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ABSTRACT

Purpose: Detection of abnormal discs from clinical T2-
weighted MR scans. This aids the radiologist as well as sub-
sequent CAD methods in focusing only on abnormal discs
for further diagnosis. Furthermore, it gives a degree of con-
fidence about the abnormality of the intervertebral discs that
helps the radiologist in making his decision.

Material and Methods: We propose a probabilistic
model for detection of abnormality of intervertebral discs.
We use three features to label abnormal discs that includes
appearance, location, and context. We model the abnormal
disc appearance with a Gaussian model, the location with a
2D Gaussian model, and the context with a Gaussian model
for the distance between abnormal discs. We use clinical
T2-weighted MR volume for each case and inference on the
middle slide of each volume. These MR scans are specific
for the lumbar area. The ground truth is provided by our
collaborating radiologist.

Results: We achieve over 91% abnormality detection
accuracy in a cross-validation experiment with 80 clinical
cases. The experiment runs ten rounds, in every round 30
cases are randomly left out for testing and the rest are used
for training.

Conclusion: We achieve high accuracy for detection of
abnormal discs using our proposed model that incorporates
disc appearance, location, and context. We show that our
proposed model is extensible for subsequent diagnosis tasks
specific to each intervertebral disc abnormality such as des-
iccation, stenosis, and herniation.

Index Terms— Computer Aided Diagnosis, MRI, lum-
bar intervertebral disc, Gibbs Distribution.

1. INTRODUCTION

Back pain is the second most common neurological ail-
ment in the United States after the headache according to
the National Institute of Neurological Disorders and Stroke
(NINDS). Americans spend at least50 billion each year on
low back pain and over 12 million Americans have some
sort of Intervertebral Disc Disease (IDD) [1]. Increasing
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(a) Lumbar disc levels labels. Ab-
normal lower two levels atL4-L5
andS-L5 (red) and the upper four
are normal (green).

(b) Normal Disc.

(c) Herniated Disc.

(d) Degenerative Disc
Disease.

Fig. 1. Labeling of lumbar area discs and sample abnormal-
ities.

demand on diagnosis of back pain diseases justifies seeking
full or partial automation of the diagnosis process which
usually consists of two main steps: localization of the inter-
vertebral discs and then diagnosis of abnormalities at every
disc level. The focus of this paper is on the detection of
abnormality in the lumbar area from MRI.

In our previous work [2], we have developed a proba-
bilistic model for localization of the six discs in sagittalT2-
weighted MR images for the lumbar area. In our model,
we incorporate two levels of information: low- and high-
level. In the low-level, we model the local pixel properties
of discs, such as appearance. In the high-level, we capture
the object-level geometrical and contextual relationships be-
tween discs. We estimate the model parameters from man-
ually labeled cases (supervised learning). We tested our
model using a dataset of 20 normal cases and showed the
extension to an abnormal case. However, in this paper, we
use a dataset of 80 clinical cases that contains wide variabil-
ity in types of abnormalities, patient ages (17 to 81 years
old), and patient heights which affect the size and appear-
ance of the discs. Fig. 1(a) shows a sample sagittal view
with labeled lumbar disc levels.

In this paper, we propose a method for detection of



abnormal discsn∗
i in the lumbar area at each disc leveli

(Fig. 1(a)):

n∗
i = argmax

ni

P (ni|di, σI(di)) (1)

whereni is a binary random variable stating whether it is a
normal or abnormal disc andni ∈ N = {ni : 1 ≤ i ≤
6}, di ∈ D = {di : 1 ≤ i ≤ 6} is the location of each
lumbar disc, and(σI(di)) is the intensity of a neighborhood
surrounding the disc level(i).

Because abnormal discs vary in characteristics depend-
ing on the type of abnormality, our model has the flexibity
to model these characteristics. For example, abnormal discs
vary in size, shape, height and depend on patient age, pa-
tient height and many other issues that help the radiologist
decide the abnormality condition of each disc. We can in-
corporate these variations by incorporating a model for each
characteristic of interest.

The remainder of this paper is organized as follows. The
background and related work is discussed in section 2. Then
we discuss our proposed model in section 3. We then prsent
our dataset and the experimental results in sections 4 and 5,
respectively. Discussions and future work are presented in
section 6.

2. BACKGROUND

2.1. Abnormalities in the Intervertebral Discs

Intervertebral discs are unique structures that absorb shocks
between adjacent vertebrae. They act as the ligaments that
connect the vertebrae together and the pivot point which al-
lows the spine mobility by bending and rotating. They make
about one fourth of the spinal columns length [3].

An inter-vertebral disc is composed of two parts: an
outer strong ring called annulus fibrosis and a soft gel-like
inner called nucleus pulposus. The nucleus pulposus con-
sists of 80% to 85% water in normal cases. In the lumbar
area, there are six discs connected to the five lumbar verte-
brae which are labeled top-down asT 12 − L1, L1 − L2,
L2 − L3, L3 − L4, L4 − L5, andL5 − S as shown in
Fig. 1(a).

Diseases that originate from an intervertebral disc ab-
normality are the most common diseases in the vertebral
column. Most common diseases are: disc herniation, spinal
stenosis, degenerative disc disease, disc desiccation, and
spinal infection [3].
Disc herniation (Fig. 1(c)) is a leak of the nucleus pulposus
through a tear in the wall of the annulus fibrosis. This leak
presses on the local nerve root causing the pain. The tear
in the disc wall usually occur due to aging and/or trauma
injury [4, 3].
Spinal stenosisis narrowing of the spinal canal and might
be caused from different conditions such as disc herniation,
osteoporosis, or a tumor. Sometimes, and especially when
the reason is a disc herniation, stenosis occurs at same level
of the disc. [4, 3].

(a) L5−S disc level: Herniation,
DDD, mild Foramina stenosis.

(b) L3−L4 disc level: DDD, cen-
tral stenosis, and central herniation

Fig. 2. Sample diagnosis of two Discs with multiple dis-
eases.

Degenerative disc disease(Fig. 1(d)) is the gradual deteri-
oration of the disc causing loss of its functions. This disease
usually develops over aging or from continuous activities
that presses on a disc space. It starts with a small injury in
the annulus fibrosis causing damage to the nucleous pulposis
and loss of its water contents. Furthur damage causes mal-
functioning of the disc and thus collapsing the upper and
lower vertebrae. As time passes, the vertebra facet joints
twist creating bone spures that grow into the spinal canal
and pinching the nerve root (stenosis) [4, 3].
Disc desiccationis the drying out of the water contents in
the inner pulposis. Usually, it is caused by againg and sud-
den weight loss [4, 3].
Spinal infection occurs when a bacterial infection trav-
els via the bloodstream into an intervertebral disc. This
weakens the annulus fibrosis and decays it and might cause
collapsing of the disc and thus pressure on the nerve root.
Furthur infection might cause fusion of the enclosing verte-
brae [4, 3].

It is worth mentioning that existence of one abnormal-
ity encourages deveploment of other abnormalities. For ex-
ample, spinal stenosis might occur because of existence of
a degenerative disc disease or disc herniation for example.
Most intervertebral disc diseases diagnosis in our dataset
have multiple abnormalities at the same time which com-
plicates the work of subsequent CAD algorithms. Fig. 2.1
shows two sample cases diagnosed with multiple disease.
This diagnosis is summarized from the original radiologist
report that details both quantitative and qualitative analysis
of the diseases.

2.2. Related work

Backbone image analysis for various medical imaging
modalities has been attracting many researchers in the last
two decades. In mid 1980s, Jenkins et al. [5] performed
a valuable analysis study on 107 normal and 18 abnormal
cases. They analyzed the relation between proton density
and age in normal discs. They concluded that quantitative
MR analysis may assist in the diagnosis of intervertebral
disc degeneration.

An international forum was held in 1995 to discuss
methods of management for Lower backpain (LBP). They
discussed the possibilities of classification of LBP into spe-



cific categories. Existence of this kind of classification helps
developing CAD systems because the basic concept behind
detection of abnormalities is an automatic classification
problem based on a set of features. Many systems have
classified LBP such as [6, 7, 8].

Many researchers have proposed methods for diagno-
sis of certain abnormailities related to the vertebral column.
However, as far as we know, no one has proposed a method
for the problem we are targetting in this paper. All related
work has been investigating automation of specific abnor-
malities in various medical imaging modalities.

Bounds et al., [9] utilized a Neural network for diagnosis
of backpain and sciatica. They have three groups of doctors
to perform diagnosis as their validation mechanism. They
claimed that they achieve better accuracy than the doctors
in the diagnosis. However, the lack of data forbade them
from full validation of their system. Similarly, Vaughn [10]
conducted a research study on using Neural network (NN)
for assisting orthopaedic surgeons in the diagnosis of lower
back pain. Lower backpain is classified into three broad
clinical categories: Simple Low Back Pain (SLBP), Root
Pain (ROOTP), and Abnormal Illness Behaviour (AIB) and
about 200 cases were collected over the period of 2 years
with diagnosis from radiologists. Twenty five features are
used to train the NN including symptoms clinical assesment
results. The NN achieved 99% of training accuracy and
78.5% of testing accuracy.

Tsai et al., [11] used geometrical features (shape, size
and location) to diagnose herniation from 3D MR and CT
axial (transverse sections) volumes of the discs. They also
discussed the diagnosis of 16 clinical cases of various lum-
bar herniation types and report the follow-up period for 1.8
year. 75% of the patients show excellent outcome after the
surgery based on thier diagnosis while the rest 25% ranges
between good and no improvement.

Kol et al., [12] proposed a finite element model (FEM)
for theL4 − L5 disc and the enclosing vertebrae to invisti-
gate the possible support for medical diagnosis and mus-
cle rehabilitation. They used Nuclear Magnetic Resonance
(NMR) and computer tomography (CT) data to build the ge-
ometrical FE model. They concluded that there is an indica-
tion of supporting diagnosis and muscle rehabilitation deci-
sion using their model. Later, Glema et al., [13] invistigated
the use of modeling intervertebral discs in the analysis of
spinal segments. They used the model of [12] forL4 − L5
and validated it for four loading schemes: axial compres-
sion, two bending in vertical plains (sagital and lateral),and
torsion. They found that it was possible to verify the validity
and quality of the model for disc buldging and some specific
other abnormalities.

Chamarthy et al., [14] used k-means to estimate the de-
gree of disc space narrowing with a score ranging between
0 (normal) and 3 (significant narrowing). They perfomed
experiments on cervical X-rays and achieved 82% accuracy.
Cherukuri et al., [15] used size-invariant, convex hull-based
features to discriminate anterior osteophytes (bony growths

on vertebrae) in cervical X-ray images and achieved an av-
erage accuracy of 86%.

Recent work by Koompairojn et al., [16] used a Bayesian
classifier for detection of spinal stenosis using 13 morpoho-
logical features. These features include heights of the ver-
tebrae and disc space (anterior, mid and posterior), antero-
posterior width of lower and upper spinal canal. They use
X-rays from the NHANES II [17] database to train and test
their classifier. They achieve accuracy ranging between 75%
to 85%.

3. PROPOSED MODEL

We caprure the abnormality conditionni with a Gibbs
model:

P (ni|di, σI(di)) =
1

Z[ni]
exp−Eni

(di,σI(di)
) (2)

whereni is a binary random variable for abnormality of the
disc i andni ∈ N = {ni : 1 ≤ i ≤ 6}, the location of the
disc di ∈ D = {di : 1 ≤ i ≤ 6}, theσdi

is a neighbor-
hood of pixels around the disc locationdi. Eni

(di, σI(di))
is the energy function identified by disc locationdi and the
intensity of a pixel neighborhoodσI(di).

We propose the use of three potentials: the appearance
I, the locationdi, and the context between discs(i ∼ j).
This concludes our energy functionEni

(di, σI(di))) to:

Eni
(di, σI(di)) =

[

β1

∑

d∈D

UI(di, σI(di)) ← intensity

+ β2

∑

d∈D

UD(di) ← location

+ β3

∑

(i∼j)

VD(di, dj)

]

← context

(3)

whereβ1, β2, andβ3 are the model parameters that control
the effect weight of features on the inference.UI is the ap-
pearance potential which is a model of both the location of
each discdi ∈ D and the intensity of the pixel neighbor-
hoodσI(di) of that location. UD is the location potential
which is a model of the location of these discsD. VD is the
context potential which is a model of the distance between
neighboring discs(i ∼ j).

Our model requires two inputs: the locations of the discs
D = {d1, d2, ..., d6}, and the intensity of a neighborhood
surrounding every locationσI(di). The first input is actually
the outcome of the labeling problem which we produce from
our previous work [2]. The second input is obtained from the
image intensityI = { Intensity: 0 ≤ Intensity≤ 2b−1} for
the disc location and a defined neighborhoodσdi

whereb is
the bit depth of the images, which is 12 bits for our dataset.



Here, we discuss the model for each of the three poten-
tial:
Appearance potentialUI(di, σI(di)) models the expected
intensity level of the abnormal discs, which we model as
Gaussian. After taking the negative log:

UI(di, σI(di)) =

∑

j∈σI(di)

(I(j)− µI)
2

2σ2
I

(4)

wheredi is the locationdi = (row, col) of disc i, I(di)
is the intensity at locationdi, σdi is some pixel neighbor-
hood of the locationdi, µI is the expected intensity levels of
the abnormal discs,σ2

I
is the variance of the intensity lev-

els of abnormal discs. BothµI andσ2
I

are learned from the
training data where a set of images are manually labeled (or
labeled by our labeling method in [2]).
Location potentialUD(di) models the expected location of
abnormal disc at leveli. In fact, abnormal discs in general
differ in their expected location from normal discs (at the
same lumbar level). We model the location as a 2D Gaussian
and after taking the negative log, we obtain Mahalanobis
distance:

UD(di) =
[

(di − µdi
)T Σ−1

di
(di − µdi

)
]

(5)

wheredi is the location of disci, µdi
is the expected loca-

tion of the abnormal discs at lumbar disc leveli, Σdi
is the

covariance matrix of the abnormal discs at the lumbar disc
level i. We learn bothµdi

andΣdi
from the training data.

Context potentialVD(di, dj) models the contextual relation
between neighboring disc locationsi andj. We model the
distanceseij = |di − dj |2 between neighboring discs at lo-
cationsi andj as a Gaussian distribution, which concludes
after the negative log to:

VD(di, dj) =
(eij − µD)

2

σ2
D

(6)

wheredi anddj are neighboring discs,µD is the expected
distance between abnormal discs,σ2

D is the variance of ab-
normal discs distances. We also learn bothµD andσ2

D from
the training data.

4. AVAILABLE DATA

We use a dataset of 80 clinical MRI volumes containing nor-
mal and abnormal cases. Abnormalities include disc hernia-
tion, disc desiccation, degenerative disc disease and others.
Every single case contains five, six or seven acquisition pro-
tocols. Every case contains a full volume of T2-weighted
MR beside many other protocols including T1-weighted and
T2-weighted Myelo images. We use the T2-weighted vol-
umes for training and testing our proposed model for abnor-
mality detection. We pick the middle slice from every vol-
ume to represent that case and use it in our model training
and testing.

5. EXPERIMENTAL RESULTS

We train our model on T2-weighted modality as disc inten-
sities have better discrimination from other structures inthe
image as appears in shown Fig. 1(a).

We perform ground truth annotation for our dataset by:

1. Selecting a point inside every disc that roughly repre-
sents the center for that discdi,

2. Determining whether the disc is normal or abnormal
ndi

because our model here concerns about discrimi-
nating between normal and abnormal discs regardless
of the type of abnormalities.

It is worth mentioning that inter-observer error exist in
lumbar diagnosis similar to various diagnosis tasks from
various imaging modalities including plain radiographs,
MRI, CT, SPECT (single-photon emission computed to-
mography), High Resolution (HR). However, MRI shows
high inter-observer reliability compared to plain radiographs
in lumbar area diagnosis (e.g., [18]). Mulconrey et al. [19]
showed that abnormality detection for degenerative disc and
spondylolisthesis with MRI hasκ = 0.773 andκ = 0.728,
respectively, which is considered high in showing intero-
bserver reliability where this reliability is considered perfect
when0.8 ≤ κ ≤ 1.

We train our model to learn the parameters of the three
potentials representing the models for the appearanceI, the
locationdi : 1 ≤ i ≤ 6, and the context between discs
(i ∼ j) using the ground truth (D,N ) and the corresponding
training imagesI.

We perfom a cross-validation experiment using the 80
cases to train and test our proposed method. In every round,
we separate thirty cases and train on the rest 50 cases. We
perfom 10 rounds and every time the cases are selected ran-
domly. Dr. Gurmeet Dhillon provided the ground truth for
all the 80 cases to automatically check classification accu-
racy which we define by:

Accuracyi = 1−
1

K

K
∑

j=1

|gij − nij | ∗ 100% (7)

whereAccuracyi represents the classification accuracy at
the lumbar disc leveli where1 ≤ i ≤ 6, the valueK rep-
resents the number of cases in every experiment,gij is the
ground truth binary assignment for disci, andnij is the re-
sulting binary assignment for disci from the inference on
our model.gi andni are assigned the binary values the same
way such that:

gi =

{

1 if Disc i is Normal

2 if Disc i is Abnormal
(8)



It is worth mentioning that we measure accuracy at ev-
ery lumbar disc level separately to show the detailed classi-
fication accuracy at every level and thus have more under-
standing of the disc levels and its influence on classification
accuracy. This appears in the row before the last in Table 1
where every value is a percentage accuarcy that represents
the average of all the rounds in the experiment for every disc
level. At the same time, we report the average accuracy for
all the discs together for each round; which is the last col-
umn in the Table 1, and then the overall average accuracy
for discs and for all rounds in the experiment that appears in
the bottom-right cell in the same table.

Table 1. Classification results for the cross-validation exper-
iment on 80 cases. Row before last shows average accuracy
at every lumbar disc level and the last column shows the av-
erage accuracy for every round of 30 cases. We achieve over
91% of classification accuracy.

Set E6 E5 E4 E3 E2 E1
Accu-
racy

1 27 25 27 29 29 28 91.67%
2 26 26 29 29 28 28 92.22%
3 26 26 27 27 26 26 87.78%
4 28 25 26 27 29 29 91.11%
5 27 27 29 28 27 27 91.67%
6 25 26 26 27 29 28 89.44%
7 25 27 28 26 28 29 90.56%
8 28 28 27 28 29 28 93.33%
9 27 26 28 27 29 29 92.22%
10 27 28 28 28 28 28 92.78%
(%) 88.7 88.0 91.7 92.0 94.0 93.3 -

Average Accuracy 91.28%

Fig. 3 shows five sample cases of classification output
from inferencing on our model. The first three figures show
various abnormalities at various levels and full success in
abnormality detection. Fig. 3(d) shows a false negative at
levelL2 − L3 where the disc is labeled as abnormal while
its ground truth is normal. Fig. 3(e) shows a false positive at
levelL1 − L2 where the disc is labeled as normal while its
ground truth is abnormal.

6. DISCUSSIONS AND FUTURE WORK

We achieve high abnormality detection accuracy using three
main features: appearance, location, and context of discs.
However, some abnormal discs are not detected. We find
that incorporating a shape model might enhance our detec-
tion accuracy. For example, the misclassified disc at level
L2 − L3 in Fig. 3(d) appears more compact in shape than
other normal discs in the same case. This motivates includ-
ing a shape model or some geometrical model for height and
width of the disc (similar to Koompairojn et al. [16] work
for stenosis detection). In general, most abnormal discs are
less thickness than normal discs. However, finding a model

(a) Abnormals levels:L3−L4 andL5−S.
All levels are correclty classified.

(b) Abnormal levels:L1 − L2, L2 − L3,
L3−L4, L4−L5. All levels correclty clas-
sified.

(c) Abnormal levels:L4 − L5, L5 − S.
All levels are correclty classified.

(d) Abnormal levels:L2−L3, L3 −L4,
L4−L5, L5−S. LevelL2−L3 is false
negative.

(e) Abnormal levels:L4 − L5, L5 − S.
LevelL1 − L2 is false positive.

Fig. 3. Sample abnormality detection from the experiment.
Green means it is correctly classified while red means oth-
erwise.



for disc height and width or even shape should not be sepa-
rate from incorporating a model for patient age and patient
height as well. Lumbar area vertebrae and intervertebral
discs vary in size depending on patient age and body size.
We are working on modeling age of patients and its relation
to disc geometrical properties as well as disc shape.

Another focus in solving abnormality detection is the
minimization of false negatives. That is, minimization of
abnormal discs detected as normal. Having any false neg-
ative disc means that this disc will not have the chance for
diagnosis by the radiologist or subsequent diagnosis algo-
rithms. However, false positive discs (normal discs detected
as abnormal) are not of comparable concern because the
only draw here is the needed time for the radiologist (or the
subsequent CAD system) to verify that it is a false positive
disc.

We are conducting more extensive study on larger
dataset to model age and height of the patient and their
relation to the geometry and shape of the normal and abnor-
mal lumbar discs. On the other hand, we are working on
detection of intervertebral disc diseases such as desiccation,
herniation, stenosis, and degenerative disc disease.

7. CONCLUSION

We proposed a probabilistic model for incorporating inter-
vertebral disc appearance, location, and context to detect
abnormal discs from clinical T2-weighted MRI scans. Our
model is extensible for subsequent diagnosis tasks such as
diagnosis of desiccation, stenosis, and herniation by incor-
porating more features emerging from the way that the radi-
ologist make his decision during the diagnosis process. We
achieve over 91% accuracy on cross-validation experiment
on 80 clinical MRI cases that includes various types of ab-
normality.
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