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Active Clustering with Model-Based
Uncertainty Reduction

Caiming Xiong, David M. Johnson, and Jason J. Corso Senior Member, IEEE

Abstract—Semi-supervised clustering seeks to augment traditional clustering methods by incorporating side information
provided via human expertise in order to increase the semantic meaningfulness of the resulting clusters. However, most current
methods are passive in the sense that the side information is provided beforehand and selected randomly. This may require a
large number of constraints, some of which could be redundant, unnecessary, or even detrimental to the clustering results. Thus
in order to scale such semi-supervised algorithms to larger problems it is desirable to pursue an active clustering method—
i.e. an algorithm that maximizes the effectiveness of the available human labor by only requesting human input where it will
have the greatest impact. Here, we propose a novel online framework for active semi-supervised spectral clustering that selects
pairwise constraints as clustering proceeds, based on the principle of uncertainty reduction. Using a first-order Taylor expansion,
we decompose the expected uncertainty reduction problem into a gradient and a step-scale, computed via an application of
matrix perturbation theory and cluster-assignment entropy, respectively. The resulting model is used to estimate the uncertainty
reduction potential of each sample in the dataset. We then present the human user with pairwise queries with respect to only
the best candidate sample. We evaluate our method using three different image datasets (faces, leaves and dogs), a set of
common UCI machine learning datasets and a gene dataset. The results validate our decomposition formulation and show that
our method is consistently superior to existing state-of-the-art techniques, as well as being robust to noise and to unknown
numbers of clusters.

Index Terms—active clustering, semi-supervised clustering, image clustering, uncertainty reduction
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1 INTRODUCTION
Semi-supervised clustering plays a crucial role in
machine learning and computer vision for its ability
to enforce top-down structure while clustering [1],
[2], [3], [4], [5], [6]. In these methods, the user is
allowed to provide external semantic knowledge—
generally in the form of constraints on individual
pairs of elements in the data—as side information to
the clustering process. These efforts have shown that,
when the constraints are selected well [7], incorporat-
ing pairwise constraints can significantly improve the
clustering results.

In computer vision, there are a variety of domains
in which semi-supervised clustering has the potential
to be a powerful tool. First, in surveillance videos,
there is significant demand for automated grouping
of faces and actions: for instance, recognizing that
the same person appears at two different times or
in two different places, or that someone performs a
particular action in a particular location [11]. These
tasks may be problematic for traditional supervised
recognition strategies due to difficulty in obtaining
training data—expecting humans to label a large set
of strangers’ faces or categorize every possible action
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that might occur in a video is not realistic. However,
a human probably can reliably determine whether
two face images are of the same person [12] or two
recorded actions are similar, making it quite feasible
to obtain pairwise constraints in these contexts.

The problem of plant identification is similar in that
even untrained non-expert humans [13] (for instance,
on a low-cost crowd-sourcing tool such as Amazon’s
Mechanical Turk [14]) can probably generally deter-
mine if two plants are the same species, even if only
an expert could actually provide a semantic label
for each of those images. Thus, non-expert labor,
in conjunction with semi-supervised clustering, can
reduce a large set of uncategorized images into a small
set of clusters, which can then be quickly labeled by
an expert. The same pattern holds true in a variety of
other visual domains, such as identifying animals or
specific classes of man-made objects, as well as non-
visual tasks such as document clustering [15].

However, even when using relatively inexpensive
human labor, any attempt to apply semi-supervised
clustering methods to large-scale problems must still
consider the cost of obtaining large numbers of pair-
wise constraints. As the number of possible con-
straints is quadratically related to the number of
data elements, the number of possible user queries
rapidly approaches a point where only a very small
proportion of all constraints can feasibly be queried.
Simply querying random constraint pairs from this
space will likely generate a large amount of redun-
dant information, and lead to very slow (and expen-
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(a) Leaf dataset (b) Face dataset (c) Dog dataset

Fig. 1: Sample images from three image datasets: (a) Leaves [8]; (b) Faces [9]; (c) Dogs [10]. Best viewed in color.

sive) improvement in the clustering results. Worse,
Davidson et al. [7] demonstrated that poorly chosen
constraints can in some circumstances lead to worse
performance than no constraints at all.

To overcome these problems, our community has
begun exploring active constraint selection methods
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], which allow semi-supervised clustering algo-
rithms to intelligently select constraints based on the
structure of the data and/or intermediate clustering
results. These active clustering methods can be di-
vided into two categories: sample-based and sample-
pair-based.

The sample-based methods first select samples of
interest, then query pairwise constraints based on the
selected sample [16], [18], [19]. Basu et al. [16] pro-
pose offline (i.e., not based on intermediate clustering
results) active k-means clustering based on a two-
stage process that first explores the problem space and
performs user queries to initialize and grow sets of
samples with known cluster assignments, and then
extracts a large constraint set from the known sample
sets and does semi-supervised clustering. Mallapra-
gada et al. [18] present another active k-means method
based on a min-max criterion, which also utilizes
an initial “exploration” phase to determine the basic
cluster structure. We have also previously proposed
two different sample-based active clustering meth-
ods [19], [21]. This paper represents an improvement
and extension of these works.

By contrast, the sample-pair-based methods [22],
[23], [24], [25], [26] directly seek pair constraints to
query. Hoi et al. [23] provide a min-max framework to
identify the most informative pairs for non-parametric
kernel learning and provide encouraging results.
However, the complexity of that method (which re-
quires the solution of an approximate semidefinite
programming (SDP) problem) is high, limiting both
the size of the data and the number of constraints
that can be processed. Xu et al. [22] and Wang and
Davidson [24] both propose active spectral clustering
methods, but both of them are designed for two-
class problems, and poorly suited to the multiclass

case. Most recently, Biswas and Jacobs [12] propose a
method that seeks pair constraints that maximize the
expected change in the clustering result. This proves to
be a meaningful and useful criterion, but the proposed
method requires recomputing potential clustering re-
sults many times for each sample-pair selected, and
is thus slow.

Both types of current approaches suffer from draw-
backs: most current sample-based methods are offline
algorithms that select all of their constraints in a single
selection phase before clustering, and thus cannot
incorporate information from actual clustering results
into their decisions. Most pair-based methods are
online, but have very high computational complexity
due to the nature of the pair selection problem (i.e. the
need to rank O(n2) candidate pairs at every iteration),
and thus have severely limited scalability.

In this paper, we overcome the limitations of exist-
ing methods and propose a novel sample-based active
spectral clustering framework using certain-sample sets
that performs efficient and effective sample-based
constraint selection in an online iterative manner
(certain-sample sets are sets containing samples with
known pairwise relationships to all other items in
the certain-sample sets). In each iteration of the algo-
rithm, we find the sample that will yield the greatest
predicted reduction in clustering uncertainty, and
generate pairwise queries based on that sample to
pass to the human user and update the certain-sample
sets for clustering in the next iteration. Usefully, under
our framework the number of clusters need not be
known at the outset of clustering, but can instead be
discovered naturally via human interaction as cluster-
ing proceeds (more details in Section 3).

In our framework, we refer to the sample that will
yield the greatest expected uncertainty reduction as
the most informative sample, and our active cluster-
ing algorithm revolves around identifying and query-
ing this sample in each iteration. In order to estimate
the uncertainty reduction for each sample, we pro-
pose a novel approximated first-order model which
decomposes expected uncertainty reduction into two
components: a gradient and a step-scale factor. To
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estimate the gradient, we adopt matrix perturbation
theory to approximate the first-order derivative of
the eigenvectors of the current similarity matrix with
respect to the current sample. For the step-scale factor
we use one of two entropy-based models of the
current cluster assignment ambiguity of the sample.
We describe our framework and uncertainty reduction
formulation fully in Section 3.

We compare our method with baseline and state-
of-the art active clustering techniques on three mid-
size image datasets (face images [9], leaf images [8]
and dog images [10]), two large-scale image datasets
(Caltech-101 [28] and ImageNet-100 [29]), a set of
common UCI machine learning datasets [30] and a
gene dataset [31]. Sample images from some of these
sets can be seen in Figure 1. Our results (see Section 7)
show that given the same number of pairs queried,
our method performs significantly better than existing
state-of-the-art techniques.

2 BACKGROUND AND RELATED WORK

What is clustering uncertainty? Clustering meth-
ods are ultimately built on the relationships between
pairs of samples. Thus, for any clustering method,
if our data perfectly reflects the “true” relationship
between each sample-pair, then the method should
always achieve the same perfect result. In practice,
however, data (and distance/similarity metrics) are
imperfect and noisy—the relationship between some
pairs of samples may be clear, but for others it is
highly ambiguous. Moreover, some samples may have
predominantly clear relationships to other samples
in the data, while others may have predominantly
ambiguous relationships. Since our goal in clustering
is to make a decision about the assignment of samples
to a cluster, despite the inevitable ambiguity, we can
view the overall sample-relationship ambiguity in the
data as the uncertainty of our clustering result.

We then posit that the advantage of semi-
supervised clustering is that it eliminates some
amount of uncertainty, by removing all ambiguity
from pair relationships on which we have a constraint.
It thus follows that the goal of active clustering should
be to choose constraints that maximally reduce the total
sample-assignment uncertainty. In order to achieve
this, however, we must somehow measure (or at
least estimate) the uncertainty contribution of each
sample/sample-pair in order to choose the one that
we expect to yield the greatest reduction. In this paper,
we address this problem by proposing a novel first-
order model of uncertainty reduction based on matrix
perturbation theory and the concept of local entropy
(more details in Section 3.2).

Why sample-based uncertainty reduction? There
are two main reasons for proposing a sample-based
approach rather than a sample-pair-based one. First,
an uncertain pair may be uncertain either because it

contains one uncertain sample or because it contains
two uncertain samples. In the latter case, because the
constraint between these samples will not extrapo-
late well beyond them, it yields limited information.
Second, due to the presence of n2 pair constraints
for every n samples, pair selection has an inherently
higher complexity, which limits the scalability of a
pair-based approach.

A naı̈ve approach to sample-based uncertainty,
however, has clear disadvantages. Querying the label
of a sample rather than querying a pairwise constraint
requires an understanding of the class structure of the
problem, which is not available in many clustering
applications. For this reason, we do not query samples
directly. Rather, once a sample is selected we generate
pairwise constraints between it and other represen-
tative samples, then query the user with regard to
these pairs, we thus allow our sample-based method
to operate using only pairwise queries. More details
are introduced in section 3.

Relation to active learning. Active query selection
has previously seen extensive use in the field of
active learning [32], [33]. Huang et al. [34] and Jain
and Kapoor [35], for example, both offer methods
similar to ours in that they select and query uncertain
samples. However, in active learning algorithms the
oracle (the human) needs to know the class label of
the queried data point. This approach is not applicable
to many semi-supervised clustering problems, where
the oracle can only give reliable feedback about the
relationship between pairs of samples (such as the
many examples we offered in the Section 1). Though
we implicitly label queried samples by comparing
them to a set of exemplar samples representing each
cluster, we do so strictly via pairwise queries.

Additionally, for the sake of comparison we be-
gin our experiments with an exploration phase that
identifies at least one member of each cluster (thus
allowing us to treat the clusters we are learning as
“classes” as far as the active learning algorithms are
concerned), but in real data this may not be a reliable
option. There may simply be too many clusters to
fully explore them initially, new clusters may appear
as additional data is acquired, or certain clusters may
be rare and thus not be encountered for some time. In
all of these cases, our active clustering framework can
adapt by simply increasing the number of clusters.
In contrast, most active learning methods must be
initialized with at least one sample of each class in
the data, and do not allow online modification of the
class structure.

3 ACTIVE CLUSTERING FRAMEWORK WITH
CERTAIN-SAMPLE SETS

Recall that “certain-sample sets” are sets such that
any two samples in the same certain-sample set are
constrained to reside in the same cluster, and any two
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Fig. 2: Pipeline of our active clustering framework as applied to image clustering. We iteratively choose
a maximally informative image, then select and query new pairwise constraints based on the chosen image,
update the certain image sets, and refine the clustering results before returning to select a new most informative
image.

samples from different certain-sample sets are guar-
anteed to be from different clusters. In the ground-
truth used in our experiments, each class corresponds
to a specific certain-sample set. In our framework,
we use the concept of certain-sample sets to translate
a sample selection into a set of pairwise constraint
queries.

Given the data set X = {x1, x2, · · · , xn}, denote the
corresponding pairwise similarity matrix W = {wij}
(i.e. the non-negative symmetric matrix consisting of
all wij , where wij is the similarity between samples xi
and xj). Similarity is computed in some appropriate,
problem-specific manner.

Here, we also denote the set of certain-sample sets
Z = {Z1, · · · , Zm}, where Zi is a certain-sample set
such that Zi ⊂ X and Zi ∩ Zj = ∅ for all j, and
define an sample set O =

⋃
i Zi containing all current

certain sample. Our semantic constraint information
is contained in the set Q, which consists of all the
available pairwise contraints. Each of these constraints
may be either “must-link” (indicating that two sam-
ples belong in the same semantic grouping/certain-
sample set) or “cannot-link” (indicating that they do
not). To initialize the algorithm, we randomly select a
single sample xi such that Z1 = {xi} with Z = {Z1},
O = {xi} and Q = ∅. As Z , O andQ change over time,
we use the notation (·)t to indicate each of these and
other values at the tth iteration.

Assuming we begin with no pairwise constraints, if
the number of clusters in the problem is not known,
set the initial cluster number nc = 2, otherwise set it
to the given number. We then propose the following
algorithm (outlined in Figure 2, more details for each
step can be found in Sections 3.1–3.3):

1 Initialization: randomly choose a single sample
xi, assign xi to the first certain set Z1 and ini-
tialize the pairwise constraint set Q as the empty

set.
2 Constrained Spectral Clustering: cluster all sam-

ple into nc groups using the raw data X plus the
current pairwise constraint set Q.

3 Informative Sample Selection: choose the most
informative sample xj based on our uncertainty
reduction model.

4 Pairwise Queries: present a series of pairwise
queries on the chosen sample xj to the oracle
until we have enough information to assign the
sample xj to a certain-sample set Zk (or create a
new certain set for the chosen sample).

5 Repeat: steps 2-4 until the oracle is satisfied
with the clustering result or the query budget is
reached.

It should be noted that, aside from the ability to
collect maximally useful constraint information from
the human, this algorithm has one other significant
advantage: the number of clusters in the problem need
not be known at the outset of clustering, but can
instead be discovered naturally via human interaction
as the algorithm proceeds. Whenever the queried pair-
wise constraints result in the creation of a new certain-
sample set, we increment nc to account for it. This
allows the algorithm to naturally overcome a problem
faced not just by other active clustering (and active
learning) methods, but by clustering methods in gen-
eral, which typically require a parameter controlling
either the size or number of clusters to generate. This
is particularly useful in the image clustering domain,
where the true number of output clusters (e.g. the
number of unique faces in a dataset) is unlikely to be
initially available in any real-world application. We
have conducted experiments to evaluate this method
of model selection; the results, which are encouraging,
are presented in Section 7.6.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Recalling the steps of our framework, from here
we proceed iteratively through the three main com-
putational steps: clustering with pairwise constraints,
informative sample selection and querying pairwise
constraints. We now describe them.

3.1 Spectral clustering with pairwise constraints
Spectral clustering is a well-known unsupervised
clustering method [36]. Given the n × n symmetric
similarity matrix W, denote the Laplacian matrix as
L = D − W, where D is the degree matrix such
that D = {dij}, where dij =

∑
k Wik if i = j and 0

otherwise. Spectral clustering partitions the n samples
into nc groups by performing k-means on the first nc
eigenvectors of L. The nc eigenvectors can be found
via:

v = argmin
v

vTLv

= argmin
v

∑
ij

wij‖vi − vj‖22

s.t. vTv = I,vT1 = 0 . (1)

To incorporate pairwise constraints into spectral
clustering, we adopt a simple and effective method
called spectral learning [37]. Whenever we obtain new
pairwise constraints, we directly modify the current
similarity matrix Wt, producing a new matrix Wt+1.
Specifically, the new affinity matrix W t+1 is deter-
mined via:
• Set Wt+1 = Wt.
• For each pair of must-linked samples (i, j) assign

the values Wt+1
ij = Wt+1

ji = 1.
• For each pair of cannot-linked samples (i, j) as-

sign the value Wt+1
ij = Wt+1

ji = −1.
We then obtain the new Laplacian matrix Lt+1 and
proceed with the standard spectral clustering proce-
dure.

3.2 Informative sample selection
In this section, we formulate the problem of finding
the most informative sample as one of uncertainty
reduction. We ultimately develop and discuss a model
for this uncertainty reduction in Section 4.

Define the uncertainty of the dataset in the tth

iteration to be conditioned on the current updated
similarity matrix Wt and the current certain-sample
set Ot. Thus the uncertainty can be expressed as
U(X|Wt,Ot). Therefore our objective function for
sample selection is as follows:

x∗j = argmax
xj∈X

∆U(xj) .

∆U(xj) = U(X|Wt,Ot)−U(X|Wt,Ot ∪ {xj}) .
(2)

To the best of our knowledge, there is no direct
way of computing uncertainty on the data. In order

to optimize this objective function, we consider that
querying pairs to make a chosen sample “certain” can
remove ambiguity in the clustering solution and thus
reduce the uncertainty of the dataset as a whole. So
the expected change in the clustering solution that
results from making the chosen sample “certain” can
be considered as the uncertainty contribution of the
sample as a result of selecting and querying that
sample.

Thus, we seek samples that will have the greatest
impact on the clustering solution. One strategy for
finding these constraints (employed in Biswas and
Jacobs [12], though with sample-pairs rather than
samples) is to estimate the likely value of a constraint
(i.e. cannot- or must-link) and simulate the effect
that constraint will have on the clustering solution.
However, this approach is computationally expensive
(in the worst case requiring a simulated clustering
operation for each possible constraint at each iteration
of the active clusterer).

We hence adopt a more indirect method of estimat-
ing the impact of a sample query, based on matrix
perturbation theory and the local cluster assignment
entropy of each sample. We present the details of our
method in Section 4.

3.3 Sample-based pairwise constraint queries

Before presenting our model for informative sample
selection, we briefly describe how we use the selected
sample. Because our active selection system is sample-
based and our constraints pair-based, once we have
selected the most informative sample we must then
generate a set of pairwise queries related to that sam-
ple. Our goal with these queries is to obtain enough
information to add the sample to the correct certain-
sample set. We generate these queries as follows.

First, for each certain set Zj , choose the single
sample within the set that is closest to the selected
sample xi (xl = argmaxxl∈Zj

wil) and record this
sample.

Second, since there are m certain sets, we will have
recorded m sample and similarity values. We sort
these samples based on their corresponding similarity,
then, in order of descending similarity, query the
oracle for the relation between the selected sample xi

and xl until we find a must-link connection. We then
add xi into the certain-sample set containing that xl.
If all of the relations are cannot-link, we create a new
certain-sample set Zm+1 and add xi to it. This new
certain set Zm+1 is then added to Z . Regardless, O is
correspondingly updated by adding xi. If the value of
m after querying is greater than nc, we also update nc
to reflect the newly discovered ground-truth cluster.

In Figure 3, we present a toy example to visualize
the behavior of our algorithm. We discuss our method
for identifying informative samples in more detail
below.
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(a) GroundTruth

(a) Initialization (b) After 1st Query (c) After 2nd Query (d) After 3rd Query

Query (P2,P1) Query (P3,P1) Query (P4,P3)

Fig. 3: A simple example of our uncertainty reducing active clustering method on toy data. The initial clustering
result is poor, and the first certain sample P1 is chosen randomly. After this, however, the algorithm quickly
identifies informative samples and queries the oracle to determine the ground truth relationships between
each chosen point. Within 3 iterations, our method has explored the space and determined the correct borders
of the two clusters.

4 UNCERTAINTY REDUCTION MODEL FOR
INFORMATIVE SAMPLE SELECTION

As described in Section 3.1, we use spectral learning
[37] as our clustering algorithm. In spectral learning
[37], the clustering result arises from the values of
the first nc eigenvectors of the current similarity ma-
trix. Therefore, the impact of a sample query on the
clustering result can be approximately measured by
estimating its impact on V nc (the first nc eigenvectors
vk):

∆U(xj) ≈∆Vnc(xj)

=

nc∑
k=0

∆vk(xj) . (3)

In order to measure ∆Vnc(xj), based on a first-
order Taylor expansion, we decompose the change
in the eigenvectors into a gradient and a step-scale
factor:

∆Vnc(xj) =
∂V nc(xj)

∂H(xj)
∆H(xj) , (4)

where H(xj) represents the assignment-ambiguity of
xj , and ∆H(xj) represents the reduction in this am-
biguity after querying xj . ∂V nc (xj)

∂H(xj)
is a first-order

derivative of the changes in the eigenvectors as a
result of this ambiguity reduction. We describe how
to estimate this gradient and ambiguity reduction in
Sections 4.1 and 4.2, respectively.

4.1 Estimating the uncertainty reduction gradient

In order to solve (4) we must first evaluate ∂V nc (xj)
∂H(xj)

.
We know that in spectral learning (Section 3.1) the
information obtained from the oracle queries is ex-
pressed via changes in the similarity values for the
queried point contained in Wt. Given this, changes
in ambiguity are always mediated by changes in Wt,

so we can approximate ∂V nc (xj)
∂H(xj)

via

∂V nc(xj)

∂H(xj)
≈ ∂V nc(xj)

∂Wt
xj

, (5)

where ∂Wt
xj

represents an incremental change in the
similarity values of sample xj .

Thus, we must begin by computing ∂V nc (xj)
∂Wt

xj

for
each xj , for which we propose a method based on ma-
trix perturbation theory [38]. First note that the graph
Laplacian at iteration t can be fully reconstructed
from the eigenvectors and corresponding eigenvalues
via Lt =

∑n
i=1 λiviv

T
i . Then, given a small constant

change in a similarity value wt
jk, the first-order change

of the eigenvector vi can be calculated as:

dvi
dwt

jk

=
∑
p6=i

vTi

(
∂Lt/∂wt

jk

)
vp

λi − λp
vp (6)

Note that ∂Lt/∂wt
jk = (ej − ek)(ej − ek)T , where eq is

the n-length indicator vector of index q.
For the chosen sample xj we take nc samples

Xnc
= {xj1 , xj2 , · · · , xjnc

}, one sampled from each
certain set Zi ∈ Z . If we decide to query the oracle
for xj , the relation of xj to each sample in Xnc will
become known, and the corresponding wt

jk in W t

will be updated during spectral learning. Therefore,
to estimate the influence of sample xj on the gradient
of the eigenvectors, we can simply sum the influences
of the relevant wt

jk values based on Eq. 6. We thus
define our approximate model for the derivative of
uncertainty reduction as:

∂V nc(xj)

∂H(xj)
≈

nc∑
i=1

∣∣∣∣∣∣
∑

xk∈Xnc

dvi
dwt

jk

∣∣∣∣∣∣
=

nc∑
i=1

∣∣∣∣∣∣
∑

xk∈Xnc

∑
p 6=i

vTi [∂Lt/∂wt
jk]vp

λi − λp
vp

∣∣∣∣∣∣ . (7)
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Note that we operate only over a subset of certain
samples in order to both save on computation and
avoid redundancy. We could simply use the entirety
of O in place of Xnc

, but this would likely distort
the results. Intuitively, the effect of a must-link con-
straint is to shift the eigenspace representations of the
two constrained samples together. The samples in a
certain set should thus have very similar eigenspace
representations, so we expect additional constraints
between them and xj to have diminishing returns.

4.2 Estimating the step scale factor for uncer-
tainty reduction

The second component of our uncertainty reduction
estimation is ∆H(xj)—the change in the ambiguity
of the sample xj as a result of querying that sample.
This component serves as the step scale factor for the
gradient ∂V nc (xj)

∂H(xj)
. According to the assumptions in

Section 3.3, after a sample is queried the ambiguity
resulting from that sample is reduced to 0. This leads
to the conclusion that

∆H(xj) = H(xj) . (8)

Therefore, the problem of estimating the change
in ambiguity of a sample reduces to the problem
of estimating the current ambiguity of that sample.
While this problem still cannot be solved precisely, we
present two reasonable heuristics for estimating the
ambiguity of a sample. Both are based on the concept
of entropy—specifically, the entropy over probability
distributions of local cluster labels (an uncertainty
estimation strategy that has shown good results in
active learning [32]).

Nonparametric structure model for cluster prob-
ability First, consider the current clustering result
Ct = {c1, c2, ·, cnc

}, where ci is a cluster and nc is the
number of clusters. We can then define a simple non-
parametric model based on similarity matrix W for
determining the probability of xj belonging to cluster
ci:

P (ci|xj) =

∑
xl∈ci wjl∑
xl∈X wjl

(9)

Because only local nearest neighbors have large sim-
ilarity values in relation to a given sample, we can
use the k-nearest neighbors (kNN) of each point to
efficiently approximate the entropy. These neighbors
need only be computed once, so this ambiguity es-
timation process is fast and scalable. In our experi-
ments, we use k = 20.

Parametric model for cluster probability Alter-
nately, we can simply use the eigenspace represen-
tation of our data produced by the most recent semi-
supervised spectral clustering operation to compute
a probabilistic clustering solution. We elect to learn a

mixture model (MM) on the embedded eigenspace of
the current similarity matrix W t for this purpose:

p(xj |{αc}, θc}) =

nc∑
c=1

αcf(xj ; θc) , (10)

where {αc} are the mixing weights and (θc}) are the
component parameters. Then, the probability of each
data point given each cluster c is computed via:

P (c|xj) =
αcf(xj ; θc)∑nc

c=1 αcf(xj ; θc)
. (11)

In our experiments, we assume a Gaussian distribu-
tion for each component, yielding a Gaussian Mixture
Model (GMM).

Entropy-based ambiguity model Whether using
the parametric or nonparametric cluster probability
model, the ambiguity of sample xj can be defined,
based on entropy, as:

H(xj) = −
nc∑
i=1

P (ci|xj) logP (ci|xj) (12)

We then use this value to approximately represent
∆H(xj). In combination with the approximate uncer-
tainty gradient ∂V nc (xj)

∂H(xj)
computed as in Section 4.1,

this allows us to evaluate (4) and effectively estimate
the uncertainty reduction for every point xj . From
there, solving our sample selection objective (2) is a
simple argmin operation.

5 COMPLEXITY ANALYSIS

At each iteration, we must select a query sample from
among O(n) possibilities, applying our uncertainty
reduction estimation model to each potential sample.
Computing the gradient component of the uncertainty
model takes O(mnc

2n) time for each sample, where
m is number of certain sets and nc is the number of
clusters/eigenvectors. m ≤ nc, so the complexity of
the uncertainty gradient evaluation at each iteration
is O(n3cn

2). Computing all the step scale factors costs
O(nckn) (where k is the number of nearest neighbors)
if the nonparametric method is used, or O(n3cn) for
the parametric method. k � n, so regardless the
total complexity of the active selection process at each
iteration is O(n3cn

2).
In order to reduce this cost, we adopt a slight ap-

proximation. In general, the samples with the largest
uncertainty reduction will have both a large step scale
and a large gradient. With this mind, we first compute
the step scale for each sample (this is cheaper than
computing the gradient, particularly if the nonpara-
metric model is used), then only compute the gradient
for the b samples with the largest step scales. Assum-
ing b� n, this yields an overall complexity of O(n3cn).
Note that all results for our method shown in this
paper were obtained using this fast approximation,
except those for URASC-GO (one of the variants of



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

TABLE 1: UCI machine learning and gene data sets

Dataset Size Dim. No. Classes
Balance 625 4 3
BUPA Liver Disorders 345 6 2
Diabetes 768 8 2
Sonar 208 60 2
Wine 178 13 3
Cho’s gene 307 100 5

our method discussed in section 6.3). Also note that
for large data, the cost of the method will gener-
ally be dominated by the spectral clustering itself,
which is O(n3) in the worst case (though potentially
significantly cheaper, possibly even O(n) [39], [40],
depending on the eigendecomposition method used
and the sparseness of the similarity matrix).

6 EXPERIMENTAL SETUP

6.1 Data

We evaluate our proposed active framework and se-
lection measures on three medium-size image datasets
(leaves, dogs and faces—see Figure 1), two large im-
age datasets (Caltech-101 [28] and ImageNet-100 [29]),
one gene dataset [31] and five UCI machine learn-
ing datasets [30]. We seek to demonstrate that our
method is generally effective for different types of
data/applications with a wide range of cluster num-
bers.

Face dataset: all face images are extracted from
a face dataset called PubFig [9], which is a large,
real-world face dataset consisting of 58,797 images
of 200 people collected from the Internet. Unlike
most other existing face datasets, these images are
taken in completely uncontrolled settings with non-
cooperative subjects. Thus, there is large variation in
pose, lighting, expression, scene, camera, and imaging
conditions. We use two subsets: Face-1 (500 images
from 50 different people) and Face-2 (200 images from
20 different people).

Leaf dataset: all leaf images are iPhone photographs
of leaves against a monochrome background, acquired
through the Leafsnap app [8]. We use the same subset
(1042 images from 62 species) as in [12]. The feature
representations and resulting similarity matrices for
the leaf and face datasets are all from [12].

Dog dataset: all dog images are from the Stanford
Dogs dataset [10], which contains 20,580 images of
120 breeds of dogs. We extract a subset containing
400 images from 20 different breeds and compute the
features used in [29]. Affinity is measured via a χ2

kernel.
Gene and UCI machine learning datasets: we

choose five datasets from the UCI repository and
Cho’s [31] gene dataset (details in Table 1). Affinity
is measured via a Gaussian kernel.

We also evaluate our methods on two well-known
large-scale datasets: Caltech-101 [28] and ImageNet-
100 [29].

Caltech-101 image dataset: contains 101 object cat-
egories with 40 to 800 images per category, with
more than 8,000 images in total. For each image, we
compute the PHOW [41] feature via VLFEAT [43].

ImageNet-100 image dataset: ImageNet [29] is a
well-known large-scale image dataset that includes
millions of annotated images. We select 100 categories,
containing 10,000 images in total, from the ImageNet
database. For each image, we use the feature repre-
sentation from [42].

6.2 Evaluation protocols
We evaluate all cluster solutions via two commonly
used cluster evaluation metrics: the Jaccard Coeffi-
cient [44] and V-measure [45].

The Jaccard Coefficient is defined by JCC =
SS

SD+DS+SS , where:
• SS: represents the total number of pairs that are

assigned to the same cluster in both the clustering
results and the ground-truth.

• SD: represents the total number of pairs that are
assigned to the same cluster in the clustering
results, but to different clusters in the ground-
truth.

• DS: represents the total number of pairs that are
assigned to different clusters in the clustering
results, but to the same cluster in the ground-
truth.

V-Measure is an alternate metric for determining
cluster correspondence between a set of ground-truth
classes C and clusters K, which defines entropy-based
measures for the completeness and homogeneity of
the clustering results, and computes the harmonic
mean of the two.

6.3 Baseline and state-of-the-art methods
To evaluate our active clustering framework and pro-
posed active constraint selection strategies, we test
the following set of methods, including a number of
variations on our own proposed method, as well as a
baseline and multiple state-of-the-art active clustering
and learning techniques. From this point forward we
refer to our proposed method as Uncertainty Reduc-
ing Active Spectral Clustering (URASC). The variants
of URASC:
• URASC+N: Proposed model for uncertainty re-

ducing active clustering with gradient and non-
parametric step scale estimation.

• URASC+P: Proposed model for uncertainty re-
ducing active clustering with gradient and para-
metric step scale estimation.

• URASC-GO: Our model without step scale
estimation—only the gradient estimation for each
sample is used.
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• URASC-NO: Our model without gradient
estimation—only the nonparametric step scale is
used.

• URASC-PO: Our model without gradient
estimation—only the parametric step scale is
used.

Our baselines and comparison methods include
state-of-the-art pair-based active clustering methods
and two active learning methods:
• Random: A baseline in which pair constraints are

randomly sampled from the available pool and
fed to the spectral learning algorithm.

• Active-HACC: [12] An active hierarchical cluster-
ing method that seeks pairs that maximize the
expected change in the clustering.

• CAC1: [25] An active hierarchical clustering
method that heuristically seeks constraints be-
tween large nearby clusters.

• FFQS [16]: An offline active k-means clustering
method that uses certain-sample sets to guide
constraint selection (as in our method), but selects
samples to query either through a farthest-first
strategy or at random.

• ASC [24]: A binary-only pair-based active spec-
tral clustering method that queries pairs that will
yield the maximum reduction in expected pair
value error.

• QUIRE [34]: A binary-only active learning
method that computes sample uncertainty based
on the informativeness and representativeness
of each sample. We use our certain-sample set
framework to generate the requested sample la-
bels from pairwise queries.

• pKNN+AL [35]: A minmax-based multi-class ac-
tive learning method. Again, we use our frame-
work to translate sample label requests into pair-
wise constraint queries.

7 RESULTS

We run our method and its variants on all of the
listed datasets and compare against baselines and
competing state-of-the-art techniques.

7.1 Variant methods and baseline

In Figure 4, we compare our parametric and nonpara-
metric methods, as well as the three “partial” URASC
procedures, on three image sets and two UCI sets
at varying numbers of constraints. We show results
in terms of both Jaccard coefficient and V-measure,
and witness similar patterns for each. In all cases,
our parametric and nonparametric methods perform
relatively similarly, with the nonparametric having a
modest lead at most, but not all, constraint counts.
More importantly, our methods consistently (and in
many cases dramatically) outperform the random

baseline, particularly as the number of constraints in-
creases. Our methods always show notable improve-
ment as more constraints are provided—in contrast
to the random baseline, which, at best, yields minor
improvement. Even on the relatively simple wine
dataset, it is clear that randomly selected constraints
yield little new information.

Finally, we note that our “complete” methods con-
sistently meet or exceed the performance of the corre-
sponding partial methods. Neither the step-scale-only
methods nor the gradient-only method consistently
yield better results, but in every case the combined
method performs at least on-par with the better of the
two, and in some cases significantly better than either
(see the sonar results in particular). These results
validate the theoretical conception of our method,
showing that the combination of gradient and step-
scale is indeed the correct way to represent the active
selection problem, and that our method’s performance
is being driven by the combined information of both
terms.

7.2 Comparison to state-of-the-art active learning
methods
We next compare our methods to two active learning
methods, as representatives of other pair-based tech-
niques (Figure 5). Here we test on three binary UCI
datasets in order to provide a reasonable evaluation
of the QUIRE method, which is binary-only.

At least one (and usually both) of our methods
outperforms both QUIRE and pKNN+AL in most
cases, only definitively losing out at the very low
constraint level on the sonar dataset. As with the
random baseline before, the gap between our methods
and the competition generally increases with the num-
ber of constraints. These results suggests that simply
plugging active learning methods into a clustering
setting is suboptimal—we can achieve better results
by formulating a clustering-specific uncertainty re-
duction objective.

Also notable is the fact that, between the two active
learning methods, QUIRE is clearly the superior (at
least on problems where it is applicable). This is
significant because, like our method, QUIRE seeks to
measure the global impact of a given constraint, while
pKNN+AL only models local uncertainty reduction.
This lends further support to the idea that the effect of
a given query should be considered within the context
of the entire clustering problem, not just in terms of
local statistics.

7.3 Comparison to state-of-the-art active cluster-
ing methods
Finally, we test our methods against existing active
clustering techniques (as well as the random base-
line) and represent the results visually in Figure 6.
Not all methods appear in all charts because ASC
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Jaccard Coefficient
Dataset #pairwise constraints Random URASC+N URASC+P URASC-NO URASC-PO URASC-GO

Dog dataset

1000 0.0289 0.075 0.0484 0.0627 0.0438 0.0626
2000 0.032 0.2294 0.2557 0.2006 0.2079 0.1632
3000 0.034 0.7199 0.7409 0.6783 0.7158 0.694

Face-1 Dataset

1000 0.1256 0.1623 0.147 0.1573 0.1383 0.1376
2000 0.1318 0.224 0.2155 0.1947 0.1823 0.1627
3000 0.1392 0.4017 0.4775 0.3798 0.4041 0.3764

Leaf dataset

500 0.3287 0.4249 0.3301 0.4092 0.3281 0.3266
1500 0.3374 0.4557 0.3483 0.4532 0.3324 0.3358
2500 0.3409 0.6862 0.439 0.6259 0.4184 0.428
3000 0.3435 0.7754 0.6775 0.7026 0.6379 0.6028

Wine

5 0.8252 0.837 0.8565 0.837 0.8544 0.837
10 0.836 0.8565 0.9123 0.8929 0.9122 0.8726
15 0.8371 0.9342 0.9123 0.9122 0.9124 0.901

Sonar

50 0.3463 0.3707 0.352 0.3594 0.352 0.3483
150 0.3464 0.8182 0.7103 0.6908 0.671 0.6717
180 0.3448 0.9124 0.8939 0.7891 0.8191 0.7758

V-Measure
Dataset #pairwise constraints Random URASC+N URASC+P URASC-NO URASC-PO URASC-GO

Dog dataset

1000 0.1867 0.3361 0.2601 0.3188 0.2548 0.3371
2000 0.212 0.633 0.5937 0.5673 0.5499 0.581
3000 0.229 0.9252 0.9326 0.9124 0.8974 0.8965

Face-1 Dataset

1000 0.6191 0.6634 0.6401 0.6635 0.6217 0.5868
2000 0.6319 0.7317 0.7156 0.709 0.7044 0.7262
3000 0.6404 0.8567 0.8632 0.8482 0.825 0.8608

Leaf dataset

500 0.8021 0.8385 0.806 0.8291 0.8019 0.8096
1500 0.8065 0.8579 0.8116 0.8567 0.8252 0.8161
2500 0.8108 0.9432 0.8538 0.9313 0.8483 0.8572
3000 0.8064 0.9613 0.9402 0.9475 0.9281 0.9187

Wine

5 0.7969 0.8389 0.8579 0.8387 0.8518 0.8387
10 0.8213 0.8579 0.9016 0.8925 0.9087 0.8656
15 0.8387 0.9281 0.9016 0.9088 0.909 0.9013

Sonar

50 0.0018 0.0641 0.0001 0.0479 0.0001 0.0017
150 0.0018 0.7152 0.6248 0.5396 0.5783 0.5695
180 0.0033 0.8593 0.8386 0.6621 0.7497 0.7073

Fig. 4: Comparison of variants of our methods against the random baseline.

Jaccard Coefficient V-Measure
Dataset #pairwise constraints URASC+N URASC+P QUIRE pKNN+AL URASC+N URASC+P QUIRE pKNN+AL

Sonar

50 0.3707 0.352 0.4684 0.4237 0.0641 0.0001 0.1268 0.073
150 0.8182 0.7103 0.6551 0.6415 0.7154 0.6248 0.4925 0.5018
180 0.9124 0.8939 0.8174 0.8315 0.8593 0.8386 0.703 0.7233

Bupa

100 0.509 0.435 0.4258 0.4383 0.2079 0.1619 0.1877 0.1085
200 0.6001 0.5796 0.4592 0.5639 0.4039 0.3868 0.2639 0.3202
300 0.8952 0.8863 0.7135 0.7623 0.8088 0.7972 0.6019 0.6169

Diabetes

150 0.5661 0.4855 0.4777 0.383 0.2113 0.0846 0.1781 0.0621
300 0.6173 0.493 0.5915 0.4176 0.378 0.1676 0.3479 0.1146
450 0.6303 0.6067 0.6414 0.5102 0.4606 0.3705 0.4291 0.2681

Face-1 Dataset

1000 0.1623 0.147 0.1367 0.6634 0.6401 0.6367
2000 0.224 0.2155 0.2032 0.7317 0.7156 0.6984
3000 0.4017 0.4775 0.4554 0.8567 0.8632 0.8431

Dog dataset

1000 0.075 0.0484 0.0419 0.3361 0.2601 0.243
2000 0.2294 0.2557 0.2262 0.633 0.5937 0.5601
3000 0.7199 0.7409 0.6378 0.9252 0.9326 0.8574

Leaf dataset

500 0.4249 0.3301 0.3487 0.8385 0.806 0.8142
1500 0.4557 0.3483 0.3599 0.8579 0.8116 0.8236
2500 0.6862 0.439 0.488 0.9432 0.8538 0.8649

Fig. 5: Comparison of our methods against sample-based active learning methods. Since QUIRE is a binary-
only method, there is no result for QUIRE [34] on the multi-cluster datasets.

[24] is applicable only to binary data. Once again,
our methods present a clear overall advantage over
competing algorithms, and in many cases both our
parametric and nonparametric methods far exceed the
performance of any others (most dramatically on the
Dog dataset).

The only method that comes near to matching
our general performance is Active-HACC, which also
seeks to estimate the expected change in the clus-
tering as a result of each potential query. However,
this method is much more expensive than ours (due
to running a large number of simulated clustering

operations for every constraint selection) and fails on
the Dog dataset. ASC is also somewhat competitive
with our methods, but its binary nature greatly limits
its usefulness for solving real-world semi-supervised
clustering problems.

Neither of our two variant methods has a clear
advantage over the other, though the nonparametric
approach appears to be more reliable given the rel-
ative failure of the parametric algorithm on the Leaf
and Diabetes sets. Also noteworthy is the tendency
on a number of datasets for URASC+P to have rela-
tively poor performance early on and improve (again
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Fig. 6: Comparison to state-of-the-art active clustering methods. y-axis is Jaccard Coefficient score. Best viewed
in color.
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Fig. 7: Comparison of our methods against other active clustering methods on two image datasets with a 2%
simulated error rate on the oracle queries. Best viewed in color.
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Fig. 8: Comparison of our methods against other ac-
tive clustering methods on the dog-100 image dataset
when using real human input to acquire the pairwise
constraints. Best viewed in color.

relatively) as the number of queries increases. We
suspect this is because the underlying GMM used by
this method is also improving as more constraints are
obtained, thus allowing the query selection method
itself to improve over time.

7.4 Comparison with synthesized noisy input
Our previous experiments are all based on the as-
sumption that the oracle reliably returns a correct
ground-truth response every time it is queried. Previ-
ous works in active clustering have also relied on this
assumption [16], [17], [18], [22], [24], [25], [26]. Obvi-
ously, this is not, as a general rule, realistic—human
oracles may make errors, and in some problems the
ground-truth itself may be ambiguous and subjective.
Specifically, for the face and leaf datasets used here,
Amazon Mechanical Turk experiments [9], [12] have
shown that human error is about 1.2% on face queries
and 1.9% on leaf queries.

Thus, we performed a set of experiments with a
simulated uniform 2% query error rate on the Face-2
and Dog datasets. We plot the results of our experi-
ment in Figure 7, and find that, while improvement
is noticeably slower and noisier than in the previous
experiments, our algorithms still demonstrate a sig-
nificant overall advantage over other active or passive
clustering techniques.

7.5 Comparison with noisy input from real world
human input
In order to better verify our method, besides the ex-
periment on the perfect labels of pairwise constraints
and synthesized noise labels, we design a new, more
realistic experiment that obtains noisy label input
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Fig. 9: Comparison of URASC+N clustering results
with known and (initially) unknown numbers of clus-
ters. Best viewed in color.

directly from real humans. We extract 100 dog images
with 10 classes from Stanford Dogs dataset [10] and
call it the Dog-100 dataset, we have hired eight peo-
ple with different education backgrounds, and then
exhaustively label all pairs of dog images; if they
think the pair is from same class, click ’YES, otherwise
click ’NO’. For each pair of images, we collect at least
three responses and adopt a majority voting strategy
to get the label of the pair. According to the human
labels, we found that the error rate of the human
input is 5.2%. This error rate is higher than the human
error rate in Biswas and Jacobs [12]; we suspect this
is due to the greater variability in the dog images
than the leaf images, which leads to more difficult
human judgements. Then we test our method and
other comparison methods on this human labeled
dataset. In Figure 8, we display these comparative re-
sults. First, we observe that the performance plateaus
after the human-performance level has been reached,
which confirms a notion introduced in Biswas and
Jacobs [12]. Second, comparing with other methods,
our methods still show state-of-the-art performance,
which is same as discussed in the other experiments..

7.6 Comparison with unknown numbers of clus-
ters

Since one advantage of our method is its ability to
dynamically discover the number of clusters based on
query results, we analyze how this approach effects
performance over time. We thus run our method on
the Face-1 (50 ground-truth clusters) and Leaf (62
ground-truth clusters) datasets, with the number of
clusters k initially set to 2, and increasing as new
certain-sample sets are discovered. Our results are
shown in Figure 9. The results are promising, with the
unknown-k results initially much lower (as expected),
but converging over time towards the known-k results
as the cluster structure is discovered. On both datasets
tested, the results appear to eventually become indis-
tinguishable.
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(a) Caltech-101

(b) ImageNet-100

Fig. 10: Results of our experiments on large-scale
image datasets. Note that Active-HACC could not be
run on this data due to memory limitations.

7.7 Comparison on large-scale image datasets

To evaluate our proposed framework’s scalability
and performance on more realistic large-scale data,
we run two experiments on significantly larger im-
age datasets: Caltech-101 [28] (>8000 images) and
ImageNet-100 [29](10,000 images). The results are
shown in Figure 10. In this experiment, we were
unable to run Active-HACC [12] due to its algorithmic
and memory requirements (as implemented by the au-
thors, the method requires upwards of 100 GB of main
memory for ImageNet-100). The trends we observe
for this data are similar to what we see on smaller
datasets. Cluster improvement is initially slow, then
accelerates greatly as our algorithm accumulates in-
formation about the problem. Our parametric method,
in particular, seems to eventually reach a point of
dramatically increasing returns on new queries, again
likely due to the improving quality of its underlying
model of the data.

The performance of the other methods is signif-
icantly weaker. FFQS is effective, but produces a
slower, more linear improvement than our methods,
failing to match their results even when allotted more
than twice as many queries. By contrast, random
query selection on this data appears to yield no im-
provement in clustering quality, further emphasizing
the need for strong active methods.

8 CONCLUSION

In this paper, we present a novel sample-based on-
line active spectral clustering framework that actively
selects pairwise constraint queries with the goal of
minimizing the uncertainty of the clustering problem.
In order to estimate uncertainty reduction, according
to first-order Taylor expansion, we decompose it into
a gradient (estimated via matrix perturbation theory)
and step-scale (based on one of two models of local
label entropy). We then use pairwise queries to dis-
ambiguate the sample with the largest estimated un-
certainty reduction. Our experimental results validate
this decomposed model of uncertainty and support
our theoretical conception of the problem, as well
as demonstrating performance significantly superior
to existing state-of-the-art algorithms. Moreover, our
experiments show that our method is robust to noise
in the query responses and functions well even if
the number of clusters in the problem is initially
unknown.

One avenue of future research involves reducing the
computational burden of the active selection process
by adjusting the algorithm to select multiple query
samples at each iteration, so that this active spectral
clustering method could become a powerful tool for
use in large-scale online problems, particularly in the
increasingly popular crowdsourcing domain.
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