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Abstract— In this paper, we explore new methods to improve
the modeling of facial images under different types of variations
like pose, ambient illumination and facial expression. We
investigate the intuitive assumption that the parameters for
the distribution of facial images change smoothly with respect
to variations in the face pose angle. A Markov Random Field
is defined to model a smooth prior over the parameter space
and the maximum a posteriori solution is computed. We also
propose extensions to the view-based face recognition method
by learning how to traverse between different subspaces so we
can synthesize facial images with different characteristics for
the same person. This allow us to enroll a new user with a
single 2D image.

I. INTRODUCTION

One of the remaining main challenges in face recognition
research nowadays is to develop robust recognition in uncon-
strained environments. In such environments, characteristics
such as pose, ambient illumination, facial expression, etc.
cannot be controlled1 (see figure 1). However, it is known
that traditional face recognition methods like Eigenfaces
[10], Fisherfaces [1] and Elastic Bunch Graph Matching
[12], are not robust against high variations in the image
characteristics. Several techniques have been proposed to
make face recognition more robust against variations. These
techniques can be divided in three groups:

Fig. 1. Example of facial images with different characteristics: frontal,
40o rotation, smiling and illumination variation.

• 3D based models: These methods try to extract a 3D
model for the face, which is invariant to pose variations
and contain more information about the subject identity
than a 2D image. A 3D face model can be extracted
using a 3D scanner or using morphable models [4],
which extract a 3D face model based on a 2D face
image. The drawback with these methods is that they
tend to be more expensive when compared with 2D
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1In this paper, we refer to the pose, illumination and expression of a face
image as the image characteristic

methods (either due to the need of specific 3D hardware
or/and due to a higher computational burden).

• Non-linear based models: Variations in the face pose,
illumination and expression tend to cause highly non-
linear variations in the respective 2D face image. The
face recognition methods in this group use non-linear
techniques to model facial variations. For example, [13]
apply kernel principal component analysis and [14] use
locally linear embedding to learn a non-linear image
subspace.

• Pre-processing: Given an image with any characteris-
tics, these methods try to apply image transformations
techniques with the objective of generating an equiv-
alent image in normal conditions (e.g. frontal view,
neutral expression, neutral lighting, etc). The matching
between two images with different characteristics is
done by first transforming both images into the same
characteristic and then computing a distance between
them. For example, [5] propose a method that apply
a image preprocessing algorithm that compensates for
illumination variations in images. Beymer et al [3] apply
a method to rotate a frontal image. In [15], the authors
present a method that use Light-Fields and Lambertian
reflectance to model the distortions provoked by dif-
ferent poses and illumination. These methods usually
treat each type of variation independently, and the
development of a general method that can deal with
several types of variations at the same time have not
been proposed yet.

In this paper, we investigate new methods to improve the
modeling of facial variations. We adopt a multiple subspace
model similar to the view-based method of [9], where each
facial pose is modeled by a different eigenspace. This model
relates with the non-linear based models described above
since the several “local” eigenspaces (one for each facial
pose) implicitly form a global non-linear manifold of facial
images. We propose two main improvements to this method:

• Traditionally, the parameters (mean and covariance) for
the subspaces are estimated independently for each
characteristic. However, the independence assumption
may be over simplistic for some types of character-
istic variations, leading to poor parameter estimation,
specially when few samples are available as training
data. We present a method where the assumption of
independence between pose variations is relaxed. The
underlying assumption for our model is that similar
facial poses tend to have similar parameters. Hence,

978-1-4244-5020-6/09/$25.00 ©2009 IEEE



we define a Markov Random Field (MRF) to impose
a smoothness constrain over the parameters of similar
poses. We show that this smoothness constrain improves
the estimation for the parameters.

• In the original method [9], several images with different
characteristics are needed for each enrolled person.
However, in practice, it is desired to enroll a person
with one single 2D image. We present a method that
overcomes this problem by learning how to traverse
between different subspaces. Thus, given a single im-
age from a person, we can generate simulated images
from the same person but with different characteristics.
This transformation from one characteristic to another
allows us to match two images as they had the same
characteristic, similarly to the pre-processing methods
described above. The advantage of our method is that
the same basic model can be applied to model any kind
of facial variation (e.g. pose, expression, illumination,
aging, occlusion, etc).

In section II, we briefly describe the view-based method of
[9] and introduce the notation used in this paper. In section
III, we present the MRF used to improve the parameters
estimation of subspaces with pose variation. Some exper-
iments on this method are also presented in this section.
Section IV describes in detail how to traverse between two
subspaces with different characteristics. Finally, in Section V
we discuss the conclusions of our work and give directions
for future work.

II. PRELIMINARY CONCEPTS: THE
CHARACTERISTIC-BASED EIGENSPACE REPRESENTATION

Let I represent a vectorized facial image and q ∈ Q
represent the characteristic of an image (e.g. pose angle,
illumination, expression). Note that the space of possible
facial characteristics Q can be represented by a orthogonal
space where each axis correspond to one characteristic. Let
Iq be an image with characteristic q and suppose we have
a set of N training images Dq = {I(i)

q }Ni=1 belonging to
different persons but with the exactly same characteristic q.
The Principal Component Analysis (PCA) method can be
applied on the training set of images to compute a subspace
Pq with dimension M (M � |Iq|) that captures the principal
modes of variation as follows:

µq =
1
N

N∑
i=1

I(i)
q (1)

Σq =
1
N

N∑
i=1

(I(i)
q − µq)(I(i)

q − µq)T (2)

Pq = eigen(Σq,M) (3)

where µq is the mean of all images, Σ a covariance matrix
and eigen(Σ,M) is a function that returns the M eigenvec-
tors corresponding to the M biggest eigenvalues for matrix
Σ.

Since all images used to compute Pq have the same
characteristics but belong to different persons, this subspace

spans only the variations caused by different identities. Note
that we are assuming all variations between two images
with the same characteristics are caused exclusively by the
difference in the identity of the two images.

The projection of an image Iq into the subspace Pq is
computed as follows:

Ĩq = (Iq − µq)Pq (4)

where Ĩq is a vector of size M that represent the projected
image.

The matching between two images with the same charac-
teristics can be done by first projecting both images in the
subspace and then computing the distance between the two
projected images. More formally, let I(1)

q and I(2)
q be two

different face images with the same characteristic q. The
distance between these two images in the subspace Pq is
d = ‖(Ĩ(1)

q − Ĩ(2)
q )‖, where ‖ · ‖ denotes the Euclidean norm.

Since the subspace Pq spans only the variation caused by
different identities, the distance d can be interpreted as the
distance between the respective identity of two images. A
threshold operator can be applied to d in order to decide if
both images have the same identity or not.

A problem with this method, that was not addressed in
[9], arises when two images with different characteristics
need to be matched. The two images cannot be projected in
the same subspace because each subspace is trained for one
specific characteristic. On the other hand, if the images are
projected in different subspaces, the distance between them
would not be exclusively related to variations in the identity.
This problem is addressed in section IV.

III. IMPROVING THE LEARNING OF POSE EIGENFACES
PARAMETERS WITH A SMOOTH CONSTRAIN

A. Method overview

Note that, in equations 1 and 2 the parameters θq =
{µq,Σq} are learned independently for each characteristic
q. As stated before, this may not be ideal and may lead to
poor parameter estimation. We propose a method that relaxes
the independence assumption for pose variations. Let q ∈
Q ⊂ [−90o, 90o] represent the pose angle of a facial image.
Our model assumes that the parameters θq vary smoothly
with respect to q. For example, our method assumes that the
mean and covariance matrix of images with q = 15o should
be similar to the mean and covariance matrix of images with
q = 0o and q = 30o. We use a prior distribution defined by a
Markov Random Field (MRF) [6] over the parameter space
to impose this smoothness constrain.

Let Q = {q1, ..., qK} represent a finite set with K different
angles and Θ = (θq1 , ..., θqK

) represent the respective
parameters for these pose angles. Without loss of generality,
we assume Q is sorted in ascending order such that qk−1

and qk+1 are the two neighbors of qk. Using the smoothness
property, we define the probability of Θ as follows:

p(Θ) =
1
Z

exp[−
K−1∑
k=2

(αkθk+1− θk + (1−αk)θk−1)2] (5)



where Z is the normalization constant and αk is given by
the relation between pose qk to its neighbors and is defined
as follows:

αk =
qk − qk−1

qk+1 − qk−1
(6)

When the angles in Q are equally separated we have αk =
0.5, ∀qk ∈ Q and 5 becomes an homogeneous MRF. Note
that the probability function in equation 5 is maximum when
the gradient for the parameters is constant (i.e. Θ is contained
in a straight line on the parameter space).

As in the original eigenface method, the probability for an
image Iq is modeled by a Gaussian:

p(Iq|q, θq) =
1

(2π)d/2|Σq|
1
2

exp[−1
2

(x−µq)Σ−1
q (Iq−µq)T ]

(7)
where θq = {µq,Σq}. The set of parameters for all pose
angles is represented by Θ = {{µk,Σk}}Kk=1.

Now, given a training set D = {Dq1 , ...,DqK
}, our

objective is to find the maximum a posteriori (MAP) solution
for the parameters as follows:

ΘMAP = arg max
Θ

p(Θ|D) (8)

= arg max
Θ
{log p(D|Θ) + log p(Θ)} (9)

There is no closed form solution for equation 8, so we use
Iterated Conditional Modes (ICM) [2] to solve it as follows:

1: Initialize all θk using (class independent) Maximum
Likelihood.

2: for number of iterations do
3: for all classes k = {1, ...,K} do
4: Optimize parameter θk by solving

d
dθk

p(D|Θ)p(Θ) = 0.
5: end for
6: end for

It is important to say that the ICM algorithm converges
locally. However, since the ML initialization provides a good
initial guess, we conjecture that the global solution is been
found.

B. Experiments

We use the FERET database [8] to perform the tests on our
method. The FERET database is a public domain database
containing face images with different characteristics. For our
work, we use a specific set, referred as b series, containing
2200 face images collected from 200 people. This set of face
images is composed by different subsets as characterized in
Table I. Each subset contains exactly one image per person
(what implies that each subset contain 200 images). In this
section we use only subsets with pose variation (i.e. subsets
ba to bi). Three experiments were conducted:

Experiment I: Parameter error - In our first experiment,
we evaluate the learning rate for the ICM algorithm. Let
Θ̂ML be the ML estimation (equations 1 and 2) using all 200
persons in the dataset as training. Let ΘML and ΘMAP be

Subset Pose angle Description
ba 0 Frontal view
bb +60 Subject face to his left
bc +40
bd +25
be +15
bf -15 Subject face to his right
bg -25
bh -40
bi -60
bj 0 Alternative expression to ba
bk 0 Different illumination to ba

TABLE I
FERET b series FACE DATABASE.

the ML and MAP parameter estimation, respectively, using
only 30 persons (randomly chosen) for training. Figure 2
shows the Euclidean distance from ΘML to Θ̂ML and from
ΘMAP to Θ̂ML for each iteration of the ICM algorithm. It
can be seen that, after each iteration, ΘMAP gets closer to
the Θ̂ML. Since we have used significantly more training
data for learning Θ̂ML we conclude that, using the same
amount of training data, ΘMAP is a better estimation than
ΘML.

Fig. 2. MAP parameter error during ICM algorithm execution.

Experiment II: Reconstruction error - We use ΘML and
ΘMAP learned in the previous experiment to compare the
image reconstruction error. Both sets of parameters are used
to compute characteristic-based eigenspaces as described
in section II. All images for the 170 persons not used
in the training phase where projected into their respective
eigenspaces and then reconstructed. The Euclidean distance
(error) between the pixels of the original and projected image
was computed for all images. The average error using the
ΘML parameters was 259.2 and for the ΘMAP parameters
was 249.5. This shows that the subspaces computed using the
MAP parameters are more accurate than the ML subspaces.

Experiment III: Pose classification - Now we consider
the problem of facial pose estimation [7], where the objective
is to classify the pose of a test facial image. Once again,



the parameters learned in the first experiment are used. Each
image I in the test dataset is classified with the pose with the
highest log-likelihood log p(I|q, θq). Note that the covariance
matrix Σq has rank 29, so we assume unitary variation in the
other dimensions. 2 An accuracy of 67.91% and 76.08% was
obtained for the ML and MAP parameters, respectively.

Table II shows the gain obtained by the MAP parameters
when compared to ML parameters.

Experiment Improvement MAP
I 17.34%
II 3.89%
III 12.03%

TABLE II
IMPROVEMENT OF MAP PARAMETER ESTIMATION WHEN COMPARED TO

ML PARAMETERS FOR ALL EXPERIMENTS.

Next, we describe our matching algorithm and evaluate
the MAP parameters in a face recognition system.

IV. MATCHING BETWEEN IMAGES WITH DIFFERENT
CHARACTERISTICS

A. Method overview

As stated before, the characteristic-based eigenfaces
method does not provide a direct way of matching two
images with different characteristics. To solve this problem,
we propose a method where first each image is projected
into the subspace of its respective characteristic. Then, using
the same training data used to calculate the subspaces, we
learn a mapping function that makes the mapping between
the two subspaces. With this method, given an image with
characteristic q1, we can obtain an estimation of this image
with characteristic q2 such that the identity is preserved.
When the transformation between two subspaces is linear,
this method is related to the synthesis of facial images based
on linear object classes [11].

Figure 3 illustrate the general idea. The space of possible
characteristics is spanned by three axis: pose, expression
and illumination. For each point in this space there is an
image subspace (eigenspace) spanning the variations caused
by different identities. Given training images from different
persons for two different characteristics, we learn a trans-
formation function that maps a point in one subspace to an
equivalent point in the other subspace such that the identity
is preserved.

B. Training

Let {I(i)
q1 }Ni=1 and {I(i)

q2 }Ni=1 represent two sets of training
face images with characteristics q1 ∈ Q and q2 ∈ Q,
q1 6= q2, such that image I(i)

q1 and I(i)
q2 belongs to the same

person. The subspaces and means for each characteristic can
be calculated independently using equations 1 and 3. Our

2This is equivalent to defining log p(I|q, θq) = recErrorq(I) +
log p(I|q, Pq), where recErrorq(I) is the reconstruction error of image I
when projected into subspace q and p(I|q, Pq) is a Gaussian in the subspace
q with mean µq and diagonal covariance matrix given by the eigenvalues
of Σq .

Fig. 3. Characteristic-based eigenspaces representation.

objective is to learn a transformation function that can map
a projected face image with characteristic q1 to a projected
face image with characteristic q2:

Ĩq2 = fq1→q2(Ĩq1) (10)

The transformation function fq1→q2 can be viewed as
a regression function from one subspace to another. This
function can be learnt by minimizing the following error:

ε =
N∑
i=1

‖Ĩ(i)
q2 − Ĩq1Aq1→q2(Ĩ(i)

q1 )‖ (11)

In this paper we model the transformation function as
a linear function, so the function in equation 10 can be
represented as:

fq1→q2(Ĩq1) = Ĩq1Aq1→q2 (12)

where Aq1→q2 is a square matrix of size M (subspaces di-
mensionality). Using equation 12, the minimum for equation
11 can be found by solving a linear system as follows:


I(1)
q1

I(2)
q1
...

I(N)
q1

 ∗Aq1→q2 =


I(1)
q2

I(2)
q2
...

I(N)
q2

 (13)

A point that needs to be stressed here is that images I(i)
q1

and I(i)
q2 are from the same person. This is essential to ensure

that the transformation learned do not alter the face identity.



C. Transforming Images

Let Iq1 be an face image from a person not included in the
training set. We can transform this image from characteristic
q1 to characteristic q2 following these three steps:

1) Project image Iq1 into the subspace with characteristic
q1;

2) Transform the projected image to subspace with char-
acteristic q2;

3) Reconstruct the image using subspace with character-
istic q2.

Figure 4 shows exactly how this process is done. Figure
5 show some examples obtained using the FERET-series
b dataset. The first image for each user (frontal, neutral
expression) is given and the other images are synthesized
using our model. Visually, the results obtained are good. Note
that the same basic model can be used to model all types of
facial variations (e.g. expression, pose, illumination).

Fig. 4. Diagram showing the transformation from one image with
characteristic q1 to another with characteristic q2.

Fig. 5. Examples of image transformation. Given only the image in the first
collumn, we generate an estimation for the images of the same person but
with different characteristics. The generated images are shown in columns
2 to 10. Refer to Table I for the characteristic description of each image.

D. Matching

Let Iq1 and Iq2 represent two face images not in the
training set. The matching between these two images can
be done following these three steps:

1) Project each image into its respective subspace;
2) Transform one projected image to the other subspace;
3) Compute the distance between the projected images in

the same subspace.
In the first and second steps, we use the classifier described

in Experiment III of section III-B to find the characteristics

of a given image. Note that the distance in step 3 is computed
using the projected images only, so there is no need to
reconstruct any image. Moreover, this distance is computed
within the same subspace, so we can say that it is related
exclusively to the difference of identity between the images.
The complexity of this matching algorithm is the same of
the eigenfaces method since we only have one extra vector-
matrix multiplication (step 2).

E. Experiments

In the following experiments we use 100 users (randomly
chosen) as training data and the other 100 as testing. We
compare the recognition rates for the ML and MAP pa-
rameters learned as described in section III. The standard
eigenfaces method [10] is used as a baseline.

Experiment IV: Global face recognition - The ba image
(frontal, neutral expression and neutral lighting) is used as
the enroled image for each person in the test set. This image
is matched against all other images in the test set and the
Receiving Operating Curve (ROC) is computed. Despite the
fact experiments I to III have shown the MAP parameters
are better than the ML parameters, we did not see significant
difference in the recognition rates (the improvements were on
the order of 0.2%; for this reason, we report only the results
using the MAP parameters). We conjecture this happened
because the gains obtained by the improved parameters
where not sufficient to significantly improve the discrimi-
nation between users. The results are shown in Figure 6.
Nevertheless, it can be seen that our proposed matching
algorithm present significantly better results when compared
with the Eigenface method.

Fig. 6. Receiving Operating Curve (ROC) comparing the proposed method
with MAP parameter estimation with the Eigenface method.

Experiment V: Subsets face recognition - In this ex-
periment each characteristic is individually tested both for
the verification task (where the objective is to discover if
two images belong to the same person) as well as for the
identification task (where the objective is to discover the
identity of an image). The Equal Error Rate (EER) is reported



for the verification task and the identification Accuracy (ID-
Acc) for the identification task. The results are shown in
table III. We can note that the error rates are accentuated for
bigger angle views.

EER (%) Verification ID-Acc (%) Identification
Subset Proposed Eigenface Proposed Eigenface
ba Enrolled image
bb 13.9 42.6 50.0 6.0
bc 11.7 34.5 62.0 8.0
bd 8.7 27.3 86.0 20.0
be 6.4 20.7 94.0 48.0
bf 6.1 18.1 92.0 68.0
bg 8.1 28.0 78.0 20.0
bh 11.3 40.1 60.0 14.0
bi 18.2 44.9 36.0 6.0
bj 6.3 18.3 88.0 86.0
bk 8.7 27.9 82.0 50.0

TABLE III
EQUAL ERROR RATE (EER) (LOWER IS BETTER) AND IDENTIFICATION

ACCURACY (ID-ACC) (HIGHER IS BETTER) FOR EACH SUBSET IN THE

FERET DATASET.

V. CONCLUSION

The investigation presented in this paper has focused in
two main topics: first, we have shown that we can obtain
better estimation for the eigenspace parameters of facial
images with different poses by using a MRF over the
parameter space to model a smoothness assumption. Second,
we extended the view-based method proposed in [9] so
we are able to enroll an user with one single image and
still perform the matching when a test image with different
characteristics is presented.

By using the proposed MRF approach, we were able to
reduce the image reconstruction error as well as improve the
performance in a pose estimation application when compared
with the traditional ML parameter estimation. However, no
significant difference between the ML and MRF (MAP)
parameter estimation was observed when these parameters
were used in a face recognition application.

The characteristic-based face recognition presented in this
paper has shown significantly better recognition rates when
compared with the Eigenfaces method and has an equivalent
computational complexity. However, in this paper, we have
consider only test images with characteristics for which we
have training data. Our future plans include methods that
are capable of interpolating between subspaces as well as
perform experiments with a wider range of facial variations.
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