
Interactive Haptic Rendering of Deformable Surfaces
Based on the Medial Axis Transform

Jason J. Corso, Jatin Chhugani and Allison M. Okamura
The Johns Hopkins University

3400 North Charles Street
Baltimore, Maryland, 21218, USA�
jcorso,jatinch,aokamura � @jhu.edu

Abstract

We present a new method for interactive deformation and
haptic rendering of viscoelastic surfaces. Objects are de-
fined by a discretized Medial Axis Transform (MAT), which
consists of an ordered set of circles (in 2D) or spheres
(in 3D) whose centers are connected by a skeleton. The
skeleton and physical properties of the object, including the
radii of the spheres centered on the skeleton and material
properties, are encapsulated in a single high dimensional
parametric surface. To compute the force upon deforma-
tion, we use a mass-spring-damper model that takes into
account both normal and shear surface forces. Our imple-
mentation attains real time 3D haptic and graphic render-
ing rates, making it appropriate to model deformation in
complex haptic virtual environments. The algorithm is ap-
pealing because it takes advantage of single-point haptic in-
teraction to render efficiently while maintaining a very low
memory footprint.

1. Introduction

Physical objects in the real world possess attributes far
beyond those present in typical virtual reality systems. Vi-
sual, haptic, aural, taste, and smell attributes are required
to fully describe an object. Incorporating deformable vis-
coelastic surfaces into virtual environments involves com-
putationally intensive tasks.

Many deformable surfaces are by nature smooth, and
their visual rendering must yield an accurate representation
on the display. This graphic rendering must also be per-
formed at fast rates (10-20Hz). These two demands must be
balanced to produce fast, but accurate graphical rendering
of the surfaces. To enable real-time graphic rendering rates,
specialized hardware has been developed that quickly ras-
terizes triangles numbering on the order of 106 per frame.

Triangles, however, are discrete and do not enable view-
dependent adaptation for varying levels of resolution. Para-
metric surfaces provide a means to render these viscoelas-
tic surfaces at varying resolutions. The parametric surfaces
undergo a process called tessellation during which a set of
triangles are created to approximate the smooth surface; the
set of triangles created is bound by either object space error
or screen space error allowing for arbitrary levels of resolu-
tion.

Resolved-force haptic interaction mandates an intersec-
tion calculation of the user’s position with the surfaces at
haptic interactive rates (1 kHz). Single-point collision cal-
culation with implicit surfaces involves a simple sign eval-
uation of an expression describing the surfaces.

However, the needs for efficient graphical rendering con-
tradict those for good haptic rendering. While implicit sur-
faces are superb for use in haptic rendering, their graphi-
cal rendering is extremely slow. And while parametric sur-
faces are the state-of-the-art in graphics rendering, employ-
ing them in a haptic environment yields more complicated
resolved-force calculations resulting in a slower system. In
this work, we extend the current state-of-the-art virtual envi-
ronment technology to include a new method for combined
real-time visual and resolved-force haptic interaction with
deformable surfaces.

We continue this introductory section by describing the
previous and related work. The algorithm for surface mod-
eling is then explained in Section 2. Object intersection and
deformation is presented in Sections 3.1 and 3.2. We dis-
cuss our approach to haptic and graphic rendering in Sec-
tions 3.4 and 3.5. Section 4 describes the implementation
and results. Finally, conclusions are drawn and future di-
rections are listed in Section 5.

1.1 Previous / Related Work

The foundation of our algorithm is the use of shape
skeletons as a basis for the object model. Shape skeletons

Allison M Okamura
Presented at Eurohaptics 2002
Ediburgh, UK, July 8-10, 2002
Eurohaptics Proceedings, pp. 92-98

Figure 1. Development of an object from the
Medial Axis Transform includes: (a) the origi-
nal skeleton, (b) the original skeleton with the
circles/spheres, and (c) the spline approxima-
tion to the skeleton and surface.

are geometric abstractions of curves or surfaces that are use-
ful as lower-dimensional representations. The skeleton is
known in 2D as the medial axis and in 3D as the medial
surface. Each point on the medial axis or surface is asso-
ciated with the radius of a locally maximal disk or sphere.
These medial points, together with their associated radii, de-
fine the MAT of an object. An example of a 2D/3D medial
axis/surface with the associated circles/spheres is shown in
Figure 1. The MAT was first proposed by Blum [4] as an
alternative shape description for biological applications. It
has recently been used by Pizer et al. [22] as a multilo-
cal and multiscale representation for graphic and computer-
aided design applications, where a figure is defined by a
mesh of medial “atoms.” Gagvani [9] has recently em-
ployed skeletonization to automatically generate the volu-
metric representation of a polygonal mesh. He explores the
approach for use in volumetric modeling, deformation, and
animation. Okamura et al. [19] developed a robotic sys-
tem to acquire medial axis-based models of rigid surface
features on real 3D objects. Their work demonstrates the
usefulness of the MAT in modeling real-world objects.

Finite Element Methods (FEM) and Boundary Element
Methods (BEM) [11] have been used for physical represen-
tation in haptic environments. FEM and BEM, while be-
ing computationally and memory expensive, can accurately
compute deformation and contact forces. The work of Pai
et al. [12, 13] (called ArtDEFO) employs BEM for accurate
deformation; it exploits the coherence of typical physical
interaction in order to achieve interactive rates for relatively
small models. FEM/BEM have been used in the medical
domain for surgery simulation [3, 6, 17]. These simulations
include the ability to dynamically cut and tear the model.

In the graphics community, object deformation has been
successfully implemented using many types of object mod-

els. However, most of these methods suffer in application
to haptic rendering because they cannot provide force feed-
back at interactive rates. We refer to the technical report by
Gibson et al. [10] for a survey of deformable models used
in computer graphics. Free-form solid deformation [5, 23]
is the most broad approach to modeling real solids. It has
been used as an extension of Geometric Modeling to create
more realistic design environments for human modelers; it
separates the underlying geometry from the model as much
as possible. Sensable Technologies Inc. (Woburn, MA)
has developed a product called the FreeFormTMModeling
System. Its existence demonstrates an industry wide need
for haptic-based modeling environments. Volumetric ap-
proaches have also been taken to model deformable objects.
Avila and Sobierajski [1] present a volumetric method suit-
able for both visualization and modeling applications. They
compute point contact forces directly from the volume data
consistent with isosurface and volumetric graphic rendering
methods, thereby ensuring consistency between haptic and
visual feedback. In more recent work, Frisken and Perry
[8] have explored the use of Adaptively Sampled Distance
Fields to model soft body contact in a computationally effi-
cient framework.

NURBS surfaces have also been used in haptics-based
applications because of their dominance in the CAD/CAM
fields. Object modeled as NURBS surfaces can be rendered
interactively at varying levels of resolution with bounded
error [15]. This makes them attractive for use in graph-
ically intensive applications. Another set of algorithms
[14, 18, 25] have been developed for direct haptic render-
ing of NURBS based models, including an extension to
surface-surface interaction which removes the single-point
of intersection constraint commonly found in haptic render-
ing. Terzopoulos and Qin [24] have developed D-NURBS,
a physics based generalization of NURBS curves and sur-
faces. D-NURBS are derived through the application of La-
grangian mechanics and implemented using FEM.

In our work, we present a novel approach that employs
an extended MAT to compute haptic interaction comple-
mented by the NURBS representation to render visually ap-
pealing surfaces. It integrates the needs of good haptic and
graphic rendering by combining a parametric skeleton en-
capsulating an underlying set of implicit shapes (circles in
2D and spheres in 3D) with a parametric surface for accu-
rate view-dependent graphic rendering. The salient features
of our method are (1) object models are easily created using
a discretized Medial Axis Transform (MAT), and the algo-
rithm automatically generates a high dimensional paramet-
ric surface that encapsulates object shape, stiffness, damp-
ing, and mass, (2) the algorithm for collision detection and
haptic feedback of normal and surface shear forces is ef-
ficient, taking advantage of single-point haptic interaction,
and (3) the addition of dynamic behavior is straightforward

Figure 2. This dynamically deformable 3-
dimensional object is haptically rendered at
1kHz on a standard PC. The white dot repre-
sents the location of the haptic interface in
the virtual environment.

because deformation is directly calculated from object prop-
erties included in the parametric surface. Our implementa-
tion, DeforMAT, achieves real time rendering rates for hap-
tic interaction, which are on the order of 1 kHz. An image of
a virtual environment with a MAT object is shown in Figure
2.

2. Object Modeling

An object (Figure 1) consists of the following attributes:

1. The discretized medial surface (skeleton), obtained us-
ing a valid MAT on the original surface of a real body.
A number of algorithms [4, 7, 9] have been proposed
which can extract the skeleton from the description of
any given body.

2. Radii of the spheres centered along the skeleton.
3. Stiffness (and potentially other material properties) of

each sphere centered along the skeleton.

From the above given data, we construct the following at-
tributes:

1. Skeleton Spline (SK), a high dimensional Open, Non-
Uniform B-Spline Surface1 that fits the position, ra-
dius, and material properties associated with each
skeleton point.

2. Surface Contour (SC), a 3D Open, Non-Uniform B-
Spline Surface that is the explicit body contour. This
is used only in graphic rendering.

When the user interacts with bodies in the virtual environ-
ment, we determine whether the user is intersecting a body
using the medial surface SK (Section 3.1). This is followed

1For a detailed treatment of B-Spline Curves and Surfaces, the reader
is referred to [2].

by computing the dynamic deformation of the body (Sec-
tion 3.2).

Two limitations of this modeling technique are that
points on the medial surface must be ordered and that the
surface cannot bifurcate. Recently, Dey et al. [7] have pro-
posed an algorithm for computing an ordered set of points
on the medial axis from a set of surface points. This algo-
rithm can be used to generate the regular grid of medial axis
points as the input for our algorithm.

For the remainder of the paper we will consider 3D ob-
jects; simplification to 2D is straightforward.

2.1. Surface Modeling

The input is given in the form of a regular grid of 3D
points on the medial surface (skeleton), P1 � 1 ����� P1 � n ����� Pm � n,
as well as the radii of the spheres, r1 � 1 ����� r1 � n ����� rm � n, and
surface stiffness, k1 � 1 ����� k1 � n ����� km � n, corresponding to these
points. One can also vary the surface damping and mass
for dynamic deformations, but we will omit these here for
clarity. The surface modeling consists of interpolating a 5-
dimensional B-Spline Surface through the skeleton points,
radii and stiffness values. Moreover, for each given point
on the skeleton and the radius of the sphere at that point,
the corresponding point on the body surface is obtained by
adding the radius along the medial surface normal from the
medial surface point. Hence, after we compute a B-Spline
Surface through the skeleton SK, we compute points on the
object surface and interpolate those points to get the bound-
ary surfaces SC for both the top and the bottom half of the
body. One can incorporate these values in the skeleton (SK)
itself, but this leads to a quadratic increase in the degree of
the resulting surface. The detailed algorithm is as follows:

1. Interpolate a 3D B-Spline Surface (henceforth referred
to as SK) through the m � n data points on the skele-
ton to obtain a medial surface with parameters u and v.
We employ the chord-length parameterization method
for knot selection, and an efficient implementation
for a linear system solution that computes the control
points: we invoke MATLAB R

�
from inside our pro-

gram to perform the linear system solution. Let the
minimum and maximum knot values be Umin � Vmin and
Umax � Vmax respectively.

2. Model the radii of the spheres as another B-Spline Sur-
face, and add the control points as an extra dimension
to SK, making it into a 4D surface. Similarly, add the
stiffness as another dimension, creating a 5D surface.
Damping and mass can be added as well to simulate a
second order dynamic system.

3. Given the new, high dimensional surface SK, compute
the derivatives of this surface (just the three spatial di-
mensions) to obtain the derivative surfaces SKDu and
SKDv, which are 3D B-Spline Surfaces.

4. For i ��� 1 ��� m � and j ��� 1 ��� n � :
� For the given point Pi � j on the medial surface,

compute the normal (using SKDu and SKDv),
Ni � j.� Obtain Ri � j � Pi � j � ri � j

� Ni � j and Si � j � Pi � j � ri � j
�

Ni � j where ri � j is the radius of the circle at Pi � j. To
ensure surface continuity, ri � j is assumed to be
equal to zero at the end points.

5. Interpolate an Open, Non-Uniform 3D B-Spline Sur-
face through Ri � j � i ��� 1 ��� m � � j ��� 1 ��� n � to obtain the sur-
face for the top part of the body, and through Si � j � i �� 1 ��� m � � j �	� 1 ��� n � to obtain the surface for the bottom
part of the body. These two surfaces together form the
body contour, SC.

3. Object Interaction

3.1. Intersection Computation

We perform an efficient intersection computation which
gives us the position of the user relative to boundary of the
surface within sub-pixel accuracy.2 We execute a binary
search over the knot value range in the two directions to de-
termine the parametric values, such that the normal drawn
on the skeleton spline SK passes through the point on which
the user lies. Let
 ubegin � vbegin � and
 uend � vend � represent
the two end points of the interval being examined (Figure
3). Let Q represent the position of the user. The algorithm
terminates when the length of the interval (in both the direc-
tions) falls below pre-defined thresholds, or when the nor-
mal passes through the point Q. The algorithm returns the
parameter value, say
 uintersect � vintersect � , such that the nor-
mal drawn on the SK at
 uintersect � vintersect � (call this point
P) would pass through Q.

Now compute the distance between P and Q (�
�PQ �
�),
and radius of the circle at
 uintersect � vintersect � (called
Rintersect). If (���PQ ����� � Rintersect � then the user intersects
the object, otherwise, the user is outside the object. The al-
gorithm terminates in maximum of 1 + log2

1
uthreshold

steps.

A value of uthreshold = vthreshold = 2 � 10 works well in prac-
tice.

It is important that this algorithm be efficient because it
must be executed every haptic loop, i.e. approximately 1000
times a second.

3.2. Object Deformation

After detecting that the user is inside the object using the
algorithm described above, we need to change the object

2An iterative solver is not suited for real-time haptic interactions. The
current implementation is only guaranteed to work for convex medial sur-
faces. In practice, errors occur rarely with concave medial surfaces.

Figure 3. Intersection computation involves it-
eratively modifying the values of parameters
u and v to obtain the point P on the spline per-
pendicular to the position of the user, point
Q. For clarity, this figure shows only one pa-
rameter, u.

Figure 4. Displacement of the object skeleton
and contour upon contact, shown in 2D.

visually and apply forces on the user. Let the user be pen-
etrating a distance of δ inside the boundary of the object,
where

δ � Rintersect � �
�PQ �
� �
To reflect the deformation of the body, we need to change
the skeleton spline (SK), including the radii of the circles in
the neighborhood of the region, and the contour spline (SC)
(Figure 4).

One can consider two schemes for body deformation.
In the first scheme, the interaction moves the skeletal sur-
face SK, and both the body surfaces follow. In the second
scheme, only the body surface intersecting with the user
(e.g., the top surface) moves, while the other surface (e.g.,
the bottom surface) does not. To model this type of body
compression, let a skeleton point be displaced by a distance
of gδ , while the radii spline is displaced by
 1 � g � δ . When
g � 0 � 5, the contour of the body opposite the user is not
displaced. The algorithm for displacing the splines given δ
and PQ is explained later in Section 3.3.

In both schemes, the object can be deformed dynami-
cally through the use of a second order dynamic system.

This approach models organic bodies well because of their
damped elastic, non-rigid nature. We imagine springs and
dampers at the control points of the contour spline (SC)
and skeleton spline (SK). When the user interacts with the
model, these springs undergo a change in length, and an in-
ternal force is felt by the control points, pulling them back
towards their original positions. Dampers are added to re-
duce the oscillation of the surface.

The positions of the control points are evaluated using
standard second order dynamic equations. Let pprev, vprev

and aprev be the position, velocity and acceleration respec-
tively of a control point in the previous frame. Let pneut be
the original position of that control point. The current force
on the control points is

f � � k �
 pprev � pneut � � b �
 vprev � �
where k is the stiffness coefficient of the spring and b is the
damping coefficient. The current acceleration of the con-
trol point is acurr = f

m , where m is the simulated mass of
the control point. Using acurr, the current velocity (vcurr)
and position (pcurr) are computed. To estimate appropriate
values for b and m, we observe the dynamic equation:

m
d2x
dt2 � b

dx
dt � kx � 0 �

where x is the displacement vector of the mass, and t is
the time. For
 b2 � 4km � � 0, the displacement vector un-
dergoes damped sinusoid oscillations, with the amplitude
varying as e � bt

2m . Hence, the values of b, m and k are chosen
so that the points come to rest in a short time. The algorithm
for displacing the splines is explained in the following sec-
tion.

3.3. Spline Deformation

Here we describe the approach we have taken to displace
the control points of the body surface SC given the dis-
placement vector of a point on the surface. Commonly used
techniques include changing the knot vector and the weights
of the control points (for rational B-Splines) [20, 21]. The
technique we use is an extension of Piegl’s control point
modification scheme. Our method involves modifying the
p
� � q

�
most influenced control points in proportion to their

contribution to the contact point on the surface, and p
���

p � 1, q
���

q � 1, where p and q are the degrees of the
surface in the u and v directions respectively. (The val-
ues for p

�
and q

�
should be set with symmetry, such that

if p is odd, then p
�

should be even and vice versa). This
guarantees a smooth change in the shape of the modified
B-Spline Surface as the set of control points change with
the displacement of the curve. For a better approximation,
one can modify up to
 p � 1 � �
 q � 1 � control points. How-
ever, in practice, for a surface of degree
 p � q � , displacing

p
2

� q
2 control points gives a visually acceptable approxima-

tion. In order to obtain real-time frame rates, the number
of changed points should be kept to a minimum. Because
deformations move multiple control points, we retessellate
the entire surface at each time step.

For explanation purposes, assume a 2D B-Spline Curve
of degree 4 with control points Ci, i �	� 1 ��� n � . A point P,
having a parametric value t, has to be moved by a distance
d along the vector v̂. Say the parametric value t lies in the
knot vector range � t j � t j � 1 � . The control points affecting any
parameter value in this range are �C j ��� C j � 4 � . We choose
to deform only C j � 1, C j � 2 and C j � 3. Let the basis values
for these control points be B1
 t � , B2
 t � and B3
 t � . Let these
control points be displaced by α1v̂, α2v̂ and α3v̂. Hence,

d � α1B1
 t � � α2B2
 t � � α3B3
 t � �
Also α1 : α2 : α3 = B1
 t � : B2
 t � : B3
 t � . These two

equations imply:

C j � 1 � C j � 1 � dB1
 t �
B2

1
 t � � B2
2
 t � � B2

3
 t �
v̂

C j � 2 � C j � 2 � dB2
 t �
B2

1
 t � � B2
2
 t � � B2

3
 t �
v̂

C j � 3 � C j � 3 � dB3
 t �
B2

1
 t � � B2
2
 t � � B2

3
 t �
v̂ �

In the more general 3D case, given a B-Spline Sur-
face of degree
 p � q � with control points Ci � j, i � � 1 ��� m � ,
j � � 1 ��� n � , we have demonstrated that deforming the p

� � q
�

grid of most influential control points achieves the nec-
essary deformation. Assume that a point P, having a
parametric value
 s � t � , has to be moved by a distance
d along the vector v̂. Let the parametric values s and
t lie in the knot vector ranges � sk � sk � 1 � and � tl � tl � 1 � re-
spectively. The control points affecting any parameter
value in this range are �Ck � l ����� Ck � p � l � q � . We choose to
deform only C

k � p � 1 � p �
2 � l � q � 1 � q �

2

����� C
k � p � p �	� 1

2 � l � q � q �	� 1
2

using

equations similar to those above. Hence, we can modify the
control points to reflect the displacement of the B-Spline
Surface.

3.4. Haptic Rendering

We use a second-order mass-spring-damper system to
compute the force exerted on the user as he or she tries to
penetrate into the body of the object. Let the user penetrate a
distance x into the contour surface at a position correspond-
ing to the parameter value
 u � v � . The spring centered on
the skeleton at parameter value
 u � v � is compressed by a
distance x, and the applied force (using Hooke’s Law) is

Figure 5. Forces applied to the user upon
contact are calculated from a second-order
spring system. One spring, connecting the
contact point to the skeleton, pushes the
user in a direction normal the surface. Four
springs (only two are shown in this 2D view)
apply shear force from nearby points on the
surface contour.

ku � vx, where ku � v is the stiffness value obtained from SK.
(The damping bu � v and mass mu � v are also obtained from
SK.) To model the shear forces along the surface (as a result
of the strain on the contour), we consider four more spheres,
at a distance δ (in parametric space in both the u and v di-
rections), on either side of the point of intersection. These
springs are henceforth referred to as Ku � δ , Ku � δ , Kv � δ and
Kv � δ . The resultant spring system in one parametric direc-
tion is shown in Figure 5 . A similar placement would hold
for the other parametric axis. Let the displacement of the
springs be xu � δ , xu � δ , xv � δ and xv � δ . The stiffness val-

ues of the springs are set to kequ � δ =
ku � δ � v � ku � v

2 , kequ � δ =
ku � δ � v � ku � v

2 , keqv � δ =
ku � v � δ � ku � v

2 and keqv � δ =
ku � v � δ � ku � v

2 . The
net force f f eedback on the user is equal to ku � v

� x � kequ � δ
�

xu � δ � kequ � δ
� xu � δ � keqv � δ

� xv � δ � keqv � δ
� xv � δ . It can

be shown that the force always increases as the user pen-
etrates the object, and the direction of the feedback force
always pushes the user out of the object.

3.5. Graphic Rendering

We used the OpenGL API to display the surfaces. To
render the virtual objects, we used the GLU NURBS Tes-
sellator which computes the triangulation of every surface
(within a user specified screen-space error), and renders
these triangles to compose the final image. This tessella-
tion is done every frame, with frame rates varying between
10-20 frames for most of the models. We also incorporate
basic view frustum culling to further speed up the rendering
rates. One of the major advantages of tessellating a surface
for rendering is that it exploits the fast triangle rendering
capability of the hardware, thereby leading to high graphic

update rates. It is important to note that the complexity of
the virtual environment being graphically rendered is on an
average about 105 triangles and is independent of the num-
ber of spheres because of the view-dependent adaptive tes-
sellation of the NURBS surface.

4. Implementation and Results

Our system is developed in C++ on a standard 700MHz
Pentium III Computer with 384 MB of main mem-
ory. Virtual world navigation is performed using the
computer mouse, and for force feedback we employ
a PHANTOMTMPremium 1.5 3-degree-of-freedom haptic
device from SensAble Technologies, Inc. (Woburn, MA).
For graphics hardware, we used the NVidia GeForce2 c

�

card. The haptic device control ran in a separate high-
priority thread at 1kHz. Table 1 shows the performance of
our algorithm with objects of varying complexity.

5. Conclusion and Future Work

We present a new algorithm for interactively deforming
viscoelastic bodies at haptic interactive rates, i.e. 1 kHz.
Our system fits a niche much needed in the virtual environ-
ment arena: namely, the ability to add dynamic deforma-
tions coupled with haptic feedback in a virtual environment
with minimal cost. The algorithm balances the contradic-
tory demands of haptic rendering with those of graphic ren-
dering in a manner well suited for numerous applications,
including medical simulation, art, and entertainment. One
example of a medical application is a training system for
tumor location using palpation.

This initial implementation of our algorithm includes
the minimum features required to simulate dynamic, de-
formable surfaces. There exist many avenues for fu-
ture work, including bifurcating and non-ordered medial
axes/surfaces, analysis of area/volume preservation, imple-
mentation of more efficient graphical rendering algorithms
([15, 16, 22]), experimentation with different deformation
modes, and direct performance comparison against other
methods.

Acknowledgments

We acknowledge Samuel Khor for starting the work on
haptic rendering using shape skeletons at The Johns Hop-
kins, and thank Budirijanto Purnomo for his assistance with
B-Spline deformation.

MAT Preprocessing Memory Rate (w/Dynamics) Rate (w/o Dynamics) Time in
Bodies Points Time Haptics Graphics Haptics Graphics Haptics Loop

1 49 2 sec 400 KB 980 Hz 17 Hz 993 Hz 20 Hz 20%
1 105 3 sec 1.0 MB 979 Hz 14 Hz 996 Hz 18 Hz 26%
4 213 6 sec 1.8 MB 990 Hz 11 Hz 993 Hz 15 Hz 25%
10 309 9 sec 2.1 MB 980 Hz 10 Hz 992 Hz 17 Hz 27%
17 465 25 sec 3.0 MB 975 Hz 9 Hz 980 Hz 12 Hz 30%
35 927 56 sec 4.1 MB 980 Hz 4-5 Hz 990 Hz 6 Hz 36%

Table 1. Our algorithm’s performance for virtual environments of varying complexity. Listed are the
number of bodies in the virtual environment, the total number of MAT points in all the bodies, the
preprocessing time (used to fit splines to the MAT), memory required, update rates with and without
dynamic calculations for both the haptics and graphics loops, and the percent of run time spent in
the haptics thread.

References

[1] R. Avila and L. Sobierajski. A haptic interaction method
for volume visualization. Proc. of IEEE Visualization ’96,
pages 197–204, 1996.

[2] R. Bartels, J. Beatty, and B. Barsky. An introduction to
splines for use in computer graphics and geometric mod-
eling. Morgan Kaufman, 1987.

[3] D. Bielser and M. H. Gross. Open surgery simulation. In
Proc. of Medicine Meets Virtual Reality, 2002.

[4] H. Blum. A transformation for extracting new descriptors
of shape. In W. Wathen-Dunn, editor, Models for the Per-
ception of Speech and Visual Form, pages 362–380. M.I.T.
Press, Cambridge, MA, 1967.

[5] S. Coquillart. Extended free-form deformation: A sculptur-
ing tool for 3d geometric modeling. Computer Graphics,
24(4):187–196, 1990.

[6] S. Cotin, H. Delingette, and N. Ayache. Real-time elas-
tic deformations of soft tissues for surgery simulation.
IEEE Transactions on Visualization and Computer Graph-
ics, 5(1):62–73, 1999.

[7] T. K. Dey and W. Zhao. Approximate medial axis as a
voronoi subcomplex. In Proceedings of 7th Symposium on
Solid Modeling Applications, 2002 to appear.

[8] S. Frisken and R. Perry. A computationally efficient frame-
work for modeling soft body impact. Technical Report
TR2001-11, MERL, 2001.

[9] N. Gagvani. Parameter-Controlled Skeletonization - A
Framework for Volume Graphics. PhD thesis, Rutgers, The
State University of New Jersey, 2000.

[10] S. Gibson and B. Mirtich. A survey of deformable modeling
in computer graphics. Technical Report TR97-19, MERL,
1997, http://www.merl.com/papers/docs/TR97-19.pdf.

[11] P. Hunter and A. Pullan. Fem bem notes. Tech-
nical report, University of Auckland, 1998,
http://www.esc.auckland.ac.nz/Academic/Texts/FEM-
BEM-notes.html.

[12] D. L. James and D. K. Pai. Artdefo - accurate real time de-
formable objects. Siggraph 1999, Computer Graphics Proc.,
pages 65–72, 1999.

[13] D. L. James and D. K. Pai. A unified treatment of elastostatic
contact simulation for real-time haptics. haptics-e.org, 2(1),
2001.

[14] D. Johnson and E. Cohen. An improved method for haptic
tracing of sculptured surfaces, 1998.

[15] S. Kumar, D. Manocha, and A. Lastra. Interactive display of
large-scale nurbs models. Proc. of the 1995 Symposium on
Interactive 3D Graphics, pages 51–58, 1995.

[16] F. Li, R. Lau, and M. Green. Interactive rendering of
deforming nurbs surfaces. Computer Graphics Forum,
16(3):47–56, 1997.

[17] C. Mendoza, C. Laugier, and F. Boux de Casson. Towards
a realistic medical simulator using virtual environments and
haptic interaction. In Proc. of the International Symposium
in Research Robotics, Lorne, Victoria (AU), 2001.

[18] D. Nelson, D. Johnson, and E. Cohen. Haptic render-
ing of surface-to-surface sculpted model interaction, 1999,
http://citeseer.nj.nec.com/nelson99haptic.html.

[19] A. M. Okamura and M. R. Cutkosky. Feature-guided explo-
ration with a robotic finger. Proc. of the 2001 IEEE Interna-
tional Conference on Robotics and Automation, 1:589–596,
2001.

[20] L. Piegl. Modifying the shape of rational b-splines. part 1:
Curves. Computer-Aided Design, 21(8):509–518, 1989.

[21] L. Piegl. Modifying the shape of rational b-splines. part 2:
Surfaces. Computer-Aided Design, 21(9):538–546, 1989.

[22] S. M. Pizer, A. L. Thall, and D. T. Chen. M-reps:
A new object representation for graphics. Technical
Report TR99-030, University of North Carolina, 1999,
http://www.cs.unc.edu/Research/Image/MIDAG/pubs/papers/
mreps-2000/mrep-pizer.PDF.

[23] T. W. Sederberg and S. R. Parry. Free-form deformation
of solid geometric models. Computer Graphics, 20(4):151–
160, 1986.

[24] D. Terzopoulos and H. Qin. Dynamic NURBS with geomet-
ric constraints for interactive sculpting. ACM Transactions
on Graphics, 13(2):103–136, 1994.

[25] T. V. Thompson II, D. E. Johnson, and E. Cohen. Direct
haptic rendering of sculptured models. In Symposium on
Interactive 3D Graphics, pages 167–176, 1997.

