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ABSTRACT
We present an optimization framework to help es-

timate on-the-fly both the motion and physical param-
eters of an articulated multibody system using uncal-
ibrated monocular image sequences. The algorithm
takes video images of a physical system as input and
estimates the motion together with the physical sys-
tem parameters, given only the underlying articulated
model topology. A valid initial pose of the system
is found using a sequential optimization framework
and used to bootstrap the successive pose estimation
as well as estimation of physical system parameters
(kinematic/geometric lengths as well as mass, iner-
tia, damping coefficients). We also address the issue
of robustly estimating a dynamically-equivalent system
using partial state information (solely from noisy vi-
sual observations) and without explicit inertial param-
eter information. This framework results in a robust
dynamically-equivalent system with good predictive ca-
pabilities when tested on a double pendulum system.

INTRODUCTION
System identification of articulated multibody sys-

tems has largely relied on existence of well-defined and
persistent external excitation of the system [2]. Under
the persistent excitation criterion, techniques for kine-
matic and inertial parameter estimation using joint sens-

∗Address all correspondence to this author.

ing are well established [1]. However, estimation of
inertial parameters of articulated multi-body biologi-
cal systems, such as humans, animals or insects, has
been possible only when augmented with specialized
sensor systems. While kinematic identification meth-
ods for robotic systems using visual observation alone
are well developed [8], they rely on calibrated camera
setups. Inertial parameter estimation using visual obser-
vation alone with uncalibrated cameras still remains a
challenge [9]. Nevertheless, accurate and efficient kine-
matic and inertial parameter estimation has many ap-
plications in telepresence [3], robot navigation [4, 5],
vision-based humanoid control, multi-robot coopera-
tion [6] and imitation based robot control [7].

Prior work has addressed the problem of articulated
multi-body pose estimation using filtering techniques
based on fiducials, interest-points, edges, and silhou-
ettes. Broida et al. [10] used tracked feature point tra-
jectories over multiple images and constructed a state
space model incorporating both kinematic and struc-
tural states to estimate state vector using an iterated ex-
tended kalman filter (IKEF). Pathirana et al. [11] used
robust extended Kalman filter (RKEF) and fused infor-
mation from two cameras and ultrasonic sensor to esti-
mate the kinematic states of mobile object from a mov-
ing camera. Extended Kalman Filter (EKF) has been
also used by Azarbayejani et al. [12] to estimate mo-
tion and focal length of the camera.

In this paper, we address the issue of estimating



the kinematic and inertial parameters of a double-link
pendulum using visual information from uncalibrated
monocular video. We then seek to use these esti-
mates to predict future poses of the double-link pen-
dulum with no prior information about the physical
system parameters or input. Well established system
identification techniques fail to solve this problem due
to: (i) partial state knowledge (only position informa-
tion); (ii) noise due to imaging inaccuracies; (iii) un-
known and insufficient input excitation (both structure
and frequency); (iv) low sampling frequency; and (v)
inherent dynamics nonlinearity. Further, most of the
EKF/IKEF/RKEF based methods applied to motion es-
timation, rely on availability of point feature correspon-
dences established over a long sequence of images,
which is non-trivial for self-occluding articulated ob-
jects.

Hence, we leverage an optimization-based frame-
work to solve the problem of parameter and input iden-
tification which resulted in a robust dynamically equiv-
alent system. The presented methodology can use the
learnt equivalent model to: (i) efficiently predict future
pose; (ii) help with gap-filling when occulusions are
present; and (iii) develop model-based control strate-
gies.

PROBLEM STATEMENT
Given the information about the topology and type

of body geometries in the system, estimate the camera
location; orientation, size, mass, inertia of each body;
and torque input/damping coefficient at each joint in the
system using monocular images.

We use the optimization based framework for first
estimating the camera parameters and then the initial
pose of the multibody articulated system. The ini-
tial pose estimation technique is then extended to es-
timate the pose of the system in a video. Finally, us-
ing the estimated pose, the physical parameters of the
system are estimated using dynamic-simulation-based
optimization. Fig. 1 shows an outline of the overall ap-
proach.

CAMERA PARAMETER ESTIMATION
Camera Depth Estimation: We align the principle
axes of the camera with the world coordinate system of
the model. The camera depth (z coordinate) estimation
is based on the fact that an actual body with proportional
dimensions and similar orientation in space will roughly
occupy a similar area in an actual image as that of the
model in the synthetic image. We set up an optimization
problem based on the difference in the silhouette area in
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Figure 1: Overview of our approach for estimating a
dynamically equivalent system.

the original image and the model generated image, and
minimize the square of this difference (Eqn. (1)). We
also setup an upper and a lower bound on the z coordi-
nate to bound the search space. We specify the limit on
z coordinate such that the model generates a reasonable
area in the synthetic image.

Minimize: f1(cz) = (Ao−Am(cz))
2

Subject to: cz,l ≤ cz ≤ cz,u
(1)

where cz is the z coordinate of the camera in the model
coordinate system, Ao and Am is the silhouette area in
the original and model generated image respectively.

Camera X,Y Coordinate Estimation: The estimation
of the x, y coordinate is based on the fact that the cen-
troid of the silhouette in the original image and the
model generated image should roughly be the same for
model with similar orientation. In order to estimate the
x, y coordinate of the body we setup another optimiza-
tion problem in which square of the distance between
the centroid of the original silhouette and the model
generate silhouette is minimized (Eqn. (2)). The x,y
coordinates are constrained within certain bounds such
that the model silhouette is within the synthetic image.

Minimize: f2(cx,cy) = (xco− xcm(cx,cy))
2 +(yco− ycm(cx,cy))

2

Subject to: cx,l ≤ cx ≤ cx,u, cy,l ≤ cy ≤ cy,u

(2)



where (cx,cy) is the (x,y) coordinate of the camera in
the model coordinate system, (xco,yco) and (xcm,ycm) is
the centroid of the silhouette in the original and model
generated image respectively.

INITIAL POSE ESTIMATION
Optimization Based Pose Estimation

The silhouette of the system is extracted from the
actual image using standard image processing tech-
niques (background subtraction and thresholding). An
articulated VRML model of the system is positioned at
the desired pose to capture a synthetic image (and sub-
sequently a silhouette). These two silhouette images are
then subtracted and area of absolute subtracted image is
a measure of the extent of mismatch and used as the ob-
jective function for estimating the pose. The initial pose
estimation relies on the fact that this objective function
possesses a global minimum for correct choice of the
camera and pose parameter estimates. The angular lim-
its on the rotation of joints are imposed based on the
physical constraints set by the system.

Minimize: f3(θ1,θ2, ...,θN) = Σ|Ia− Im|
Subject to: θi,l ≤ θi ≤ θi,u, i = 1,2, ...,N

(3)

where the subscript i indicates ith body in the system,
N denotes the number of bodies in the articulated sys-
tem, Ia and Im denotes the actual and model generated
silhouette image respectively.

Body Aspect Ratio Estimation
The aspect ratio estimation is based on the fact that

once the pose of the system has been optimized the as-
pect ratio of the bodies in the system can be improved.
In order to optimize for the aspect ratio of the bodies we
minimize the objective as defined in Eqn. (4). However,
now the constraints are imposed on the aspect ratio of
each body.

Minimize: f4(α1,α2, ...,αN) = Σ|Ia− Im|
Subject to: αi,l ≤ αi ≤ αi,u, i = 1,2, ..,N

(4)

Optimization Framework
Each of the optimization subproblems in Eqn. (1)-

(4) are highly coupled and cannot be solved indepen-
dently. While a weighted/combined optimization prob-
lem may be created, it suffers from multiple local min-
ima as well as sensitivity to weightage of each objective.
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Figure 2: Summary of optimization framework imple-
mented.

Hence, in lieu of this, we adopt a sequential optimiza-
tion framework as shown in Fig. 2.

We optimize iteratively first for the camera param-
eters and then for the initial pose assuming an initial as-
pect ratio for the bodies in the system. Once this prob-
lem has converged, we optimize for the aspect ratio of
the bodies in the system.

We use augmented Lagrangian method known
as the method of multipliers [13] for solving the n-
dimensional constrained optimization problem consid-
ering its advantage over interior/exterior penalty meth-
ods which are less robust due to sensitivity to penalty
parameter chosen.

Numerical differentiation of the metrics is ex-
tremely slow due to evaluation of a computationally
expensive objective several times for gradient evalua-
tion [14]. In addition, accurate finite difference ap-
proximation is difficult due to inability to determine ro-
bust step sizes. To avoid such issues we solve the ND



unconstrained optimization subproblem using Powell’s
conjugate direction method [15]. For 1D optimization
subproblem we employ Golden section with Swann’s
bounding [16]. We code all our optimization subrou-
tines explicitly in MATLAB.

POSE ESTIMATION IN VIDEO
Once the camera position, initial pose of the sys-

tem, and aspect ratio of the bodies in the system are
determined, we move on to the problem of pose estima-
tion in video. The problem of pose estimation in a video
is handled by setting up an optimization problem using
motion limits (move limits in optimization). The objec-
tive function considered here is defined in Eqn. (5).

Minimize: f5(θ1,θ2, ...,θN) = Σ|Ia− Im|
Subject to: θi,l,t ≤ θ1 ≤ θi,u,t

(5)

The limits on the joint angles is considered as a frac-
tion of the possible range of a joint angle such that ev-
ery possible velocity can be accounted for. This can be
made adaptive considering the instantaneous velocity of
a joint to account for variation in the velocity which can
further narrow down the search space for the optimiza-
tion algorithm in each frame.

STATE FILTERING WITH α−β− γ Filter
Since, the state estimates are noisy due to noise in

the imaging modality and the pose estimates, we first
filter the estimated states using an α−β−γ filter. This is
a suboptimal observer for data smoothing but nonethe-
less we use it due to its reduced computational cost (as
compared to Kalman filter with commensurate filtering
performance). We use the following filtering equations
for smoothing the estimated states:

xp(k+1) = xs(k)+T vs(k)+
1
2

T 2as(k)

vp(k+1) = vs(k)+Tas(k)

xs(k) = xp(k)+α(xo(k)− xp(k))

vs(k) = vp(k)+
β

T
(xo(k)− xp(k))

as(k) = ap(k−1)+
γ

T 2 (xo(k)− xp(k))

(6)

where x(k), v(k), and a(k) are the position, velocity and
acceleration at kth time step; the subscripts p, o, s stands
for the predicted, observed and smoothed states after
filtering respectively; α, β, γ are the filter gains; and T
is the sampling time. We use the constraints (Eqn.7) on
the gains obtained in [17] for optimal performance.

0 < α≤ 1, 0 < β < 1, 0 < γ <
4αβ

2−α
(7)
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Figure 3: Filtered states of double pendulum for 40
frames, (a) θ1 , (b) θ2 , (c) θ̇1 , and (d) θ̇2 (α = 0.4,
β = 0.1, γ = 0.05)

DYNAMIC MODELING OF 2-LINK SYSTEM
We derive the equation of the dynamics of the sys-

tem incorporating the friction acting at the joints in the
torque applied to the system.

θ1

θ2

(a)

Figure 4: Double pendulum model with states ex-
pressed in the counterclockwise direction as positive.
θ1 is referred from the right side of the horizontal axis
and θ2 is relative to the upper link.

[
H11 H12
H21 H22

][
θ̈1
θ̈2

]
+

[
−hθ̇2 −hθ̇1−hθ̇2
hθ̇1 0

][
θ̇1
θ̇2

]
+

[
g1
g2

]
=

[
τ1
τ2

]
(8)

where,
H11 = m1l2

c1 + I1 +m2[l2
1 + l2

c2 +2l1lc2 cosθ2]+ I2

H21 = m2l2
c2 + I2

H12 = H21 = m2l1lc2 cosθ2 +m2l2
c2 + I2

h = m2l1lc2 sinθ2

g1 = m1lc1gcosθ1 +m2g[lc2 cosθ1 +θ2 + l1 cosθ1]

g2 = m2lc2gcosθ1 +θ2



We further express the masses and inertias in the sys-
tem in terms of the basic system parameters assuming
the density of the material and topological geometry of
the links in the system to be known.

m1 = ρ1l1w1h1,m2 = ρ2l2w2h2,w1 = α1l1,w2 = α2l2

lc1 =
l1
2
, lc2 =

l2
2
, I1 =

m1

12
(l2

1 +w2
1), I2 =

m2

12
(l2

2 +w2
2)

The aspect ratio for the links (α1,α2) are obtained via
optimization (Eqn. 4). So, the unknown parameters that
need to be identified are the lengths (l1, l2) and the thick-
ness (h1,h2). We consider various cases for estimating
the parameters along with the input, relaxing the under-
lying assumptions gradually.

Case I: Known Friction Torque Structure
In this first case with known friction torque struc-

ture, we assume that the only torque acting on the joints
is due to friction at the joints. We model this hinge fric-
tion as a rotational damping. So, the torque acting at the
joints is given by

τi = biθ̇i, i = 1,2 (9)

where b1, b2 are the rotational viscous damp-
ing coefficients acting at joints. There are 6 un-
known parameters that need to be identified in this case
(l1, l2,h1,h2,b1,b2).

Case II: Approximated Friction Torque Struc-
ture

In the second case, we consider that the output
states of the double pendulum are periodic with the
same period. This assumption can be justified by the
fact that the friction acting at the joints is significantly
low as there is no explicit damper/spring present at the
joints. Furthermore, this case is applicable when the
pendulum is externally excited maintaining its period-
icity [2].

Considering θ1 and θ2 to be periodic with period
being 2π

ω
a Fourier series expansion can be written as:

θi = p10 +
Mi

∑
j=1

(pi j cos jωt + pi j sin jωt) , i = 1,2 (10)

Now, θ̇1, θ̇2, θ̈1, and θ̈2 can be expressed as

θ̇i = jω
Mi

∑
j=1

(
−pi j sin jωt +qi j cos jωt

)
, i = 1,2

θ̈i =−( jω)2
Mi

∑
j=1

(
pi j cos jωt +qi j sin jωt

)
, i = 1,2

(11)

Substituting Eqn. (10), (11) in Eqn. (8), we get

τ̃2×1 = f̃ (θ̃, ˜̇θ, ˜̈θ) (12)

Since, the input variables to the function in Eqn. (8) are
periodic with same time period, the input torque has to
be periodic with the same time period. Periodic input
torque can be decomposed into sum of sines and cosines
using Fourier series to represent variation of torque over
time (Eqn. (13)).

τi = ai0 +
s1

∑
j=1

(ai j cos jωt +bi j sin jωt) , i = 1,2 (13)

A pure mathematical representation for the number of
terms (m) to represent torque is difficult to derive be-
cause true values of torques are not known. Variable
number of terms can be selected to achieve desired level
of accuracy. In fact, the selection of number of terms
can be achieved as part of the optimization process - we
however, explicitly specify the number of terms. There
are 2s1 + 2s2 + 2 unknown Fourier coefficients for the
torques that together with the 4 unknown link lengths
and thicknesses now need to be identified.

Case III: No Friction Torque Structure
In this more general case, we assume no prior in-

formation about the structure of the torque acting at
the joints in the system. This case can handle scenar-
ios when pendulum is subjected to arbitrary external
forces/torques varying in time. We treat torques applied
at the two joints at each time instant as the unknown pa-
rameters. So, for k time steps the number of unknown
parameters due to torque are 2k. The total number of
unknown parameters for this case are 2k+4.

NON-LINEAR LEAST SQUARES PARAMETER
ESTIMATION

Traditionally least squares parameter estimation
employs low pass filtering before convolution [2, 18].
However, pose estimates obtained from raw images are
very noisy making the derivative information obtained
using an α− β− γ filter unreliable. Furthermore, the
lack of knowledge of inputs coupled with the low visual
sampling frequency prevents the use of convolution to
obtain the linear system equations in terms of the un-
known parameters.

Hence, we setup the parameter estimation prob-
lem using a non-linear least squares estimator noting



the peculiar challenges due to insufficient input excita-
tion, poor state sampling frequency and missing input
information.

The states considered are the pose of the bod-
ies in the system i.e. X = [θ1,θ2]. The objec-
tive function is to minimize the difference between
the dynamics-simulation-based states and the estimated
states (Eqn. (14)).

Minimize: f (Θ) = ‖Xs−Xe‖
Subject to: Θl ≤Θ≤Θu

(14)

where Xs and Xe represent the simulated and estimated
pose of the system respectively, and Θ represents the
unknown parameters to be estimated.

We employ the active set algorithm with the
Broyden-Fletcher-Goldfarb-Shanno method [19] for
solving the non-linear parameter estimation problem.
However, using these techniqes alone led to physically
unrealizable systems during the optimization search
leading to failure of the simulation. To avoid such is-
sues, we penalize infeasible solutions and focus the op-
timization to search only in the feasible region.

RESULTS
The entire optimization framework was tested on a

custom built double pendulum system consisting of two
rods of uniform rectangular cross section made of alu-
minum (density ≈ 2700kg/m3). The camera is placed
perpendicular to the frame of the motion of the artic-
ulated system with axis aligned with the model z axis.
The external forces acting on the system are: (i) gravity
along negative y axis and (ii) hinge friction.

(a) (b)

Figure 5: Actual and estimated pose of double pendu-
lum.

For this experiment, the proposed optimization
framework is applied on video obtained from an off-the-
shelf camera (720x480 pixels @ 30 FPS) to estimate
the states X = [θ1,θ2] of the system. Constraints are

applied in the optimization problem while solving the
non-linear least squares estimation problem to ensure
that obtained system is physically realizable by apply-
ing upper and lower bounds on all the system physical
parameters.

As observed in the experiment , it is difficult to ob-
tain precise physical dimensions because the resulting
design space has multiple local minima, but an equiva-
lent dynamical system that produces same output states
with comparable physical dimensions is obtained.

From the first image, aspect ratio of both the links
and location of hinge is determined. This information
is propagated in subsequent images to reduce compu-
tational burden. We use the pose estimates from 40
frames (≈ 1.32 secs of video) for parameter identifi-
cation. Fig. 5 shows the actual and estimated model
generated image of double pendulum.

Case I: Known Friction Torque Structure
Results show that when the filtered states are used

for system identification the predictive performance of
the system is degraded (Fig. 6). Furthermore, it turns
out that the optimization based dynamically equivalent
system estimation inherently filtered out the noise in the
pose estimates thus, avoiding the need of an explicit fil-
ter.
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Figure 6: Simulated, estimated, and ground truth states
when filtered states are used for parameter estimation.

Fig. 7 shows the simulated, estimated, and ground
truth states for the pose of the double pendulum. It can
be observed that the estimated pose is very close to the
actual pose. The states obtained by simulating the dy-
namics of the pendulum are also found to be close to the
actual states with accuracy improving with increasing
number of frames considered during parameter estima-
tion. In all the results below, parameter esimator were
observed to be sensitive to initial conditions due to pres-
ence of local minima in the parameter space. Neverthe-
less, the equivalent dynamical system they form is able
to simulate/predict model states satisfactorily (as shown
in Fig. 7). This prediction can be further improved by



considering more frames while estimating system pa-
rameters.
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Figure 7: Simulated, estimated and ground truth pose
of double pendulum when friction torque was assumed
to be known.

Case II: Approximated Friction Torque Struc-
ture

For approximating the friction torque we use a
Fourier series expansion with 7 terms (m = 7) for
torques at both the joints which results in total 36 un-
knows. Fig. 8 shows that the fourier series approxima-
tion of the torque also provides a means to estimate the
system parameters. While the simulated system closely
tracks the estimated pose, there is some error between
both the observed and the ground truth. Further, in or-
der to reliably predict the future poses this case requires
pose estimates for multiple periods to estimate the pe-
riod of the input torque.
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Figure 8: Simulated, estimated and ground truth pose
of double pendulum when friction torque structure was
approximated using a fourier series expansion.

Case III: No Friction Torque Structure
In this case since we assume no prior information

about the torques there are total 84 variables for 40
time steps. Fig. 9 shows that the simulated states ex-
actly tracked the estimated states. However, since the
estimated states are noisy there is deviation from the

ground truth. Also, in order to predict the future pose
torque inputs need to be provided to the system since no
structure is assumed for torque.
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Figure 9: Simulated, estimated and ground truth pose of
double pendulum when no friction torque structure was
assumed.

DISCUSSION
In this work, we proposed an optimization based

framework for estimating the pose of an articulated
multi-body system solely using monocular video. An
optimization based inertial parameter estimation tech-
nique is then employed to realize a robust dynamically
equivalent system on-the-fly using the estimated pose.
Various cases are considered with gradually relaxing as-
sumptions on the input torque structure. Results on a
double pendulum system showed that the overall sys-
tem is able to estimate a dynamically equivalent sys-
tem robustly. The estimation of the parameter can be
improved by using the information about both the joint
angles and their derivatives during optimization. How-
ever, in the absence of appropriate covariance matrix
on the pose estimation accuracy, weighting the cost in-
duced due to angular position and that due to angular
velocity is a challenge. Though the current method-
ology targets multi-body systems where the motion is
restricted to a plane parallel to the camera plane, the
technique is generalizable to generic multi-body sys-
tems using monocular SLAM [21] for extrinsic camera
parameter estimation.

For the system under consideration any suitable ini-
tialization of the initial pose leads to a unique initial
pose estimate. However, for a more complicated sys-
tem intial pose estimates may affect subsequent pose
estimates. In such a case an evolutionary optimization
technique (e.g. genetic algorithm) can be employed to
first narrow down the search space and then the con-
vex optimization routines can be used to converge to
the global minima. A similar approach has been em-
ployed for the problem of human pose estimation from
monocular images [20]. There the authors tested the



algorithm on noisy silhouette sequences obtained from
video data using background subtraction which resulted
in good pose estimates. Also, the current optimization
routines (coded in MATLAB) do not perform in real-
time when executed on a standard desktop computer
(Pentium(R) Dual-Core CPU E5200 @2.50 Ghz, 3.2
GB RAM). A faster implementation need to be coded
in C which might result in real-time performance of the
algorithm.
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