions in
figure 8). Following a similar perturbation as de-
scribed above, we ran the graph-shifts algorithm
as well as a PDE algorithm to compute the seg-

mentation and reach a minimum. As expected, the graph-shifts method successfully
avoids local minima that the PDE method falls into; in figure 8, we show two such
cases. In the figure, the left column shows the input image and true labeling; the next
three columns show the initial state, the graph-shifts result and the PDE result for two
cases (rows 1 and 2).

6 Conclusion
We proposed graph-shifts, a novel energy minimization algorithm that manipulates a
dynamic hierarchical decomposition of the image volume to rapidly and robustly mini-
mize an energy function. We defined the class of energy functions it can minimize, and
derived the recursive energy on the hierarchy. We discussed how the energy functions
can include terms that are learned from labeled training data. The dynamic hierarchical
representation makes it possible to make both large and small changes to the segmen-
tation in a single operation, and the energy caching approach provides a deterministic
way to rapidly compute and select the optimal move at each iteration.

We applied graph-shifts to the segmentation of sub-cortical brain structures in high-
resolution MR 3D volumes. The quantified accuracy for both volume and surface dis-
tances is comparable or superior to the state-of-the-art for this problem, and the algo-
rithm converges orders of magnitude faster than conventional minimization methods
(about a minute). We demonstrated quantitative robustness to initialization and avoid-
ance of local minima in which local boundary methods (e.g., PDE) fell.

In this paper, we considered the class of energies which used fixed model terms that
were learned from training data. We are currently exploring extensions to the graph-



shifts algorithm that would update the model parameters during the minimization. To
further improve sub-cortical segmentation, we are investigating a more sophisticated
shape model as well as additional sub-cortical structures. Finally, we are conducting
more comprehensive experiments using a larger dataset and cross-validation.
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