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ABSTRACT
Computed tomography(CT), especially since the intro-
duction of helical CT, provides excellent visualization of the
internal organs of the body. As a result, CT is used routinely
in the clinical arena to obtain three- and four-dimensional
data. Data is obtained by exposing patients to a beam of
x-rays from a number (about 1000) of different angles (pro-
jections). Then, standard CT makes use of the Radon trans-

form to generate 3D data, denoted ~f , directly from projec-
tions, denoted ~g. Thus, the projection relationship can be

represented in matrix form by ~g = M ~f where M represents
the projection matrix. Note that techniques based on the
Radon transform are in general limited by the Nyquist sam-
pling criteria.

The increasing use of CT has resulted in a substantial rise
in population-radiation-dose [1], which may lead to an in-
creased incidence of cancer in the population. In addition
to increased use, the number of projections in the CT acqui-
sitions is increasing to improve image quality which further
increases patient radiation exposure as well as the recon-
struction time. This latter issue can be improved by using
new technology, e.g., graphical processing units (GPUs) [2],
but the problem of radiation dose does remains. Reduc-
tion of the number of projections can result in artifacts and
reduced image quality. Thus, new approaches are being pur-
sued.
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Our novel algorithm is based on a key observa-

tion: Standard CT reconstruction techniques(such as fil-
tered backprojection [3] or an algebraic reconstruction tech-
nique [4]) converges quickly when the intensity of all voxels
are similar. This is because it “evenly” distributes the in-
tensity of each pixel in a projection to all voxels along the
corresponding projection ray. When all voxels have similar
intensity, the value received by each voxel from one projec-
tion ray will be close to its actual intensity. As a results,
a few projections will lead to a high quality reconstruction.
Therefore, we have taken the approach to mathematically

split up ~g = M ~f into subproblems or Objects-of-Interest
(OoI), effectively we are rewriting the general CT problem
into:

~gOoI1 = MOoI1
~fOoI1

~gOoI2 = MOoI2
~fOoI2 (1)

...

~gC−OoI = MC−OoI
~fC−OoI

Because of this unique characteristic, our approach can be
understood as a geometric compressed-sensing approach [5].
By using this unique formulation of splitting up the problem
into OoIs (region of similar voxel intensity), each subproblem
includes a relatively small range of voxel values. By dividing
the volume into subproblems, we establish an object-specific
reconstruction.

Our approach is a two stage technique. In the first stage,
we automatically isolate OoIs from a limited-view recon-
struction, which are single or multiple anatomical structures.
If the OoIs are detected, we proceed to stage two. In the
second stage of processing, we use the extracted OoI vol-
umes to drive a reconstruction process that independently
reconstructs each OoI and its complement volume. To be
able to independently reconstruct, we classify the projec-
tion rays that penetrate through the voxels within the C-
OoI and those rays which penetrate through the OoIs. We
split the problem into several 2D planes. In the 2D plane,
we have a set of objects obtained from the rough segmen-
tation, surrounded by lower density/contrast regions called
complements. To separate the reconstruction of the ob-
jects from that of the complements, we first proximate the
rough boundary of the objects by simple polygons, and then
treat the polygons as obstacles. The complements are recon-
structed by rays, which traverse only the complements, and
the objects are reconstructed by rays penetrating the cor-
responding polygons. To efficiently classify all the rays, we
use a point-line duality transformation on the set of bound-
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ary segments of the polygons. Each vertex of the polygons
transforms to a dual line, and each supporting line maps to
a point in the dual space. The set of dual lines forms an
arrangement which partitions the space into a set of con-
vex cells. Each cell contains the set of rays intersecting the
same subset of boundary segments of the polygons, that is,
all rays traveling through the hourglass defined by the set
of segments. All types of rays can be identified by sweep-
ing the arrangement in an online fashion. To report all the
cells and rays in a more efficient way, we use the Topologi-
cal Peeling [6] [7]algorithm due to its optimal time and space
complexities.

Finally the sparse sets of rays for each OoI is passed to a
GPU-based reconstruction engine to generate the final 3D.

1. THE VIDEO SEQUENCE
The video sequence begins with an animated explanation

of the CT imaging setup (see Figure 1).

Figure 1: Illustration of the CT imaging setup. The

image system acquires projection images from up to

a 1000 different positions.

Next, we explain the inputs to our algorithm and how
they are acquired, and we layout the main objectives which
our algorithm should achieve. We then illustrate our main
observations about the problem and how these observations
allow us to formulate a geometric compressed sensing ap-
proach (see Figure 2).

Figure 2: To make use of geometric compressed

sensing, each voxel intensity region is handled as a

sparse set of values.

Before reconstruction, we explain how to classify those
projection rays which penetrate only through the voxels,

that lie within the C-OoIs, and which penetrate through
the OoI. We show how a Topological Peeling is employed to
traverse a 2D arrangement (see Figure 3). We next, show
how 3D data are reconstructed using the classified rays (see
Figure 4).

Figure 3: We illustrate the primal space on the left

side and the dual space on the right side.

Figure 4: The reconstruction process after we classi-

fied the different rays. Each region is reconstructed

from the outside in.

Finally, we show reconstruction results from standard tech-
niques and from our approach by using rabbit data sets.

The video was produced by using Apple iMovie and Google
SketchUp on an Apple iMac with Mac OS X 10.5.
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