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Abstract. Footwear impression evidence has been gaining increasing
importance in forensic investigation. The most challenging task for a
forensic examiner is to work with highly degraded footwear marks and
match them to the most similar footwear print available in the database.
Retrieval process from a large database can be made significantly faster
if the database footwear prints are clustered beforehand. In this paper
we propose a footwear print retrieval system which uses the fundamental
shapes in shoes like lines, circles and ellipses as features and retrieves
the most similar print from a clustered database. Prints in the database
are clustered based on outsole patterns. Each footwear print pattern is
characterized by the combination of shape features and represented by
an Attributed Relational Graph. Similarity between prints is computed
using Footwear Print Distance. The proposed system is invariant to dis-
tortions like scale, rotation, translation and works well with the partial
prints, color prints and crime scene marks.

Keywords: Footwear Impression Evidence, ARG, Footwear Print Dis-
tance, Hough transform, Content-based Image Retrieval

1 Introduction

Footwear marks are often found in crime scenes and can serve as a clue to
link two crimes. At present there is no reliable and fully automated footwear
print retrieval system to assist the forensic examiners. Therefore the foot wear
marks are manually matched against the local/national database to determine
the brand and model of the most similar print. Existing footwear print retrieval
systems works well only with clear prints but the crime scene marks are highly
degraded and partial. Most of the present systems [1] fail with crime scene marks
because they use features that are hard be captured from the crime scene marks.

Retrieval process can be made faster if prints in the database are grouped
into clusters based on similar patterns. Clustering footwear prints is an uphill
task because of the difficulty in the computation of the similarity matrix. Hence,
we cluster them by retrieving the most similar prints for each of the recurring
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patterns in footwear prints. The proposed fully automated footwear print re-
trieval system (shown in Figure1) is invariant to affine transformation of prints
and avoids the computation of similarity matrix.

Fig. 1: System Flow Diagram of our footwear print retrieval system.

Most of the existing shoe print classification systems are semi-automatic [1] ,
such as SICAR, SoleMate etc. De Chazal (2005) et al. [2] proposed a fully auto-
mated shoe print classification system which uses power spectral density (PSD)
of the print as a pattern descriptor. Zhang and Allinson (2005) [3] proposed an
automated shoe print retrieval system in which 1-D Discrete Fourier Transform
on the normalized edge direction histogram is used as a feature of the print. Gue-
ham (2008) et al. [6] evaluated the performance of ’Optimum Trade-off Synthetic
Discriminant Function (OTSDF)’ filter and unconstrained OTSDF filter in the
automatic classification of partial shoeprints. Dardi (2009) et al. [7] described a
texture based retrieval system for shoeprints. Mahalanobis map is used to cap-
ture the texture and then matched using correlation coefficient. Though fully
automated footwear print retrieval system exists in literature, most of them is
tested only with synthetic prints and clean prints. No one has reported satisfying
performance with real crime scene marks.

2 Feature Extraction

Features such as color, texture and shape [8] can be used to distinguish the
images. Color features are missing in crime scene marks and texture features are
hard to be captured but shape features can be easily captured. Shapes are the
most durable and reliable features of the outsole that can resist various wears
and are well preserved over a long period of time. Hence, we chose shape as
features to classify footwear prints.

Based on visual inspection of 5034 prints, we found that 91.8% of the prints
can be represented using three basic shapes: straight line segments, circles/arcs
and ellipses. Based on these shapes, footwear prints can be classified into 8 types:
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Piecewise Lines, Only Circles/Arcs, Only Ellipses, Circles & Ellipses, Lines &
Circles, Lines & Ellipses, Lines, Circles & Ellipses and Only Texture. Shapes
other than circles and ellipses are approximated by piecewise lines. Combinations
of these shapes is used to identify the pattern of the shoeprint. Distribution of
fundamental shapes in footwear prints are shown in Table 1. Eight types of
footwear prints are shown in Figure 2.

Table1: Fundamental shapes in footwear prints

Fundamental Shapes Number of Prints

Piecewise Lines 3397

Lines & Circles 812

Lines & Ellipses 285

Only Circles/Arcs 73

Lines, Circles & Ellipses 37

Only Ellipses 15

Circles & Ellipses 5

Only Texture 410

Total - 5034 prints

Fig. 2: Eight types of Footwear prints: From left to right (a) Piecewise Lines. (b) Lines
& Circles. (c) Lines & Ellipses (d) Only Circles/Arcs. (e) Lines, Circles & Ellipses. (f)
Only Ellipses. (g) Lines, Circles & Ellipses. (h) Circles & Ellipses. (i) Only Texture.

Morphological operations (MO) such as dilation and erosion are applied to
make the interior region of prints uniform and then extract the boundary using
Canny edge[9] detector(ED). The result for a sample print is shown in Figure 3.

2.1 Line Detection and Circle Detection

Most footwear prints have complex geometric structures. The number of line
segments in a print is 200-300 on average. Each group of collinear points forms
a peak in accumulator. Detecting all the true peaks while suppressing spurious
ones is difficult. In addition, short line segments are easily missed, which may be
useful for discriminating similar prints. So Standard Hough Transform (SHT)
[10] cannot be applied directly on footwear prints. Thus, we propose Iterative
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Fig. 3: Edge Detection after dilation and erosion.

Straight-line Hough Transform (ISHT). First, connected components are labeled
in the edge image. For each component, Hough transform is applied and peaks
are detected. When a peak is identified and the line segments are extracted, the
pixels contributing to those line segments are eliminated from the edge image,
and an updated accumulator is obtained by applying SHT on the modified edge
image. The algorithm is summarized in Figure 4 and results of the two algorithms
on two sample prints are shown in Figure 5.

Circles and arcs are detected using SHT and validated using gradient orien-
tation. Spatial relationship constraints are used to eliminate spurious circles.

2.2 Ellipse Detection

In a Cartesian plane, an ellipse is described by its centre (p, q), length of the
semi-major axis a, length of the semi-minor axis b and the angle θ between the
major axis and the x-axis. Hence the five parameters (p, q, a, b, θ) are required
to uniquely describe an ellipse. These five parameters demand a five dimen-
sional accumulator which is computationally expensive but Randomized Hough
transform (RHT) [11] for ellipse detection is computationally advantageous.

In case of ellipse detection in footwear prints, RHT cannot be used directly.
This is because there are around 50,000 foreground pixels in the edge image
of a print of typical size 600 × 800 and picking three pixels from them in ran-
dom will never narrow down to the right ellipse. Hence, we propose a modified
RHT (MRHT) that incorporates ideas like decomposition of footwear prints into
connected components, elimination of unwanted components using eccentricity,
smart selection of three points based on the standard deviation of gradient orien-
tation at each pixel and elimination of spurious ellipses by comparing the tangent
of edge direction and the analytical derivative. MRHT is shown as Algorithm 2.
Sample Results of the feature extraction are shown in Figure 6.

3 Attributed Relational Graph (ARG)

After feature extraction, the footwear print has been decomposed in to a set of
primitives. An Attributed Relational Graph (ARG) [12], is constructed for every
footwear print to obtain a structural representation of the extracted features. An
ARG is a 3-tuple (V ,E,A) where V is the set of nodes, E is the set of edges and
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Fig. 4: Algorithm 1: Iterative Straight-line Hough Transform (ISHT)

(a) Print (b) SHT (c) ISHT (d) Print (e) SHT (f) ISHT

Fig. 5: Comparison of the results of SHT and ISHT on sample prints
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Fig. 6: Detected lines, circles and ellipses are shown for 3 known prints on the left and
3 crime scene marks on the right.
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A is the set of attributes. Each edge describes the spatial relationship between
nodes. The attributes include node and edge attributes.

There are three types of nodes (lines, circles and ellipses) and nine types
of edges (line-to-line, line-to-circle, line-to-ellipse, circle-to-line, circle-to circle,
circle-to-ellipse, ellipse-to-line, ellipse-to-circle and ellipse-to-ellipse) in this rep-
resentation, which are denoted as L2L, L2C, L2E, C2L, C2C, C2E, E2L, E2C,
E2E edges. To tackle the case of nodes being missing or incorrectly detected
due to noise, occlusion and incompleteness, a fully-connected directed graph is
adopted. This means that there is a directed edge from each node to all other
nodes. To distinguish one node from the other and one pair of nodes from an-
other pair, node and edge attributes have been carefully designed to describe the
spatial relationship between nodes in terms of distance, relative position, rela-
tive dimension and orientation, and are tabulated in Table 2. All these attributes
have been normalized within the range [0, 1]. This description is invariant to
scale, rotation, translation and insensitive to noise and degradations. Figure 7
describes the two cases of relative position for L2L, L2C and C2E. Sample ARG
for a footwear print is shown in Figure 8.

Fig. 7: Relative Position Definition for L2L, L2C and C2E.

4 Footwear Print Distance (FPD)

The quality of clusters depends highly on the similarity measure used by the
clustering algorithm so the similarity measure has to be accurate and robust. A
distance metric, called the Earth Mover’s Distance (EMD) [13] has been pro-
posed and investigated for content-based image retrieval.

We propose Footwear Print Distance (FPD), which is derived from EMD, to
compute the similarity between footwear prints. Let FP = (V,E,A,W,N) be a
footwear print with N nodes, where V = {Vi}Ni=1, E = V × V , A = AN ∪ AE ,
AN =

⋃N
i=1AN i, AE =

⋃N
i=1

⋃N
j=1AEij , W = {Wi}Ni=1. AN , AE and W

denote node attribute, edge attribute and weights respectively. Let FP1 =
(V1, E1, A1,W1, N1) be the first print with N1 nodes; FP2 = (V2, E2, A2,W2, N2)
the second print with N2 nodes; and C = [cij ] be the unit cost matrix where cij
is the unit matching cost between V1i ∈ V1 and V2j ∈ V2, which is defined as fol-
lows. If V1i is a line and V2j is a circle/ellipse or vice-versa, then cij = 1 else cij is
computed as an EMD [13] in which the distance between any two nodes is defined
as a weighted Euclidean distance between their node and edge attributes. Each
node is assigned equal weight to enforce a one-to-one correspondence between
nodes, i.e. W1i = W2j = 1

max(N1,N2)
, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2.



8 Footwear Print Retrieval System for Real Crime Scene Marks

Fig. 8: Extracted features of a shoeprint shown in Fig. 5(a), its ARG and sub-graph of
nodes within red box. The ARG is fully connected and its edges are omitted for clarity.
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The goal is to calculate a node correspondence matrix M = [mij ], where mij

denotes the amount of weight transferred from V1i to V2j , which minimizes the
total matching cost Cost(FP1, FP2,M) =

∑N1
i=1

∑N2
j=1mij ∗ cij , subject to the

following constraints:

mij ≥ 0, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 (1)
N2∑
j=1

mij ≤W1i, 1 ≤ i ≤ N1 (2)

N1∑
i=1

mij ≤W2j , 1 ≤ j ≤ N2 (3)

N1∑
i=1

N2∑
j=1

mij = min(
N1∑
i=1

W1i,

N2∑
j=1

W2j) (4)

Once the correspondence matrix is found, the FPD is defined as the overall
cost normalized by the sum of all the weights transferred from FP1 to FP2.

FPD(FP1, FP2) =

∑N1
i=1

∑N2
j=1mij ∗ cij∑N1

i=1

∑N2
j=1mij

(5)

5 Clustering Footwear Prints

Clustering algorithms can be generally divided into partition-based, density-
based and hierarchical based methods [14]. Existing clustering algorithms like
K-means, Hierarchical Clustering, and Expectation Maximization requires sim-
ilarity matrix consisting of pair-wise distance between every footwear prints in
the dataset. Building similarity matrix for a large dataset is computationally ex-
pensive. Hence, to cluster the entire dataset we propose using recurring patterns
as fixed cluster center.

Recurring patterns (shown in Fig.9(a)) such as wavy pattern, concentric cir-
cles etc. are common in footwear prints and can be used to represent a group
of similar prints. These patterns are simple in structure and graphs constructed
from them have less number of nodes. Hence, recurring patterns can be used
as query to fetch all similar prints from the database. This drastically reduced
the computation and did not require similarity matrix. Though this clustering
method requires domain knowledge to determine the recurring patterns, it avoids
the problems of deciding the number of clusters beforehand (unlike K-means).

From visual inspection, 25 recurring patterns (shown in Figure9(a)) were de-
termined and used as cluster representatives. FPD between each database print
and every cluster representative was calculated. Then each print was assigned
to the nearest representative, for which the FPD is below threshold T . If FPD
between a print and cluster representatives are greater than T , then the print
remains as a single cluster. In our experiments, T was set to 0.15. 1410 shoeprints
were fitted in to these 25 clusters. Remaining 1250 prints were so unique that
each of them was a cluster by itself. Sample clusters are shown in Figure 9(b).
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(a) (b)

Fig. 9: (a) Cluster Representatives. (b) Sample Clusters.

6 Experiments and Results

A database of 2660 known prints and 100 crime scene marks was used for ex-
periments. Each known print has the meta data such as brand and model of
the footwear, which is useful for linking a suspect’s footwear to a crime scene
mark. In the clustered database, crime scene mark was first matched against
every cluster representative to find the closest cluster, and then matched against
each print in that cluster and the top n matches are retrieved. Retrieval results
for 4 sample marks are shown in Figure 10.

Fig. 10: Crime Scene marks, their closest cluster and closest matches from the cluster.

The system’s performance has been evaluated using 100 real crime scene
marks and 1400 degraded prints, which were obtained by applying combinations
of affine transformation, partitioning and noise degradation on certain database
prints. Cumulative Match Characteristic (CMC) [2] was chosen as the perfor-
mance metric because it can answer the question “What is the probability of a
match in the first n percent of the sorted database?”. The probability of a match
(cumulative match score) is estimated by the proportion of times a matching
footwear print appears in the first n percent of the sorted database. SIFT [15]
being a robust image matching algorithm, we compared our system with SIFT.
The CMC curve of our system before clustering and of SIFT are shown in Fig. 11.
CMC curve remains the same before and after clustering but clustering makes
significant improvement in the retrieval speed, which is shown in Table 3.

Dardil et al. [7] are the only one who have worked with real crime scene
marks. They have reported that 73% of the real crime scene marks were found
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Fig. 11: CMC of Our System and SIFT on Retrieval of Crime Scene Marks.

in the top 10% of database prints but they have tested their system with only
87 known prints and 30 real crime scene marks. From CMC of our system, it
is clear that, 91% of matching prints for the crime scene marks were found
in the top 10% of the database prints. Table 4 compares our work with the
state of the art techniques and our system performed better than the others for
full prints, partial prints and real crime scene marks. Accuracy of 100% with
degraded full and partial prints demonstrates the invariance of our system to
affine transformation and robustness against noise and degradations.
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7 Conclusion

The proposed Attributed Relational Graph representation of footwear prints
works well with crime scene marks. Our system is invariant to affine transfor-
mation and robust against noise and various image degradations. Performance
of the system clearly shows that fundamental shapes in shoes are one of the
most reliable features, ARG is a robust descriptor of these features and FPD
is an ideal similarity measure to match partial and degraded prints. Clustering
using recurring patterns is a promising method to cluster footwear prints and it
certainly enhances the retrieval speed with same accuracy.
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