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Abstract— This paper considers a cooperative control design
for an aerial/ground robot system, and addresses the problem of
maintaining visibility of a quadrotor within the camera field-of-
view of a ground robot in the presence of external disturbances.
The quadrotor needs to be tracked by the ground robot with
a monocular camera, and hence its motion should facilitate
the ground vision-based tracking process by remaining in the
effective camera sensing area. We design a model predictive
controller (MPC) strategy where the visibility constraints of
the camera and the control input constraints of the quadrotor
are encoded into the cost function via barrier functions,
and we adopt a fast MPC solver that is able to solve the
optimization problem in real time. We also propose a method
to enhance the robustness of the algorithm by suitably defining
a restart method for the MPC solver. The applicability of the
proposed algorithm is demonstrated through simulations and
experimental results on real setups.

I. INTRODUCTION

Aerial and ground robots are nowadays used in many
applications, from first response to monitoring and surveil-
lance [1], [2]. Their limited actuation, sensing and commu-
nication capabilities make the cooperative control between
aerial and ground robots a topic worthy of investigation
[3]–[5]. One relatively recent idea for ultimately achieving
increased situational awareness for ground vehicles is to
implement a cooperative aerial/ground robot system in which
the aerial robot is tethered to the ground robot with cables for
power supply and data transmission, and streams information
about the surrounding environment to the ground vehicle.
Alternatively, a vision-based localization method has been
recently developed in [6], where the ground robot is equipped
with a monocular camera looking upwards and processes the
acquired video to obtain a 3D pose estimation of the aerial
robot flying above the ground.

One of the challenges of this system is that the aerial robot
should hover at a high enough altitude over the ground in
order to provide a larger visual field and stream data to the
ground robot, and at the same time maintain a reasonable
position relative to the ground robot to facilitate the visual
tracking process, despite the effect of measurement noise and
disturbances, e.g., wind gusts. The camera mounted on the
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ground robot has an inverse-pyramid shape visual zone, and
the aerial robot should always remain there (Fig. 1).

Fig. 1. Modeling of the camera field-of-view. The quadrotor should be
restricted to fly in the effective sensing area.

Control of quadrotors has become a popular research
topic recently [7]–[11]. Model Predictive Control (MPC) is
a popular means to address constrained control problems for
aerial vehicles, see for instance [12]–[16]. Most of the work
on MPC for aerial vehicles focuses on the generation of
trajectories that satisfy safety constraints such as avoiding
physical obstacles or other vehicles. The visibility mainte-
nance problem considered here differs in the sense that the
quadrotor is not forced to track a desired trajectory, but rather
to hover within a region defined by state constraints, despite
the effect of disturbances. To the best of our knowledge this
problem has not been addressed before, while the experimen-
tal implementation of MPC schemes on micro aerial vehicles
has not been addressed extensively either [17]–[19].

This paper builds upon ideas in our earlier work [20]
and implements a real-time MPC algorithm that forces
the quadrotor hover in the effective sensing region of the
camera of the ground robot. Compared to [20], here we
consider the 3D motion of an aerial robot under the effect
of external disturbances, we implement a Kalman filter to
fuse information from the available position and acceleration
sensors, and implement the proposed strategy experimentally
on a real testbed. Furthermore, the adopted fast MPC solver
is suitably modified to enhance robustness against extreme
cases where the original algorithm failed during the experi-
mental implementation.

The paper is organized as follows: Section II provides
the mathematical modeling of the considered constrained
control system. The proposed MPC strategy along with the



adopted fast solver and the restart method that recovers from
failures is presented in Section III. Sections IV and V present
the simulation and experimental results that demonstrate
the applicability and effectiveness of our MPC on real
setups under various scenarios of external disturbances and
measurement noise. Section VI summarizes our results and
ideas on ongoing and future research.

II. MATHEMATICAL MODELING

1) Quadrotor Control: Quadrotors are typically controlled
via a two-loop strategy, namely position (or outer) control
and attitude (or inner) control [7], [9], [10], [13]. The linear
acceleration of the vehicle is used as the input of the outer
control system to regulate the position and the linear velocity
of the quadrotor. Linear acceleration in the body frame is
related to linear acceleration in an inertial frame through the
kinematic transformation: ax

ay
ax

 = Cgb(φ, θ, ψ)

 0
0
ab

 , (1)

where ax, ay and az denote the linear acceleration com-
ponents along the axes of the inertial frame, ab is the
linear acceleration along the z-axis of the body frame,
Cgb(φ, θ, ψ) ∈ SO(3) is the rotational transformation matrix
from body frame to inertial frame, and φ, θ, ψ are the
roll, pitch and yaw Euler angles, respectively. The inner
control loop of the Hummingbird quadrotor that was used
in the experimental trials is already set by the manufacturer
(Ascending Technologies) and regulates the speed of the four
motors so that the Euler angles φ, θ, the yaw rate ψ̇, and the
acceleration ab converge to their desired values φdes, θdes,
ψ̇des, and ab,des, respectively. The ψ̇des command is used
to regulate the yaw angle ψ to a desired value ψdes. The
desired values are mapped to linear acceleration ax, ay and
az along the axes of the inertial frame through Eq. (1). Thus,
in practice we only need to address the outer (position) loop
with the linear acceleration being the control input, and the
derived control input is used to render the desired values of
the Euler angels and acceleration in the body frame φdes,
θdes, ψdes and ab,des, respectively, that are further fetched
to the inner (attitude) controller.

Consequently, the translational motion of a quadrotor
along the x, y and z axes of an inertial frame can be
ultimately described via a double integrator along each axis,
augmented with position error integration terms to reduce the
steady state error. The system is described in matrix form:

xk+1 = Adxk + Bduk + ωk, (2)

where Ad = diag{A,A,A} and Bd = diag{B,B,B},
with A =

[
1 dT 0
0 1 0

dT dT2

2 1

]
and B = [ 1

2dT
2 dT 1

6dT
3 ]
> be-

ing the state and control matrices of a double inte-
grator augmented with error accumulation term, respec-
tively. dT is the time interval of the discretized sys-
tem. The state vector xk ∈ R9, written analytically as:
xk =

[
exk vxk Ixk eyk vyk Iyk ezk vzk Izk

]>
, in-

corporates the position error ek, its time rate of change vk,

and the position error accumulation Ik along each axis of the
inertial frame, where the superscripts indicate the direction of
the movement. uk =

[
uxk uyk uzk

]>
is the control input

denoting acceleration in the inertial frame, and ω ∈ R9 is
the vector incorporating external disturbances.

2) Constraints: The effective sensing area of the camera
mounted on the ground robot is modeled as an inversed
pyramid shaped zone (Fig. 1). Plausibly, it would make
sense to have the quadrotor fly as high as possible. How-
ever, the visual tracking algorithm becomes less reliable as
altitude increases [6]. Thus, the position of the quadrotor is
constrained as follows: −z tanφcamera

2 ≤ x ≤ z tanφcamera
2 ,

−z tanψcamera
2 ≤ y ≤ z tanψcamera

2 , zmin ≤ z ≤ zmax, where
x, y and z are the position coordinates of the quadrotor in
an inertial frame with origin on the camera of the ground
robot, φcamera and ψcamera are the camera angles-of-view,
chosen smaller than their actual values to ensure that the
entire quadrotor remains visible, and zmin, zmax denote the
height boundaries for the vision tracking algorithm to work
properly. The constraints are written in matrix form:

Fxxk ≤ bx, (3)

where Fx ∈ R6×9 and bx ∈ R6×1 are suitably defined
matrices so that (3) reflects the constraints described above.
Finally, to account for motor saturation, the control input is
constrained as: umin ≤ uk ≤ umax, where umin,umax ∈ R3

are known bounds. Similarly to the case above, the matrix
form of input constraints is:

Fuuk ≤ bu, (4)

with Fu ∈ R6×3 and bu ∈ R6×1 suitably defined matrices
to reflect the input constraints.

III. MODEL PREDICTIVE CONTROLLER

3) Objective and Constraints: State and input constraints
are encoded into the Model Predictive Control formulation
by incorporating barrier functions to penalize violations of
the constraints into the objective function. The optimization
problem is defined as:

minimize
u0...uN−1

x1...xN

N−1∑
i=0

J(xi+1,ui) + φu(ui) + φx(xi+1)

subject to xi+1 = Adxi + Bdui + ωi, ∀i ∈ {0, . . . , N − 1},
(5)

where N is the prediction horizon,

J(xi+1,ui) = x>i+1Qxi+1 + u>i Rui (6)

is a quadratic cost function of the state and the control input,
Q ∈ R9×9 and R ∈ R3×3 are positive definite and symmetric
matrices, and φx(x), φu(u) are barrier functions of the state
and control input, respectively, defined as:

φx(xi+1) = −µx
6∑
j=1

ln(bjx − Fjxxi+1), (7a)

φu(ui) = −µu
6∑
j=1

ln(bju − Fjuui), (7b)



where Fju, Fjx stands for the jth row of Fu and Fx, respec-
tively, and bju, bjx stand for the jth element of bu and bx,
respectively. For all the inequality constraints to be satisfied,
the values of the barrier functions (7a), (7b) must remain
real, finite numbers.1

4) Disturbance Estimation: External disturbances due to
wind gusts, or the fact that the response of the inner loop
controller might not be fast enough to render the desired
acceleration in time, may force the quadrotor out of the
effective sensing area. Earlier work on disturbance estimation
includes, for instance, [21], which estimates wind velocity
and direction through bayesian estimation, [22], which con-
siders the aerodynamic effect of a wind gust, and [23], which
estimates wind disturbance using a Dryden wind-gust model.

Here we use a simple way of estimating external distur-
bances and other unmodeled phenomena by comparing the
desired acceleration and actual acceleration. That is, in each
time step k, we consider that the disturbance ωk in Eq.
(2) is related to the difference between the onboard IMU
acceleration measurement aimuk and the desired acceleration
uk−1 of the previous control step through:

ωk = Bd(Cgb aimuk − uk−1). (8)

We assume that the disturbance ωk does not change rapidly
during the entire prediction horizon N , and we update the
corresponding matrices of the optimization problem accord-
ingly in every call of MPC solver, see later on.

5) Fast Solving Algorithm: Solving linear optimization
problems has been extensively studied. [24] and [25] solve
the linear optimization problem for various initial conditions
off-line and implement the derived solutions online as a look-
up table, yet require large hardware memory when used for
a large horizon MPC. [26], [27] and [28] utilize an interior-
point linear programming algorithm, which however is not
fast enough for implementation on a real-time control sys-
tem. [29] combines and improves the interior point algorithm
through fixed barrier coefficients and iteration numbers, and
solves the optimization problem with the Infeasible Start
Newton Method, which uses an initial guess that satisfies
inequality constraints, but does not need to meet the equality
constraints.2

6) Infeasible Start Newton Method: The infeasible start
newton method is introduced in [30]. At each time step k,
one combines all predicted states x1

k, . . . , xNk and control
inputs u0

k, . . . ,u
N−1
k of the N prediction steps into one

vector: zk =
[

u0
k
> x1

k
>

. . . uN−1k

>
xNk
>
]>

, and
concatenates equation (5) in compact form as in [29]:

minimize
zk

J = z>k Hkzk + gk(zk)

subject to Mkzk = hk
, (9)

1Note that the primary goal is rather to limit the quadrotor in the visibility
zone, and not necessarily to keep it close to the center of the camera field
of view, hence the matrices Q and R can be chosen with relatively small
entries compared to the barrier coefficients µx, µu.

2Here we adopt the ideas of solving the MPC as done in [29] and [30], we
keep a large barrier coefficient and improve the robustness of the algorithm
with a restart mechanism for the cases when failures might happen.

where: Hk =


R 0 ... 0 0
0 Q ... 0 0
...

...
. . .

...
...

0 0 0 R 0
0 0 0 0 Q

, hk =


Ax0k + ωk
ωk
ωk
...
ωk

 , Mk =



−Bd I 0 0 . . . 0 0 0
0 −Ad −Bd I . . . 0 0 0
0 0 0 −Ad . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . I 0 0
0 0 0 0 . . . −Ad −Bd I


,

and

g(zk) =

N−1∑
i=0

φu(uik) + φx(xi+1
k ),

where x0k = xk is the initial condition for problem (9). Note
that in the computation of the hk term, we assume that
the disturbance ωk is given by (8), and maintains the same
value during the entire prediction horizon. The condition for
optimality of (9) is:

ρJ = ∇J + M>k ηk = 0,
ρi = Mkzk = 0,

(10)

where ∇J is the gradient of the objective function of the
problem (9), ρJ and ρi are residuals of the optimality con-
dition. Equation (10) can be solved with Newton’s Method,
where the descending direction ∆zk and ∆ηk are computed
by solving:[

∇2J M>k
Mk 0

] [
∆zk
∆ηk

]
= −

[
ρJ
ρi

]
, (11)

where ∇2J is the Hessian matrix of the objective function
of the problem (9). We choose an initial guess zk,0 ∈ Zf
where Zf = {z|Fxx<bx, Fuu<bu}. Let ρ(zk,ηk) denote[
ρ>J ρ>i

]>
, then the procedure is highlighted in Algo-

rithm 1 below. After solving the MPC, the first predicted
input u0

k is used as the control input uk of the system (2).
7) Restoration upon Algorithm Failure: We considered

cases that might lead to violation of constraints, such as
strong wind gust, under which the algorithm fails to return
meaningful control inputs. Such situations might deteriorate
drastically the performance of the system in the follow-
ing sense: The fast solving algorithm usually runs with a
warm start method [31]. The warm start uses an initial
guess zk,0 for the MPC solver at time k, which is a shift
of elements of the previous MPC solution z∗k−1: zk,0 =[

u1∗
k−1
>

. . . xN∗k−1
> u0∗

k−1
> x1∗

k−1
>
]>

, where ui∗k−1
and xi∗k−1 are the sequences of control inputs and predicted
states in z∗k−1. The advantage of the warm start method is fast
convergence, since zk,0 satisfies the inequality constraints
and is close enough to the equality constraints, provided that
the disturbance ωk does not change rapidly in one time step,
that is, no strong additive disturbance occurs. However, if
the MPC solver fails for some reason, then the warm start
method will keep using initial guesses that lie out of the



Algorithm 1 Solve MPC
1: procedure SOLVE(x0k, ωk)
2: update matrix hk(x0k,ωk)
3: select initial guess zk,0 ∈ Zf
4: set ErrorTolerance, 0 < β < 1, 0 < α < 0.5
5: set zk = zk,0, ηk = 0
6: while ‖ρ(zk,ηk)‖ > ErrorTolerance do
7: calculate ρ(zk) through equation (10)
8: calculate ∆zk and ∆ηk through equation (11)
9: initialize searching step d = 1

10: while ‖ρ(zk + d∆zk,ηk + d∆ηk)‖ > (1 −
αd)‖ρ(zk,ηk)‖ do

11: d = βd
12: end while
13: zk = zk + d∆zk
14: ηk = ηk + d∆ηk
15: end while
16: Return zk
17: end procedure

constrained set for the next calls of the MPC solver. One
typical case of failure is when the predicted state z∗k−1 does
not satisfy the inequality constraints. For instance, when the
quadrotor is very close to the boundary of the visibility
region and has a large outward velocity (e.g., due to a sudden
gust), then the MPC might not prevent the quadrotor from
flying outside the constrained region. From the algorithmic
perspective, this is due to complex numbers that result from
the barrier term and yield useless acceleration control inputs.

Hence, for the real-time implementation of the MPC solver
on the quadrotor, we added a mechanism to avoid such a
chain of failures after a violation of constraints might occur.
This mechanism judges the correctness of the MPC solution,
and resets the initial guess of the warm start method in the
case when Algorithm 1 fails to satisfy the constraints. More
specifically, the mechanism will check the result returned by
the MPC solver. If all predicted states and control inputs
satisfy the inequality constraints, then these predicted states
will be used to generate the initial guess for the next call,
and this generated guess is stored. If any failure is detected,
then the algorithm will restart with the initial guess that was
used in the most recent successful call.

The improved robustness of the algorithm under the restart
mechanism can be seen in Fig. 2, where we ran a Monte
Carlo test with simulation parameters shown in Table I, in
which position and velocity were randomly generated so
that they satisfy the inequality constraints. The MPC solver
returns an meaningless result at around 12s, when a near-
boundary position and a large outward velocity lead to pre-
dicted states and inputs that violate the inequality constraints.
The solver keeps failing ever after. In contrast, the use of
the proposed mechanism adopts the most recent feasible
solution. In physical terms, when the quadrotor approaches
the boundary of the constrained area, it is expected to apply
relatively big control effort that will bring it back to the

TABLE I
SIMULATION PARAMETERS

tanφcamera
2

tanψcamera
2

µu µx

0.2 0.2 0.6 10

xd yd zd xsimu
min , y

simu
min

0 0 17 −3 m

xsimu
max , y

simu
max zsimu

min zsimu
max u1max, u2max

3 m 17 m 19 m 5 m/s2

u1min,u2min u3min u3max vsimu
max

−5 m/s2 −5 m/s2 7 m/s2 1.0 m/s

vsimu
min N dT

−1.0 m/s 10 0.1s
*{•}simu means the value is generated by program
*vsimu

max , v
simu
min are bounds of randomly generated velocity in 3 directions

*dT is the time step of the discrete system

interior of the constrained area. Even if the derived control
input does not prevent the quadrotor from flying outside
the constrained zone, keeping the MPC solver functional by
applying the previous control inputs increases the chances of
getting the quadrotor back into the visibility zone.

Fig. 2. Algorithm restart contributes to the robustness of the MPC solver.

IV. SIMULATION RESULTS

We simulated the response of the system (2) under the
proposed MPC strategy. Uniformly distributed noise taking
values in the interval [−0.5, 0.5] is added to the state vector
xk of the system (2), and this noisy state vector is used
as state feedback into the model predictive controller. The
disturbance vector ωk is also uniformly distributed, with
values taken in the interval [−1, 1]. The control inputs
computed by the MPC are applied to (2). The simulated
path of the quadrotor is shown in Fig. 3(a), and indicates
that the vehicle hovers about the ground within a bounded
zone. To demonstrate that the considered constraints were not
violated, the value of the sum of the barrier functions (7a),
(7b) is plotted in Fig. 3(b). This sum remains a finite real
number, hence the states and control inputs remain within
their constrained sets.

V. EXPERIMENTS

The efficacy of the proposed MPC strategy is demonstrated
through experiments performed with a quadrotor in an indoor



(a) The simulated path of the quadrotor under
the MPC strategy.

(b) The value of the barrier function during
the simulated scenario.

lab environment. We used a vicon motion capture system to
measure the position of the quadrotor and close the MPC
loop, while the integration of ground vision tracking with
autonomous aerial control is ongoing work.

The motion capture system provides position measure-
ments with precision 1mm at 100 Hz. The inner-loop con-
troller of the quadrotor runs at 1KHz, processing commands
from either a transmitter or XBee communication links.
The IMU data is fetched from High Level Process through
XBee links at 100 Hz. The navigation loop, described in the
following section, processes the acquired data and generates
the current state for the MPC solver. The on-line MPC
solver runs in MATLAB at about 100 Hz, and is bridged
with C/C++ code through Lightweight Communications and
Marshalling (LCM) package [32]. The control command is
sent through a XBee link connected to Low Level Processor
at 100 Hz. Armadillo, a C++ linear algebra library, is used
in the Kalman filter implementation for matrix operations.

8) Testing Under Perfect State Measurement and no Dis-
turbance Compensation: We initially tested the system under
the consideration that the vicon measurements of position
and velocity (obtained via differentiating the position data)
are nearly perfect. The quadrotor is forced to fly under the
MPC strategy and is pushed by hand towards the boundary
of the constrained region at given time instants during the
flight trial. The applied disturbances are neither compensated
for, nor measured, nor taken into consideration into the MPC.
The position trajectories are depicted in Fig. 3.

More specifically, the quadrotor is pushed by hand at
time 45s to a distance 0.07 m from the boundary of the
constrained region with outward velocity about 0.09 m/s. The
MPC forces the vehicle away from the boundary towards the
interior of the constrained area, and results in an increase of

its altitude so that a larger bounding area is obtained.
9) Testing Under Noisy Measurements and Disturbances:

Vision-based tracking usually results in noisy position esti-
mates, and merely differentiating this data does not provide
reliable enough velocity estimates for implementation on the
real system. In order to emulate the real (visual tracking)
sensing system, we added zero-mean white Gaussian noise
of standard deviation 0.25 m, which corresponds to about 8%
of half of the width of the effective sensing area that varies
between 3.2m and 3.8m, to the vicon position measurements
so that their statistical properties are comparable to those
of the visual tracking measurements. We implemented the
Kalman filter to obtain an estimate of the full state vector.
The resulting position trajectories are shown in Fig. 4. The
quadrotor is disturbed by sudden pushes occasionally during
the flight, however it reacts fast enough and compensates for
the disturbance under the proposed MPC strategy, without
much drifting in position. Fig.4(a) and Fig.4(b) demonstrate
that the quadrotor flies within the constraint bounds indicated
with red dash lines.

VI. CONCLUSIONS

Using model predictive control with barrier functions to
encode state and input constraints, we were able to generate
control inputs for a quadrotor so that it maintains its position
within a constrained area, despite the effect of a class
of external disturbances and noise. The fast MPC solving
algorithm with warm start adopted from earlier work was
shown to provide fast enough computational speed for real-
time implementation, while its robustness was furthermore
improved upon strong disturbances by reseting the initial
guess of the warm start method in the case when the MPC
solver fails to return a feasible solution.

Ongoing and future work includes the consideration of
time-varying constrained sensing areas due to the motion of
the ground robot, integrating the visual tracking algorithm
into the system and performing outdoors flight trials.
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