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Abstract
Purpose Detection of abnormal discs from clinical
T2-weighted MR Images. This aids the radiologist as well
as subsequent CAD methods in focusing only on abnormal
discs for further diagnosis. Furthermore, it gives a degree of
confidence about the abnormality of the intervertebral discs
that helps the radiologist in making his decision.
Materials and methods We propose a probabilistic classifier
for the detection of abnormality of intervertebral discs. We
use three features to label abnormal discs that include appear-
ance, location, and context. We model the abnormal disc
appearance with a Gaussian model, the location with a 2D
Gaussian model, and the context with a Gaussian model for
the distance between abnormal discs. We infer on the middle
slice of the T2-weighted MRI volume for each case. These
MRI scans are specific for the lumbar area. We obtain our
gold standard for the ground truth from our collaborating
radiologist group by having the clinical diagnosis report for
each case.
Results We achieve over 91% abnormality detection
accuracy in a cross-validation experiment with 80 clinical
cases. The experiment runs ten rounds; in each round, we
randomly leave 30 cases out for testing and we use the other
50 cases for training.
Conclusion We achieve high accuracy for detection of abnor-
mal discs using our proposed model that incorporates disc
appearance, location, and context. We show the extendability
of our proposed model to subsequent diagnosis tasks specific
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to each intervertebral disc abnormality such as desiccation
and herniation.
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Introduction

Lower back pain is the second most common neurological
ailment in the United States after the headache according to
the National Institute of Neurological Disorders and Stroke
(NINDS). Americans spend at least $50 billion each year
on lower back pain and over 12 million Americans have
some sort of intervertebral disc disease (IDD) [1]. The higher
growth for the number of patients each year (about 8%) com-
pared to the growth of radiologists (about 1%) justifies seek-
ing full or partial automation of the diagnosis process which
usually consists of two main steps: localization of the inter-
vertebral discs and then diagnosis of abnormalities at each
disc level. The focus of this paper is on the detection of abnor-
mality in the lumbar area from MRI. In our previous work
[2], we developed a two-level probabilistic model for locali-
zation of the six discs in the sagittal T2-weighted MRI scans
for the lumbar area. We incorporated two levels of infor-
mation: low- and high-level. In the low-level, we modeled
the local pixel properties of discs, such as appearance. In the
high-level, we captured the object-level geometrical and con-
textual relationships between discs. We estimated the model
parameters from manually labeled cases (supervised learn-
ing). We tested our model using a dataset of 20 normal cases
and showed the extension to an abnormal case. However, in
this paper, we use a dataset of 80 clinical cases that con-
tains wide variability in types of abnormalities, patient ages
(17–81 years old), and patient heights which affect the size
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Fig. 1 Labeling of lumbar area discs and sample abnormalities.
a Lumbar disc levels labels. Abnormal lower two levels at L4-L5 and
L5-S (red) (also called L5-S1) and the upper four are normal (green).
b normal disc, c herniated disc, d degenerative disc disease

and appearance of the discs. Figure 1a shows a sample
sagittal view with labeled lumbar disc levels.

In this paper, we propose a method for detection of abnor-
mal discs in the lumbar area from clinical T2-weighted MRI.
We model disc appearance, location and context and incor-
porate them in a probabilistic classifier by introducing the
random variable ni and solving:

n∗i = arg max
ni

P(ni |di , σI(di )) (1)

where ni is a binary random variable stating whether it is a
normal or abnormal disc and ni ∈ N = {ni : 1 ≤ i ≤ 6},
di ∈ D = {di : 1 ≤ i ≤ 6} is the location of each lumbar
disc, and σI(di ) is the intensity of a neighborhood surround-
ing the disc level i .

The remainder of this paper is organized as follows: The
background and related work is discussed in next section.
Then we discuss “Proposed model”. We then describe “Clin-
ical data description”, “Clinical ground truth” and “Experi-
mental results” respectively. “Discussions and future work”
and “Conclusion” are discussed in the last two sections.

Background

Intervertebral discs are unique structures that absorb shocks
between adjacent vertebrae. They act as the ligaments that
connect the vertebrae together and the pivot point which
allows the spine mobility by bending and rotating. They make
up about one-fourth of the spinal column’s length [3].

An intervertebral disc is composed of two parts: an outer
strong ring called annulus fibrosus and a soft gel-like inner
called nucleus pulposus. The nucleus pulposus consists of
80–85% water in normal cases. In the lumbar area, there are

six discs connected to the five lumbar vertebrae which are
labeled top-down as T12-L1, L1-L2, L2-L3, L3-L4, L4-L5,
and L5-S1 as shown in Fig. 1a.

Abnormalities in the intervertebral discs

Various diseases that affect the vertebral column are usually
painful and influence the patient’s everyday life. In our work,
we are concerned with the clinical lumbar abnormalities.
Fardon et al. [4] presented a nomenclature and a classification
of the lumbar disc pathology for standardization of the lan-
guage and defining the various abnormalities for the lumbar
area intervertebral discs. They extended the work of Milette
[5] in coordination with the North American Spine Society
(NASS), the American Society of Spine Radiology (ASSR),
and the American Society of Neuroradiology (ASNR). It was
also endorsed by many other worldwide spine societies [6].
We discuss the most popular clinical abnormalities in light
of Fardon et al. [4] nomenclature.
Disc herniation (Fig. 1c) is a leak of the nucleus pulposus
through a tear in the wall of the annulus fibrosus. This leak
presses on the local nerve root causing the pain. Tears in the
disc wall usually occur due to aging and/or trauma [3,7].
Spinal stenosis is the narrowing of the spinal canal and can
be caused by different conditions such as disc herniation,
osteoporosis, or a tumor. Sometimes, and especially when
the reason is a disc herniation, stenosis occurs at the same
level of the disc [3,7].
Degenerative disc disease (Fig. 1d) is the gradual deterio-
ration of the disc causing loss of its functions. This disease
usually develops with aging or from continuous activities
that press on the disc space. It starts with a small injury in the
annulus fibrosus causing damage to the nucleus pulposus and
loss of its water contents. Further damage causes malfunc-
tioning of the disc and thus collapsing the upper and lower
vertebrae. As time passes, the vertebra facet joints twist cre-
ating bone spurs that grow into the spinal canal and pinching
the nerve root (stenosis) [3,7].
Disc desiccation is the drying out of the water contents in
the inner pulposus. Usually, it is caused by aging and sudden
weight loss [3,7].
Spinal infection occurs when a bacterial infection travels via
the bloodstream into an intervertebral disc. This weakens the
annulus fibrosus and decays it and might cause collapsing of
the disc and thus pressure on the nerve root. Further infection
might cause fusion of the enclosing vertebrae [3,7].

Existence of one abnormality encourages development
of other abnormalities. For example, spinal stenosis might
occur because of existence of a degenerative disc disease
or disc herniation. Most intervertebral discs in our dataset
have multiple abnormalities at the same time which com-
plicates the work of subsequent CAD algorithms. Figure 2
shows two sample cases diagnosed with multiple diseases.
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Fig. 2 Sample diagnosis of two Discs with multiple diseases. a L5-S1
disc level: Herniation, DDD, mild foramina stenosis, b L3-L4 disc level:
DDD, central stenosis, and central herniation

This diagnosis is summarized from the original radiologist
report that details both quantitative and qualitative analysis
of the diseases.

Related work

Backbone image analysis for various medical imaging
modalities has been attracting many researchers in the last
two decades. In the mid-1980s, Jenkins et al. [8] performed
a valuable analysis study on 107 normal and 18 abnormal
cases. They analyzed the relation between proton density
and age in normal discs. They concluded that quantitative
MRI analysis may assist in the diagnosis of intervertebral
disc degeneration.

An international forum was held in 1995 to discuss
methods of management for lower back pain (LBP). They
discussed the possibilities of classification of LBP into spe-
cific categories. Existence of this kind of classification helps
developing CAD systems because the basic concept behind
detection of abnormalities is an automatic classification prob-
lem based on a set of features. Many systems have classified
LBP such as [9–11].

Many researchers have proposed methods for diagnosis of
certain abnormalities related to the vertebral column. How-
ever, as far as we know, no one has proposed a method for
the problem we are targeting in this paper. All related work
has been investigating automation of specific abnormalities
in various medical imaging modalities. Besides abnormality
diagnosis, many efforts have been investigating the localiza-
tion, detection, and segmentation problems for the interver-
tebral discs [2,12–14].

Bounds et al. [15] utilized a neural network for the diag-
nosis of lower back pain and sciatica. They had three groups
of doctors perform diagnosis as their validation mechanism.
They achieved better accuracy than the doctors in the diag-
nosis. However, the lack of data forbade them from full val-
idation of their system. Similarly, Vaughn [16] conducted a
research study on using neural networks (NN) for assisting
orthopedic surgeons in the diagnosis of lower back pain. They
classified lower back pain into three broad clinical catego-
ries: simple low back pain (SLBP), root pain (ROOTP), and

abnormal illness behavior (AIB). They collected nearly 200
cases over the period of 2 years with diagnoses from radiolo-
gists. They used twenty NN including symptoms and clinical
assessment results. The NN achieved 99% training accuracy
and 78.5% testing accuracy which shows NN overfitting on
training data.

Tsai et al. [17] used geometrical features (shape, size and
location) to diagnose herniation from 3D MRI and CT axial
(transverse sections) volumes of the discs. They also dis-
cussed the diagnosis of 16 clinical cases of various lumbar
herniation types and report the follow-up period for 1.8 years.
About 75% of the patients showed excellent outcomes after
the surgery based on their diagnosis while the remaining 25%
ranges between good and no improvement.

Kol et al. [18] proposed a finite element model (FEM)
for the L4-L5 disc and the enclosing vertebrae to investi-
gate the possible support for medical diagnosis and muscle
rehabilitation. They used nuclear magnetic resonance (NMR)
and computer tomography (CT) data to build the geometrical
FEM. They concluded that there is an indication of support-
ing diagnosis and muscle rehabilitation decisions using their
model. Later, Glema et al. [19] investigated the use of mod-
eling the intervertebral discs in the analysis of the spinal seg-
ments. They used the model of [18] for L4-L5 and validated
it for four loading schemes: axial compression, bending in
two vertical planes (sagittal and lateral), and torsion. They
found that it was possible to verify the validity and quality
of the model for disc bulging and some other specific abnor-
malities.

Chamarthy et al. [20] used k-means to estimate the degree
of disc space narrowing with a score ranging between 0
(normal) and 3 (significant narrowing). They performed
experiments on cervical X-ray radiographs and achieved 82%
accuracy. Cherukuri et al. [21] used size-invariant, convex
hull-based features to discriminate anterior osteophytes
(bony growths on vertebrae) in cervical X-ray images and
achieved an average accuracy of 86%.

Recent work by Koompairojn et al. [22] used a Bayesian
classifier for detection of spinal stenosis using 13 morpholog-
ical features. These features include heights of the vertebrae,
disc space (anterior, mid and posterior), and anteroposterior
width of lower and upper spinal canal. They used X-rays from
the NHANES II [23] database to train and test their classifier.
They achieved accuracy ranging between 75 and 85%.

Proposed model

We capture the abnormality condition ni with a Gibbs model:

P(ni |di , σI(di )) =
1

Z [ni ] exp−Eni (di ,σI(di )) (2)

where ni is a binary random variable for abnormality of the
disc i and ni ∈ N = {ni : 1 ≤ i ≤ 6}, the location of
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the disc di ∈ D = {di : 1 ≤ i ≤ 6} and the σdi is a neigh-
borhood of pixels around the disc location di . Eni (di , σI(di ))

is the energy function identified by the disc location di and
the intensity of a pixel neighborhood σI(di ).

We propose the use of three potentials: the appearance I,
the location di , and the context between discs (i ∼ j). Thus
our energy function Eni (di , σI(di ))) is:

Eni (di , σI(di )) =
⎡
⎣β1

∑
d∈D

UI(di , σI(di )) ← intensity

+β2

∑
d∈D

UD(di ) ← location

+β3

∑
(i∼ j)

VD(di , d j )

⎤
⎦ ← context

(3)

where β1, β2, and β3 are the model parameters that con-
trol the effect weight of features on the inference. UI is the
appearance potential which is a model of both the location
of each disc di ∈ D and the intensity of the pixel neigh-
borhood σI(di ) of that location. UD is the location potential
which is a model of the location of each disc in D. VD is the
context potential which is a model of the distance between
neighboring discs (i ∼ j).

Our model requires two inputs: the locations of the discs
D = {d1, d2, . . . , d6} and the intensity of a neighborhood
surrounding each location σI (di ). The first input is the out-
come of the labeling problem which we produce from our
previous work [2]. We obtain the second input from the image
intensity I = {Intensity: 0 ≤ Intensity≤ 2b−1} for the disc
location and a defined neighborhood σdi where b is the bit
depth of the images, which is 12 bits for our dataset.

Here, we discuss the model for each of the three potentials:
Appearance potential UI(di , σI(di )) models the expected
intensity level of the abnormal discs, which we model as
Gaussian. After taking the negative log:

UI(di , σI(di )) =
∑

j∈σI(di )
(I( j)− µI)

2

2σ 2
I

(4)

where di is the location di = (row, col) of disc i , I(di ) is
the intensity at location di , σdi is some pixel neighborhood
of the location di , µI is the expected intensity levels of the
abnormal discs and σ 2

I is the variance of the intensity levels
of abnormal discs. Both µI and σ 2

I are learned from the train-
ing data where a set of images are labeled by our labeling
method in [2].
Location potential UD(di ) models the expected location of
abnormal discs at level i . In fact, abnormal discs in general
differ in their expected location from normal discs (at the
same lumbar level). We model the location as a 2D Gaussian
and after taking the negative log, we obtain the Mahalanobis

distance:

UD(di ) =
[(

di − µdi

)T
�−1

di

(
di − µdi

)]
(5)

where di is the location of disc i , µdi is the expected location
of the abnormal discs at lumbar disc level i and �di is the
covariance matrix of the abnormal discs at the lumbar disc
level i . We learn both µdi and �di from the training data.
Context potential VD(di , d j ) models the contextual relation
between neighboring disc locations i and j . We model the
distances ei j = |di−d j |2 between neighboring discs at loca-
tions i and j as a Gaussian distribution which results, after
the negative log, in:

VD(di , d j ) =
(
ei j − µD

)2

σ 2
D

(6)

where di and d j are neighboring discs, µD is the expected
distance between abnormal discs, σ 2

D is the variance of abnor-
mal discs distances. We also learn both µD and σ 2

D from the
training data.

Our proposed model shows flexibility in the addition of
various features that allows solving various diagnostic tasks
depending on the abnormality type. We have other recent
work where we utilize our model to diagnose specific disc
abnormality. For example, in our work [24], we jointly model
the appearance and the intensity level contextual information
for diagnosis of disc desiccation from clinical lumbar MRI.

Clinical data description

The clinical standard uses magnetic resonance imaging
(MRI) for lower lumbar diagnosis. Radiologists use MRI
to diagnose discs as well as vertebrae abnormalities. How-
ever, in very rare cases, they might require CT if they suspect
unclear vertebral problems due to clearer imaging of bones
(vertebrae) in CT. A typical MRI system consists of: (1) a
large magnet for magnetic field generation, (2) shim coils
for achieving homogeneity of the magnetic field, (3) a radio-
frequency (RF) coil for transmitting radio signals into the
organ under imaging, (4) a receiver coil for detecting the
bouncing radio signals, (5) gradient coils to provide spatial
localization of the signals, and (6) a reconstruction protocol
for building the final image.

Four main parameters control the appearance (intensity)
of the resulting MR image: (1) proton density, (2) longitudi-
nal relaxation time (T1), (3) transverse relaxation time (T2),
and (4) the flow. The proton density is the concentration of
protons in the tissue in the form of water and macromole-
cules (proteins, fat, etc). Both T1 and T2 relaxation times
define the way the protons revert back to their resting states
after the initial RF pulse. The most common effect of the
flow is the loss of signal from rapidly flowing arterial blood.
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Table 1 T2-weighted MRI parameters for our dataset

Parameter Value

Repetition time (TR) 3,157

Echo time (TE) 100

Flip angle 90

The pulse sequence parameters control the contrast of the
resulting MR image. The MRI technician sets the specific
number, strength, and timing of the radio-frequency (RF)
and gradient pulses.

There are two common pulse sequences for MRI imag-
ing: T1-weighted and T2-weighted spin-echo sequences. The
T1-weighted sequence uses a short TR (repetition time) and
a short TE (echo time) (TR ≤ 1,000 ms, TE ≤ 30 ms) while
the T2-weighted sequence uses a long TR and a long TE
(TR ≥ 2,000 ms, TE ≥ 80 ms).

We use a dataset of 80 clinical MRI volumes containing
normal and abnormal cases. Abnormalities include disc her-
niation, disc desiccation, degenerative disc disease and oth-
ers. Each case contains a full volume of the T2-weighted MRI
on which we base our classifier. Table 1 shows the acquisition
parameters for our dataset.

Clinical ground truth

We obtain the clinical diagnosis report for each case that con-
tains a diagnosis at each lumbar disc level. These reports are
generated by agreement inside our collaborative radiology
center between at least three radiologists. We consider these
reports as our gold standard.

Mulconrey et al. [25] showed that MRI has high inter-
observer reliability for degenerative disc and spondylolisthe-
sis diagnosis with κ = 0.773 and κ = 0.728, respectively.
This and other efforts such as [26] show that inter-observer
error is small in diagnosis of lumbar abnormality from MRI
modality. The perfect inter-observer reliability happens when
0.8 ≤ κ ≤ 1 [25]. This motivates us to consider the clinical
reports provided by our collaborating radiology center as our
gold standard.

We perform gold standard annotation for our dataset by:
(1) selecting a point inside each disc that roughly represents
the center for that disc di , and then (2) determining the abnor-
mality condition ndi .

Experimental results

Intervertebral discs have better discrimination from other
structures in T2-weighted MR images compared to the T1-
weighted [27,28]. Thus we base our model on T2-weighted
MRI. We learn the parameters of the three potentials

representing the models for the appearance I, the location
di : 1 ≤ i ≤ 6, and the context between discs (i ∼ j)
using the gold standard (D, N ) and the corresponding train-
ing images I.

We perform a cross-validation experiment using the 80
cases to train and test our proposed method. In each round,
we separate thirty cases and train on the other 50 cases. We
perform ten rounds and each time the cases are selected ran-
domly. We check the classification accuracy by comparing
our classification results with our gold standard (illustrated
in “Clinical ground truth”) by defining the accuracy at each
disc level i as:

Accuracyi =
⎛
⎝1− 1

K

K∑
j=1

|gi j − ni j |
⎞
⎠× 100% (7)

where Accuracyi represents the classification accuracy at the
lumbar disc level i where 1 ≤ i ≤ 6, the value K repre-
sents the number of cases in each experiment, gi j is the gold
standard binary assignment for disc i , and ni j is the resulting
binary assignment for disc i from the inference on our model.
gi and ni are assigned the binary values the same way such
that:

gi =
{

0 if disc i is normal
1 if disc i is abnormal

(8)

We measure accuracy at each lumbar disc level separately
to show the detailed classification accuracy at each level and
thus have more understanding of the disc levels and their
influence on classification accuracy. This appears in the sec-
ond to last row in Table 2, where each value is a percentage
accuracy that represents the average of all the rounds in the
experiment at each disc level. At the same time, we report
the average accuracy for all the discs together for each round,
which is the last column in Table 2. We also include the over-
all average accuracy for all discs and for all rounds in the
experiment in the bottom-right cell in the same table.

Figure 3 shows five sample cases of classification output
from inferencing on our model. The first three figures show
various abnormalities at various levels and full success in
abnormality detection. Figure 3d shows a false negative at
level L2-L3 where the disc is labeled as abnormal while its
gold standard is normal. Figure 3e shows a false positive at
level L1-L2 where the disc is labeled as normal while its gold
standard is abnormal.

Discussions and future work

We achieve high abnormality detection accuracy using three
main features: appearance, location, and context of discs.
However, some abnormal discs are not detected. We find that
incorporating a shape model might enhance our detection
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Table 2 Classification results for the cross-validation experiment on
80 cases

Set E6 E5 E4 E3 E2 E1 Accuracy

1 27 25 27 29 29 28 92

2 26 26 29 29 28 28 92

3 26 26 27 27 26 26 88

4 28 25 26 27 29 29 91

5 27 27 29 28 27 27 92

6 25 26 26 27 29 28 89

7 25 27 28 26 28 29 91

8 28 28 27 28 29 28 93

9 27 26 28 27 29 29 92

10 27 28 28 28 28 28 93

(%) 88.7 88.0 91.7 92.0 94.0 93.3 –

Average Accuracy 91.3%

The second to last row shows the average accuracy at each lumbar disc
level and the last column shows the average accuracy for each round of
30 cases. Disc level E6 corresponds to the L5-S1 disc level while E1
corresponds to T12-L1. We achieve over 91% classification accuracy

accuracy. For example, the misclassified disc at level L2-L3
in Fig. 3d appears more compact in shape than other nor-
mal discs in the same case. This motivates including a shape
model or some geometrical model for height and width of
the disc (similar to Koompairojn et al. [22] work for stenosis
detection). In general, most abnormal discs have less thick-
ness than normal discs. Lumbar area vertebrae and interver-
tebral discs vary in size depending on patient age and body
size. We are working on modeling age of patients and its
relation to disc geometrical properties as well as disc shape.

Another focus in solving abnormality detection is the min-
imization of false negatives. That is, minimization of abnor-
mal discs detected as normal. Having any false negative disc
means this disc will not have the chance for diagnosis by the
radiologist or subsequent diagnosis algorithms. On the other
hand, false positive discs (normal discs detected as abnormal)
are not of comparable concern because their only penalty is
the time needed for the radiologist (or the subsequent CAD
system) to verify that it is a false positive disc.

We are conducting a more extensive study on a larger data-
set to model age and height of the patient and their relation to
the geometry and shape of the normal and abnormal lumbar
discs. We are also working on the detection of intervertebral
disc diseases such as desiccation, herniation, stenosis, and
degenerative disc disease.

Conclusion

We proposed a probabilistic model for incorporating inter-
vertebral disc appearance, location, and context to detect
abnormal discs from clinical T2-weighted MR images. Our

Fig. 3 Sample abnormality
detection from the experiment.
Green means it is correctly
classified while red indicates
otherwise. a Abnormals levels:
L3-L4 and L5-S. All levels are
correctly classified. b Abnormal
levels: L1-L2, L2-L3, L3-L4,
L4-L5. All levels correctly
classified. c Abnormal levels:
L4-L5, L5-S1. All levels are
correctly classified. d Abnormal
levels: L2-L3, L3-L4, L4-L5,
L5-S1. Level L2-L3 is false
negative. e Abnormal levels:
L4-L5, L5-S1. Level L1-L2 is
false positive

Normal: Correct

Normal: Correct

Normal: Correct

Abnormal: Correct

Abnormal: Correct

Normal: Correct

(a)

Normal: Correct

Abnormal: Correct

Abnormal: Correct

Abnormal: Correct

Normal: Correct

Abnormal: Correct

(b)

Normal: Correct

Normal: Correct

Normal: Correct

Normal: Correct

Abnormal: Correct

Abnormal: Correct

(c)

Normal: Correct

Normal: Correct

Abnormal: Wrong

Abnormal: Correct

Abnormal: Correct

Abnormal: Correct

(d)

Normal: Correct

Normal: Wrong

Normal: Correct

Normal: Correct

Abnormal: Correct

Abnormal: Correct

(e)

probabilistic classifier models each disc level in the lumbar
area and decides its abnormality condition upon the joint
features. Our model has the flexibility to incorporate other
domain knowledge features such as age and patient related
information. We have demonstrated the clinical applicability
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of our proposed model using clinical data from our collabo-
rating radiologist along with the clinical diagnosis report for
each case. Our model is extendable for subsequent diagnos-
tic tasks such as diagnosis of desiccation, stenosis, and her-
niation by incorporating suitable features depending on the
abnormality type. We have shown an example of disc des-
iccation diagnosis from our recent work. We achieved over
91% accuracy on a cross-validation experiment on a set of 80
clinical MRI cases that includes various types of abnormality
and a wide range of patient ages and conditions.
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