
C
omputing is an integral part of our daily 
routines. However, despite numerous tech-
nological advances, how we interact with 
computers has changed little in the past three 
decades. Current systems use conventional 

input devices, such as a mouse, that limit functionality 
and often require applications to define a complex, non-
intuitive interaction language. 

In this new age of human-centered computing, human-
computer interaction (HCI) must look to new technolo-
gies for building modern, natural, and intuitive inter-
faces. Video is one such technology. Computer vision 
techniques could provide far richer interactivity than 
conventional devices. With the video input signal, sys-
tems could use large-scale, unencumbered motion from 
multiple concurrent users leading to more direct, robust, 
and effective computing.

Using video in HCI is difficult, as evidenced by the 
absence of video-based interaction systems in produc-
tion. Some research systems exist, however, as the 
“Examples of Video-Based HCI” sidebar describes.1,2 

The visual interaction cues (VICs) paradigm uses a 
shared perceptual space between the user and the com-
puter. In the shared space, the computer monitors the 
environment for sequences of expected user activity 
at locations corresponding to interface components. 

Approaching the problem this way removes the need to 
globally track and model the user. Instead, the system 
models the sequence of localized visual cues that cor-
respond to the user interacting with various interface 
elements. The 4D Touchpad is a video-based comput-
ing platform based on the VICs paradigm. Together, the 
VICs paradigm and the 4DT provide a rich new set of 
techniques that bring the human to the center of HCI 
design and surpass some restrictions of conventional 
interface technology. 

VICs InteraCtIon model
An interaction model is a set of principles, rules, and 

properties guiding an interface’s design.3 The model 
describes how to combine interaction techniques both 
meaningfully and consistently and defines the interac-
tion’s look and feel from the user’s perspective.

The current windows, icons, menus, and pointers 
(WIMP)4 interface technology is a realization of the 
direct manipulation interaction model.5 The four prin-
ciples of direct manipulation are

continuous representation of the objects of interest;
physical actions (movement and selection by mouse, 
joystick, touch screen, and so on) or labeled button 
presses instead of complex syntax;
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rapid, incremental, reversible operations for which 
the impact on the object of interest is immediately 
visible; and
a layered or spiral approach to learning that permits 
use with minimal knowledge. 

The WIMP implementation of the direct interaction 
model brought proficiency to a broad spectrum of users. 
However, WIMP’s use of a pointing device to map the 
user to the interface has notable drawbacks:

It limits the number of active users to one at any 
given time. 
It restricts the actions a user can perform on an 
interface component to click and drag. 
Because of the limited set of actions, the user must 
learn and perform a complex sequence of actions to 
issue some interface commands. 

The restrictive mapping often results in the user 
manipulating the interface instead of the application 
object,3 and greatly restricts the interface’s naturalness 
and intuitiveness. Using video as input removes the need 
for such mediation. It lets users bring real-world experi-
ence to help make intuitive HCI possible. Our approach 
extends the direct interaction model to better use future 
interfaces’ multimodal nature. 

Our model follows four principles. 
First, it recognizes two classes of interface compo-

nents: direct and indirect objects.
Direct objects should be continuously viewable to the 

user and functionally rendered. They should have a real-
world counterpart, and their use in the interface should 
mimic their real-world use. A simple push button is a 
good example of a direct object: In the real world and the 
interface, buttons are visually similar and are activated 
(pushed) in the same way.

Indirect objects, or interface tools and components, 
might or might not have a real-world counterpart. Indi-
rect objects should be obvious to the user, and a stan-
dard interaction language should govern their use. An 
example of such an interface tool is a corner tab that a 
user can grab and use to resize the window.

The second principle is sited interaction. All physi-
cal interaction with the system should be localized to 
specific areas (or volumes) in the interface to reduce the 
ambiguity of the user’s intention. Generally, sited inter-
action implies that all interaction involves the interface 
elements, and the system can monitor the local volume 
around each element for user gestures. For the button 
example, the system need not visually track the user’s 
hand around the entire environment. Instead, it can 
monitor only the local volume around the button, wait-
ing for the user’s hand to enter and press.

The third principle is feedback-reinforced interaction. 
Because the interaction is essentially a dialog between the 

•

•

•

•

•

user and the computer system (with little or no media-
tion), the system must supply continuous feedback to the 
user throughout the interaction and immediately there-

examples of Video-Based HCI
Most	video-based	approaches	rely	on	visual-track-

ing	and	template-recognition	algorithms	as	the	core	
technology.	PFinder

1
	uses	a	statistics-based	segmen-

tation	technique	to	detect	and	track	a	human	user	
as	a	set	of	connected	“blobs.”	Dmitry	Gorodnichy	
and	Gerhard	Roth

2
	developed	an	algorithm	to	track	

the	face	(the	nose)	and	map	its	motion	to	the	cur-
sor.	Christian	von	Hardenberg	and	Francois	Berard

3
	

developed	a	simple,	real-time	finger-finding,	track-
ing,	and	hand	posture	recognition	algorithm	and	
incorporated	it	into	perceptual	user	interface	set-
tings.	ZombiBoard

4
	and	BrightBoard

5
	extend	classic	

2D	point-and-click-style	user	interfaces	to	desktop-	
and	blackboard-style	interactions.	Visual	Panel

6
	

tracks	an	arbitrary	planar	surface	and	a	fingertip	for	
use	in	2D	and	3D	environments.	The	Everywhere	
Display	project

7
	uses	a	custom	projector	system	to	

render	interface	components	at	arbitrary	locations	
in	the	environment	and	site-localized	image	cues	for	
gesture	recognition.
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after. For the button example, the system could highlight 
the button whenever it notices activity on it. This gives 
the user immediate feedback about the computer’s state, 
and indicates that the user might need to adjust a gesture 
for successful recognition.

Finally, we separate the learning involved in using the 
system into two distinct stages.

In the first stage, the user must learn the intuitive 
set of initial techniques and procedures for interacting 
with the system. Essentially, new users should be able to 
apply their real-world experience to immediately begin 
using the direct interaction objects. For example, a user’s 
knowledge of button pushing in the real world directly 
transfers to the interface.

In the second stage, duplex learning ensues. In this 
stage, the system adapts to the user, and the user can 
learn more complex interaction techniques. We expect 
that such duplex learning will be an integral part of 
future interfaces centered on human experience. This 
learning is necessary, for example, in an interface com-
ponent, such as a scroll bar, that has no (or weak) trans-
lation to the real world. A user might have to physically 
grasp the scroll bar handle with a thumb and forefinger, 
then translate it up and down. This is a more complex 
situation, and the user will have to learn how to properly 
grasp the handle. However, because human-centered 
computing is the goal, the computer system should also 
adapt to the user’s grasp-style for a more natural and 
robust interaction experience.

The VICs interaction model adds constraints to enforce 
the naturalness of the interaction between the user and a 
video-equipped computer system. We distinguish between 
direct and indirect interface objects to avoid the problem 
of the user manipulating the interface rather than the 
application objects and to simplify the learning required 
to use the interface. For example, a common real-world 
interface object is a circular dial often used to adjust the 
volume in a stereo system. To use such a dial in the real 
world, a user grasps it and rotates it. Naturally, the user 
would expect an interface dial to operate the same way.

4dt: a VICs platform
Our video-based human-centered computing system, 

shown in Figure 1, directs a pair of wide base-
line cameras at the interaction surface, which 
is a standard flat-panel display laid flat.

Geometric calibration
The sited-interaction principle is the 

motivating factor behind 4DT’s geometric 
calibration procedure. As Figure 2 shows, 
because all gesturing occurs in an interface 
component’s local neighborhood, or region 
of interest, we must compute a mapping from 
each region of interest to its projection in the 
video frames. We call this the interface com-
ponent mapping. The vision system monitors 
each localized video region of interest and 
performs gesture recognition using spatio-
temporal pattern recognition.

To solve the calibration problem, we use 
planar homographies. Similar to Rahul Suk-
thankar and his colleagues,6 we assume that 

Figure 1. The 4D Touchpad system with a standard flat-panel 
display.

4DT display surface

Stereo image frames

Example interface component

Homographic mappings

Figure 2. The principle of site interaction for the visual interaction cues (VICs) 
paradigm.
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the cameras’ intrinsic and extrinsic parame-
ters are unknown and that we can model the 
camera and projector optics using perspec-
tive projection. We can model the projection 
of a set of coplanar points by a linear trans-
formation, H, with 8 degrees of freedom 
(DOF). The coplanar constraint reduces the 
standard perspective projection model from 
11 to 8 DOF. This constrained projection—a 
planar homography—maps a point on a pro-
jective plane q ∈ P2 to a point in the image (or 
model plane) p ∈ P2: p = Hq.

We compute Hi∈{1,2} : P
2 → P2, which recti-

fies a camera image into model space. Let 
p̂j n∈{ } ∈1

2
… P  be an imaged point and let bj 

∈ P2 be the corresponding model point in 
rectified space. In our context, we assume 
that the model is constructed by a set of 
known points that have been rendered on 
the flat-panel display surface (a calibration 
pattern). For each camera, we can write 
b H p i j nj i jˆ , ,∈{ } ∧ ∈{ }1 2 1… .

We recover the two homographies using 
a least-squares method driven by these cor-
responding points.6 After solving for H1 and 
H2, the system is geometrically calibrated. 
Each homography provides enough informa-
tion for the interface component mapping, so 
we can localize each interface component (in 
model space) to a subregion of the incoming 
images. In practice, we rectify these images 
into the model space to simplify the subre-
gion geometry.

Applying the homographies warps both 
camera images such that all points on the 
display surface appear at the same position. 
For this homographic calibration, we can 
use a simple, region-based stereo calculation to detect 
contact with the surface, as Figure 3 illustrates. In prac-
tice, we perform a rapid, approximate stereo calcula-
tion in the volume above the surface for a richer gesture 
descriptor. 

Figure 4 shows a graph of our system’s depth resolu-
tion. The high depth discrimination is due to the stereo 
system’s wide baseline, and it greatly helps in recognition 
of the articulated hand gestures in use.

Color calibration and foreground segmentation
Because the interaction occurs in the volume directly 

above the interface, and the VICs system is aware of the 
rendered interface, we can perform background sub-
traction to segment objects of interest (for example, 
gesturing hands) in the interaction volume. We directly 
model the background’s appearance by color-calibrat-
ing the rendered scene and the images of the scene the 
cameras capture.

We model the background color using an affine model. 
We represent the color images from the cameras and the 
rendered scene in YUV format in which Y represents pixel 
luminance and U and V carry color information. YUV is 
efficient: It is the cameras’ native format, and converting 
to a different color space (such as RGB) is computationally 
wasteful. An affine model represents the transform from 
the color of a pixel in the rendered scene (s = [Ys, Us, Vs]

T) 
to the color of a pixel in the camera image (c = [Yc, Uc, 
Vc]

T). Using a 3 × 3 matrix A and a vector t, we represent 
this model using the equation c = As + t.

We learn the model parameters, A and t, using a color 
calibration procedure. We generate a set of N scene pat-
terns of uniform color, P  {P1 … PN}. To ensure the 
modeling’s accuracy over the entire color space, the col-
ors of the N calibration patterns occupy as much of the 
color space as possible.

We display each pattern Pi and capture an image 
sequence Si of the scene. We compute the corresponding 
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Figure 4. A graph showing the 4DT system’s depth resolution.

Figure 3. Geometric calibration in 4DT. (a) Rectified subimage 1, (b) rectified 
subimage 2,  and (c) overlaid images of the finger.

(a)	 (b)	 (c)	
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image Ci as the average of all the images in the sequence Si. 
The smoothing process is intended to reduce the imaging 
noise. For each pair of Pi and Ci, we randomly select M 
pairs of points from the scene and the images. We con-
struct a linear equation based on these N × M correspon-
dences and obtain a least-squares solution for the 12 model 
parameters.

We use image differencing to segment the foreground. 
Given background image IB and an input image IF, a 
simple way to segment the foreground is to subtract IB 
from IF. We compute the sum of absolute differences 
for each pixel’s color channels. If the SAD is above a 
certain threshold, we set the pixel to foreground. 

Figure 5 shows an example of the segmentation. 
Because we know that the foreground of interest will 
be skin color, we include an additional skin color 
model in the YUV signal’s UV color components. We 
choose a simple linear model in UV space. Basically, 
we collect skin pixels from segmented hand images 
and fit the model as a rectangle in the UV plane. 
The additional skin model improves the foreground  
segmentation’s robustness, as some brief experiments 
demonstrate.

To examine the segmentation’s robustness and stabil-
ity on our 4DT system, we train the affine color model 
using 343 unicolor image patterns that are evenly dis-
tributed in the color space. To test the learned affine 
model’s accuracy, we display more than 100 randomly 
generated color images and examine the resulting seg-
mentation. In this case, the ground truth is an image 
marked completely as background pixels. For both cam-
eras, the system achieves more than 98 percent segmen-
tation accuracy.

To test the linear skin model, we analyzed image 
sequences containing the hands of more than 10 people. 
During testing, we asked users to place a hand on the flat 
panel and keep it still. Next, we rendered a background that 
is known to perform well for skin segmentation and treated 
the resulting skin foreground segmentation as the ground 
truth. We asked users to keep their hand steady while we 
rendered a sequence of 200 randomly generated patterns. 
For each image, we counted the number of incorrectly seg-
mented pixels against the true segmentation. The overall 
skin segmentation accuracy is more than 93 percent.

Gesture recognition
The action of a user gesturing over an interface com-

ponent presents a sequence of visual cues—a gesture’s 
spatiotemporal signature.1,2,7 

Consider a standard push button with a known inter-
face component mapping for a single color camera. We 
can decompose the video of the user pushing the button 
into a set of discrete stages, as Figure 6 shows. 

 The user enters the local region. Visually, there 
is a notable disturbance in the local region’s 
appearance. A simple thresholded, image- 
differencing algorithm could detect the disturbance. 

 The finger moves onto the button, presenting itself as 
a large color blob in the local region. 

 The finger pushes the button. From one camera, it’s 
difficult to reliably detect the pushing (nothing physi-
cally changes as a result of the user action), but we 
can assume the pushing action has a certain, fixed 
duration. 

 The button is pressed and processing completes.

In practice, manually designing such parsers is tedious 
and it’s generally difficult to guarantee robust recogni-
tion. Therefore, we use pattern-recognition techniques to 
automatically learn a model for each low-level gesture’s 
spatiotemporal signature.

To define the feature space for use in recognition, we 
use an approximate block-matching stereo calculation 
procedure in the region of interest, as Figure 7 illustrates. 
Formally, let Il and Ir be a pair of rectified images of the 
scene. We split the images into tiles of equal size w × h. 
Here, w and h refer to the tile’s width and height, respec-
tively. Suppose we consider only a local area of size m × n 
patches, starting at patch (x0, y0). Given a discrete paral-
lax search range of [0, (p – 1) × w], we can characterize 
the scene using an m × n × p volume V as: 

V D I I

x m

x y z l x x y y r x x z y y, , , ,

,

= ( )
∈

+ +( ) + + +( )0 0 0 0

0 −−  ∈ −  ∈ − 1 0 1 0 1, , , ,y n z p

where D is some matching function like SAD or nor-
malized cross-correlation. Note that in this equation, 

1.

2.

3.

4.

Figure 5. An example of image segmentation based on color 
calibration. (a) The original pattern rendered on the screen, 
(b) the geometrically and chromatically transformed image 
of the rendered pattern, (c) the image actually captured by the 
camera, and (d) the segmented foreground image.

(a)	 (b)	

(c)	 (d)	
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the image index indicates 
a patch of the image, not 
a particular pixel. Under 
this scheme, the feature 
space is relatively high-
dimensional (on the order 
of hundreds). So, we use 
an unsupervised K-Means 
clustering algorithm to 
learn the feature space’s 
underlying structure. We 
choose K empirically (for 
example, 20), but mini-
mum description length 
methods could guide the 
choice.

Finally, to model the 
dynamics, we use standard 
forward hidden Markov 
models. The input to the 
model is a cluster index for 
each frame. The idea is to 
learn a battery of HMMs, 
one for each gesture, that 
we train using the Baum-
Welch algorithm. During 
recognition, we compute 
the sequence probability 
against each HMM in 
the battery. The model 
showing the highest prob-
ability above a threshold 
wins, and the system trig-
gers the corresponding 
gesture. The threshold, 
which is learned from the 
training data, prevents 
invalid sequences from 
always returning some 
gesture.

a natural-gesture 
language

A natural gesture lan-
guage implements the 
VICs interaction model on the 4DT platform. The 
gesture language comprises a vocabulary of individual 
gestures and a gesture grammar that promotes a natu-
ral interaction by grouping individual gesture words 
into gesture sentences.

Table 1 lists the vocabulary’s 14 individual gesture 
words. Grouping these individual words together 
into a comprehensive gesture language gives the 
nine composite gesture sentences in Table 2. We use 
a probabilistic bigram model to represent the ges-
ture language, and a greedy inference algorithm1 to 

perform recognition at interactive rates. The bigram 
model improves accuracy by constraining the prior 
distribution on the “next expected word” given the 
current gesture. The proposed gesture language 
defines a complete set of interactions that have direct 
counterparts in the real world.

To map the gestures into conventional windowing 
interfaces, we simply need to send events to the win-
dowing system for button presses and mouse drags. 
We map the pushing gesture to the button press event; 
the system invokes a “button press” when it recog-
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Figure 7. Examples of the image pair and extracted appearance feature. (a) Left and (b) right 
images of the scene, respectively. (c) The bottom layer of the feature volume (that is, V

x,y,z
 with  

z = 0 ). 

Visual cue processing

Idle
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Finger enters
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Cue 1
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Figure 6. Cue parsing example. (a-b) A finger enters the local region to press a button. A button 
press is represented as the sequence of three visual cues in the region of interest for an interface 
component. Independent image-processing modules detect the three cues, which are (c) 
background disturbance, (d) color, and (e) shape.
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nizes the push gesture and a “button release” upon 
silence. Similarly, we use the moving gesture for drag-
ging. When the system recognizes the pick gesture, it 
invokes a “button press.” It issues “motion notify” 
events during the hand’s translational tracking and 

a “button release” upon silence. The other seven ges-
tures in our language represent novel interactions that 
can potentially enhance the functionality of everyday 
computing.

To examine the accuracy and utility of our plat-
form and gesture language, we performed a study 
with 16 users with the entire language. To the best of 
our knowledge, this is the largest gesture vocabulary 
attempted for such a large user base. We implemented 
efficient approaches for modeling both low-level and 
composite gestures to achieve interactive processing so 
that we could integrate our gesture interface into aver-
age computation environments.

We used both text and video cuing to train the users 
before recording their gesture sequences. We used 
more than 150 labeled sequences to train the high-
level gesture recognition and 283 labeled sequences 
in testing. Table 3 shows the recognition results on 
our testing set. We say a sequence is misrecognized 
when any one of its constituent individual gestures is 
incorrectly classified (a conservative measure). These 
results show that our high-level gesture model accu-
rately recognizes continuous gestures over a large 
group of users.

During the experiment, we also asked participants 
to complete a feedback form about our gesture system. 
They all agreed that our gesture vocabulary is easy 
to remember and learn. When asked about the con-
venience after prolonged use—a factor that current 
research often ignores—half of the subjects thought 
that the gesture system is comparable to a mouse. Six 
subjects responded that they felt more tired than when 
using a mouse, and two subjects that they felt less 
tired. Seven subjects thought that our gesture-based 
interface is more convenient and comfortable than 
GUIs with a mouse, seven regarded them as compa-
rable, and two subjects thought our system is more 
awkward because they had to first learn how to use it. 
Overall, 14 subjects (88 percent) considered using our 
platform and natural-gesture language comparable 
to or more convenient than traditional mouse-based 
GUIs.

O ur research represents a concrete step toward 
natural human-centered computing. To achieve 
this ultimate goal, we continue to explore the 

information-rich video-based interaction. In our cur-
rent work, we’re exploring techniques to build smart 
environments in which any surface has the potential to 
dynamically become part of the interface. We’re also 
investigating dynamic user modeling that will let the 
computer system recognize and adapt to individual 
users based on habit and style. We expect this adapt-
ability to be a core characteristic of future human-
centered computing systems. 

Table 1. Individual gesture vocabulary.

Gesture	 Description

Push  Finger on center
Press-left  Finger on left edge
Press-right Finger on right edge
Pick Index finger and thumb half-closed
Drop Index finger and thumb open
Grab Index finger and thumb close together
Stop An open hand
Silence No recognizable gesture
Twist Clockwise twisting
Twist-anti Counterclockwise twisting
Flip Mimics flipping a coin over
Move Tracks two translational DOF
Rotate Tracks one rotational DOF
Resize Tracks two DOF of scale

Table 2. An intuitive set of gesture sentences.

Gesture	 Sentence

Pushing  Push ➝ Silence
Twisting Press-right ➝ Twist ➝ Silence
Twisting-anti Press-left ➝ Twist-anti ➝ Silence
Dropping Pick ➝ Drop ➝ Silence
Flipping Pick ➝ Flip ➝ Silence
Moving Pick ➝ Move ➝ Drop ➝ Silence
Rotating Pick ➝ Rotate ➝ Drop ➝ Silence
Stopping Stop ➝ Silence
Resizing Grab ➝ Resize ➝ Stop ➝ Silence

Table 3. Recognition results of composite gestures.

Gesture	 Sentence	 Percentage	correct

Pushing  35 97.14
Twisting 34 100.00
Twisting-anti 28 96.42
Dropping 29 96.55
Flipping 32 96.89
Moving 35 94.29
Rotating 27 92.59
Stopping 33 100.00
Resizing 30 96.67
Total	 283	 96.47
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