
C
omputing is an integral part of our daily
routines. However, despite numerous tech-
nological advances, how we interact with
computers has changed little in the past three
decades. Current systems use conventional

input devices, such as a mouse, that limit functionality
and often require applications to define a complex, non-
intuitive interaction language.

In this new age of human-centered computing, human-
computer interaction (HCI) must look to new technolo-
gies for building modern, natural, and intuitive inter-
faces. Video is one such technology. Computer vision
techniques could provide far richer interactivity than
conventional devices. With the video input signal, sys-
tems could use large-scale, unencumbered motion from
multiple concurrent users leading to more direct, robust,
and effective computing.

Using video in HCI is difficult, as evidenced by the
absence of video-based interaction systems in produc-
tion. Some research systems exist, however, as the
“Examples of Video-Based HCI” sidebar describes.1,2

The visual interaction cues (VICs) paradigm uses a
shared perceptual space between the user and the com-
puter. In the shared space, the computer monitors the
environment for sequences of expected user activity
at locations corresponding to interface components.

Approaching the problem this way removes the need to
globally track and model the user. Instead, the system
models the sequence of localized visual cues that cor-
respond to the user interacting with various interface
elements. The 4D Touchpad is a video-based comput-
ing platform based on the VICs paradigm. Together, the
VICs paradigm and the 4DT provide a rich new set of
techniques that bring the human to the center of HCI
design and surpass some restrictions of conventional
interface technology.

VICs interaction model
An interaction model is a set of principles, rules, and

properties guiding an interface’s design.3 The model
describes how to combine interaction techniques both
meaningfully and consistently and defines the interac-
tion’s look and feel from the user’s perspective.

The current windows, icons, menus, and pointers
(WIMP)4 interface technology is a realization of the
direct manipulation interaction model.5 The four prin-
ciples of direct manipulation are

continuous representation of the objects of interest;
physical actions (movement and selection by mouse,
joystick, touch screen, and so on) or labeled button
presses instead of complex syntax;

•
•

A Practical Paradigm
and Platform for Video-
Based Human-Computer
Interaction

New technologies that use multimodal input, human experience, and modern hardware’s full

computational power could mitigate current limitations in human-computer interaction. The

4D Touchpad, a video-based interaction platform, makes robust, natural interaction between

humans and computers possible.

Jason J. Corso, Guangqi Ye, Darius Burschka, and Gregory D. Hager
Johns Hopkins University

R E S E A R C H F E A T U R E

	 48	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00 © 2008 IEEE

	 May 2008	 49

rapid, incremental, reversible operations for which
the impact on the object of interest is immediately
visible; and
a layered or spiral approach to learning that permits
use with minimal knowledge.

The WIMP implementation of the direct interaction
model brought proficiency to a broad spectrum of users.
However, WIMP’s use of a pointing device to map the
user to the interface has notable drawbacks:

It limits the number of active users to one at any
given time.
It restricts the actions a user can perform on an
interface component to click and drag.
Because of the limited set of actions, the user must
learn and perform a complex sequence of actions to
issue some interface commands.

The restrictive mapping often results in the user
manipulating the interface instead of the application
object,3 and greatly restricts the interface’s naturalness
and intuitiveness. Using video as input removes the need
for such mediation. It lets users bring real-world experi-
ence to help make intuitive HCI possible. Our approach
extends the direct interaction model to better use future
interfaces’ multimodal nature.

Our model follows four principles.
First, it recognizes two classes of interface compo-

nents: direct and indirect objects.
Direct objects should be continuously viewable to the

user and functionally rendered. They should have a real-
world counterpart, and their use in the interface should
mimic their real-world use. A simple push button is a
good example of a direct object: In the real world and the
interface, buttons are visually similar and are activated
(pushed) in the same way.

Indirect objects, or interface tools and components,
might or might not have a real-world counterpart. Indi-
rect objects should be obvious to the user, and a stan-
dard interaction language should govern their use. An
example of such an interface tool is a corner tab that a
user can grab and use to resize the window.

The second principle is sited interaction. All physi-
cal interaction with the system should be localized to
specific areas (or volumes) in the interface to reduce the
ambiguity of the user’s intention. Generally, sited inter-
action implies that all interaction involves the interface
elements, and the system can monitor the local volume
around each element for user gestures. For the button
example, the system need not visually track the user’s
hand around the entire environment. Instead, it can
monitor only the local volume around the button, wait-
ing for the user’s hand to enter and press.

The third principle is feedback-reinforced interaction.
Because the interaction is essentially a dialog between the

•

•

•

•

•

user and the computer system (with little or no media-
tion), the system must supply continuous feedback to the
user throughout the interaction and immediately there-

Examples of Video-Based HCI
Most video-based approaches rely on visual-track-

ing and template-recognition algorithms as the core
technology. PFinder

1
 uses a statistics-based segmen-

tation technique to detect and track a human user
as a set of connected “blobs.” Dmitry Gorodnichy
and Gerhard Roth

2
 developed an algorithm to track

the face (the nose) and map its motion to the cur-
sor. Christian von Hardenberg and Francois Berard

3

developed a simple, real-time finger-finding, track-
ing, and hand posture recognition algorithm and
incorporated it into perceptual user interface set-
tings. ZombiBoard

4
 and BrightBoard

5
 extend classic

2D point-and-click-style user interfaces to desktop-
and blackboard-style interactions. Visual Panel

6

tracks an arbitrary planar surface and a fingertip for
use in 2D and 3D environments. The Everywhere
Display project

7
 uses a custom projector system to

render interface components at arbitrary locations
in the environment and site-localized image cues for
gesture recognition.

References
	1.	 C.R. Wren et al., “Pfinder: Real-Time Tracking of the

Human Body,” IEEE Trans. Pattern Analysis and Machine
Intelligence (TPAMI), vol. 19, no. 7, 1997, pp. 780-785.

	2.	 D.O. Gorodnichy and G. Roth, “Nouse ‘Use Your Nose
as a Mouse’—Perceptual Vision Technology for Hands-
Free Games and Interfaces,” Image and Vision Comput-
ing, vol. 22, no. 12, 2004, pp. 931-942.

	3.	 C. von Hardenberg and F. Berard, “Bare-Hand Human-
Computer Interaction,” Proc. Workshop Perceptual User
Interfaces, ACM Press, 2001, pp. 113-120.

	4.	 T.P Moran et al., “Design and Technology for Collab-
orage: Collaborative Collages of Information on Physi-
cal Walls,” Proc. ACM Symp. User Interface Software and
Technology (UIST), ACM Press, 1999, pp. 197-206.

	5.	 Q. Stafford-Fraser and P. Robinson, “BrightBoard: A
Video-Augmented Environment,” Proc. Conf. Human
Factors in Computing Systems (CHI), ACM Press, 1996,
pp. 134-141.

	6.	 Z. Zhang et al., “Visual Panel: Virtual Mouse, Key-
board, and 3D Controller with an Ordinary Piece of
Paper,” Proc. Workshop Perceptual User Interfaces, ACM
Press, 2001, pp. 1-8.

	7.	 R. Kjeldsen, A. Levas, and C. Pinhanez, “Dynami-
cally Reconfigurable Vision-Based User Interfaces,”
Proc. Int’l Conf. Computer Vision Systems, LNCS 2626,
Springer, 2003, pp. 323-332.

	 50	 Computer

after. For the button example, the system could highlight
the button whenever it notices activity on it. This gives
the user immediate feedback about the computer’s state,
and indicates that the user might need to adjust a gesture
for successful recognition.

Finally, we separate the learning involved in using the
system into two distinct stages.

In the first stage, the user must learn the intuitive
set of initial techniques and procedures for interacting
with the system. Essentially, new users should be able to
apply their real-world experience to immediately begin
using the direct interaction objects. For example, a user’s
knowledge of button pushing in the real world directly
transfers to the interface.

In the second stage, duplex learning ensues. In this
stage, the system adapts to the user, and the user can
learn more complex interaction techniques. We expect
that such duplex learning will be an integral part of
future interfaces centered on human experience. This
learning is necessary, for example, in an interface com-
ponent, such as a scroll bar, that has no (or weak) trans-
lation to the real world. A user might have to physically
grasp the scroll bar handle with a thumb and forefinger,
then translate it up and down. This is a more complex
situation, and the user will have to learn how to properly
grasp the handle. However, because human-centered
computing is the goal, the computer system should also
adapt to the user’s grasp-style for a more natural and
robust interaction experience.

The VICs interaction model adds constraints to enforce
the naturalness of the interaction between the user and a
video-equipped computer system. We distinguish between
direct and indirect interface objects to avoid the problem
of the user manipulating the interface rather than the
application objects and to simplify the learning required
to use the interface. For example, a common real-world
interface object is a circular dial often used to adjust the
volume in a stereo system. To use such a dial in the real
world, a user grasps it and rotates it. Naturally, the user
would expect an interface dial to operate the same way.

4DT: A VICS platform
Our video-based human-centered computing system,

shown in Figure 1, directs a pair of wide base-
line cameras at the interaction surface, which
is a standard flat-panel display laid flat.

Geometric calibration
The sited-interaction principle is the

motivating factor behind 4DT’s geometric
calibration procedure. As Figure 2 shows,
because all gesturing occurs in an interface
component’s local neighborhood, or region
of interest, we must compute a mapping from
each region of interest to its projection in the
video frames. We call this the interface com-
ponent mapping. The vision system monitors
each localized video region of interest and
performs gesture recognition using spatio-
temporal pattern recognition.

To solve the calibration problem, we use
planar homographies. Similar to Rahul Suk-
thankar and his colleagues,6 we assume that

Figure 1. The 4D Touchpad system with a standard flat-panel
display.

4DT display surface

Stereo image frames

Example interface component

Homographic mappings

Figure 2. The principle of site interaction for the visual interaction cues (VICs)
paradigm.

	 May 2008	 51

the cameras’ intrinsic and extrinsic parame-
ters are unknown and that we can model the
camera and projector optics using perspec-
tive projection. We can model the projection
of a set of coplanar points by a linear trans-
formation, H, with 8 degrees of freedom
(DOF). The coplanar constraint reduces the
standard perspective projection model from
11 to 8 DOF. This constrained projection—a
planar homography—maps a point on a pro-
jective plane q ∈ P2 to a point in the image (or
model plane) p ∈ P2: p = Hq.

We compute Hi∈{1,2} : P
2 → P2, which recti-

fies a camera image into model space. Let
p̂j n∈{ } ∈1

2
… P be an imaged point and let bj

∈ P2 be the corresponding model point in
rectified space. In our context, we assume
that the model is constructed by a set of
known points that have been rendered on
the flat-panel display surface (a calibration
pattern). For each camera, we can write
b H p i j nj i jˆ , ,∈{ } ∧ ∈{ }1 2 1… .

We recover the two homographies using
a least-squares method driven by these cor-
responding points.6 After solving for H1 and
H2, the system is geometrically calibrated.
Each homography provides enough informa-
tion for the interface component mapping, so
we can localize each interface component (in
model space) to a subregion of the incoming
images. In practice, we rectify these images
into the model space to simplify the subre-
gion geometry.

Applying the homographies warps both
camera images such that all points on the
display surface appear at the same position.
For this homographic calibration, we can
use a simple, region-based stereo calculation to detect
contact with the surface, as Figure 3 illustrates. In prac-
tice, we perform a rapid, approximate stereo calcula-
tion in the volume above the surface for a richer gesture
descriptor.

Figure 4 shows a graph of our system’s depth resolu-
tion. The high depth discrimination is due to the stereo
system’s wide baseline, and it greatly helps in recognition
of the articulated hand gestures in use.

Color calibration and foreground segmentation
Because the interaction occurs in the volume directly

above the interface, and the VICs system is aware of the
rendered interface, we can perform background sub-
traction to segment objects of interest (for example,
gesturing hands) in the interaction volume. We directly
model the background’s appearance by color-calibrat-
ing the rendered scene and the images of the scene the
cameras capture.

We model the background color using an affine model.
We represent the color images from the cameras and the
rendered scene in YUV format in which Y represents pixel
luminance and U and V carry color information. YUV is
efficient: It is the cameras’ native format, and converting
to a different color space (such as RGB) is computationally
wasteful. An affine model represents the transform from
the color of a pixel in the rendered scene (s = [Ys, Us, Vs]

T)
to the color of a pixel in the camera image (c = [Yc, Uc,
Vc]

T). Using a 3 × 3 matrix A and a vector t, we represent
this model using the equation c = As + t.

We learn the model parameters, A and t, using a color
calibration procedure. We generate a set of N scene pat-
terns of uniform color, P  {P1 … PN}. To ensure the
modeling’s accuracy over the entire color space, the col-
ors of the N calibration patterns occupy as much of the
color space as possible.

We display each pattern Pi and capture an image
sequence Si of the scene. We compute the corresponding

35

30

25

20

15

10

5

0

0 5 10 15
Depth of plane (mm)

20 25 30

D
is

pa
rit

y
(p

x)

Figure 4. A graph showing the 4DT system’s depth resolution.

Figure 3. Geometric calibration in 4DT. (a) Rectified subimage 1, (b) rectified
subimage 2, and (c) overlaid images of the finger.

(a) (b) (c)

	 52	 Computer

image Ci as the average of all the images in the sequence Si.
The smoothing process is intended to reduce the imaging
noise. For each pair of Pi and Ci, we randomly select M
pairs of points from the scene and the images. We con-
struct a linear equation based on these N × M correspon-
dences and obtain a least-squares solution for the 12 model
parameters.

We use image differencing to segment the foreground.
Given background image IB and an input image IF, a
simple way to segment the foreground is to subtract IB
from IF. We compute the sum of absolute differences
for each pixel’s color channels. If the SAD is above a
certain threshold, we set the pixel to foreground.

Figure 5 shows an example of the segmentation.
Because we know that the foreground of interest will
be skin color, we include an additional skin color
model in the YUV signal’s UV color components. We
choose a simple linear model in UV space. Basically,
we collect skin pixels from segmented hand images
and fit the model as a rectangle in the UV plane.
The additional skin model improves the foreground
segmentation’s robustness, as some brief experiments
demonstrate.

To examine the segmentation’s robustness and stabil-
ity on our 4DT system, we train the affine color model
using 343 unicolor image patterns that are evenly dis-
tributed in the color space. To test the learned affine
model’s accuracy, we display more than 100 randomly
generated color images and examine the resulting seg-
mentation. In this case, the ground truth is an image
marked completely as background pixels. For both cam-
eras, the system achieves more than 98 percent segmen-
tation accuracy.

To test the linear skin model, we analyzed image
sequences containing the hands of more than 10 people.
During testing, we asked users to place a hand on the flat
panel and keep it still. Next, we rendered a background that
is known to perform well for skin segmentation and treated
the resulting skin foreground segmentation as the ground
truth. We asked users to keep their hand steady while we
rendered a sequence of 200 randomly generated patterns.
For each image, we counted the number of incorrectly seg-
mented pixels against the true segmentation. The overall
skin segmentation accuracy is more than 93 percent.

Gesture recognition
The action of a user gesturing over an interface com-

ponent presents a sequence of visual cues—a gesture’s
spatiotemporal signature.1,2,7

Consider a standard push button with a known inter-
face component mapping for a single color camera. We
can decompose the video of the user pushing the button
into a set of discrete stages, as Figure 6 shows.

	 The user enters the local region. Visually, there
is a notable disturbance in the local region’s
appearance. A simple thresholded, image-
differencing algorithm could detect the disturbance.

	 The finger moves onto the button, presenting itself as
a large color blob in the local region.

	 The finger pushes the button. From one camera, it’s
difficult to reliably detect the pushing (nothing physi-
cally changes as a result of the user action), but we
can assume the pushing action has a certain, fixed
duration.

	 The button is pressed and processing completes.

In practice, manually designing such parsers is tedious
and it’s generally difficult to guarantee robust recogni-
tion. Therefore, we use pattern-recognition techniques to
automatically learn a model for each low-level gesture’s
spatiotemporal signature.

To define the feature space for use in recognition, we
use an approximate block-matching stereo calculation
procedure in the region of interest, as Figure 7 illustrates.
Formally, let Il and Ir be a pair of rectified images of the
scene. We split the images into tiles of equal size w × h.
Here, w and h refer to the tile’s width and height, respec-
tively. Suppose we consider only a local area of size m × n
patches, starting at patch (x0, y0). Given a discrete paral-
lax search range of [0, (p – 1) × w], we can characterize
the scene using an m × n × p volume V as:

V D I I

x m

x y z l x x y y r x x z y y, , , ,

,

= ()
∈

+ +() + + +()0 0 0 0

0 −−  ∈ −  ∈ − 1 0 1 0 1, , , ,y n z p

where D is some matching function like SAD or nor-
malized cross-correlation. Note that in this equation,

1.

2.

3.

4.

Figure 5. An example of image segmentation based on color
calibration. (a) The original pattern rendered on the screen,
(b) the geometrically and chromatically transformed image
of the rendered pattern, (c) the image actually captured by the
camera, and (d) the segmented foreground image.

(a) (b)

(c) (d)

	 May 2008	 53

the image index indicates
a patch of the image, not
a particular pixel. Under
this scheme, the feature
space is relatively high-
dimensional (on the order
of hundreds). So, we use
an unsupervised K-Means
clustering algorithm to
learn the feature space’s
underlying structure. We
choose K empirically (for
example, 20), but mini-
mum description length
methods could guide the
choice.

Finally, to model the
dynamics, we use standard
forward hidden Markov
models. The input to the
model is a cluster index for
each frame. The idea is to
learn a battery of HMMs,
one for each gesture, that
we train using the Baum-
Welch algorithm. During
recognition, we compute
the sequence probability
against each HMM in
the battery. The model
showing the highest prob-
ability above a threshold
wins, and the system trig-
gers the corresponding
gesture. The threshold,
which is learned from the
training data, prevents
invalid sequences from
always returning some
gesture.

A natural-gesture
language

A natural gesture lan-
guage implements the
VICs interaction model on the 4DT platform. The
gesture language comprises a vocabulary of individual
gestures and a gesture grammar that promotes a natu-
ral interaction by grouping individual gesture words
into gesture sentences.

Table 1 lists the vocabulary’s 14 individual gesture
words. Grouping these individual words together
into a comprehensive gesture language gives the
nine composite gesture sentences in Table 2. We use
a probabilistic bigram model to represent the ges-
ture language, and a greedy inference algorithm1 to

perform recognition at interactive rates. The bigram
model improves accuracy by constraining the prior
distribution on the “next expected word” given the
current gesture. The proposed gesture language
defines a complete set of interactions that have direct
counterparts in the real world.

To map the gestures into conventional windowing
interfaces, we simply need to send events to the win-
dowing system for button presses and mouse drags.
We map the pushing gesture to the button press event;
the system invokes a “button press” when it recog-

11
22 33 4

4 5
5

50

40

30

20

10

0

11
22 3

3 4
4 5

5

50

40

30

20

10

0

11
22 33 4

4 5
5

50

40

30

20

10

0

(a) (c) (b)

Figure 7. Examples of the image pair and extracted appearance feature. (a) Left and (b) right
images of the scene, respectively. (c) The bottom layer of the feature volume (that is, V

x,y,z
 with

z = 0).

Visual cue processing

Idle
(a)

Finger enters
(b)

Cue 1
(c)

Cue 2
(d)

Cue 3
(e)

Figure 6. Cue parsing example. (a-b) A finger enters the local region to press a button. A button
press is represented as the sequence of three visual cues in the region of interest for an interface
component. Independent image-processing modules detect the three cues, which are (c)
background disturbance, (d) color, and (e) shape.

	 54	 Computer

nizes the push gesture and a “button release” upon
silence. Similarly, we use the moving gesture for drag-
ging. When the system recognizes the pick gesture, it
invokes a “button press.” It issues “motion notify”
events during the hand’s translational tracking and

a “button release” upon silence. The other seven ges-
tures in our language represent novel interactions that
can potentially enhance the functionality of everyday
computing.

To examine the accuracy and utility of our plat-
form and gesture language, we performed a study
with 16 users with the entire language. To the best of
our knowledge, this is the largest gesture vocabulary
attempted for such a large user base. We implemented
efficient approaches for modeling both low-level and
composite gestures to achieve interactive processing so
that we could integrate our gesture interface into aver-
age computation environments.

We used both text and video cuing to train the users
before recording their gesture sequences. We used
more than 150 labeled sequences to train the high-
level gesture recognition and 283 labeled sequences
in testing. Table 3 shows the recognition results on
our testing set. We say a sequence is misrecognized
when any one of its constituent individual gestures is
incorrectly classified (a conservative measure). These
results show that our high-level gesture model accu-
rately recognizes continuous gestures over a large
group of users.

During the experiment, we also asked participants
to complete a feedback form about our gesture system.
They all agreed that our gesture vocabulary is easy
to remember and learn. When asked about the con-
venience after prolonged use—a factor that current
research often ignores—half of the subjects thought
that the gesture system is comparable to a mouse. Six
subjects responded that they felt more tired than when
using a mouse, and two subjects that they felt less
tired. Seven subjects thought that our gesture-based
interface is more convenient and comfortable than
GUIs with a mouse, seven regarded them as compa-
rable, and two subjects thought our system is more
awkward because they had to first learn how to use it.
Overall, 14 subjects (88 percent) considered using our
platform and natural-gesture language comparable
to or more convenient than traditional mouse-based
GUIs.

O ur research represents a concrete step toward
natural human-centered computing. To achieve
this ultimate goal, we continue to explore the

information-rich video-based interaction. In our cur-
rent work, we’re exploring techniques to build smart
environments in which any surface has the potential to
dynamically become part of the interface. We’re also
investigating dynamic user modeling that will let the
computer system recognize and adapt to individual
users based on habit and style. We expect this adapt-
ability to be a core characteristic of future human-
centered computing systems.

Table 1. Individual gesture vocabulary.

Gesture	 Description

Push 	 Finger on center
Press-left 	 Finger on left edge
Press-right	 Finger on right edge
Pick	 Index finger and thumb half-closed
Drop	 Index finger and thumb open
Grab	 Index finger and thumb close together
Stop	 An open hand
Silence	 No recognizable gesture
Twist	 Clockwise twisting
Twist-anti	 Counterclockwise twisting
Flip	 Mimics flipping a coin over
Move	 Tracks two translational DOF
Rotate	 Tracks one rotational DOF
Resize	 Tracks two DOF of scale

Table 2. An intuitive set of gesture sentences.

Gesture	 Sentence

Pushing 	 Push ➝ Silence
Twisting	 Press-right ➝ Twist ➝ Silence
Twisting-anti	 Press-left ➝ Twist-anti ➝ Silence
Dropping	 Pick ➝ Drop ➝ Silence
Flipping	 Pick ➝ Flip ➝ Silence
Moving	 Pick ➝ Move ➝ Drop ➝ Silence
Rotating	 Pick ➝ Rotate ➝ Drop ➝ Silence
Stopping	 Stop ➝ Silence
Resizing	 Grab ➝ Resize ➝ Stop ➝ Silence

Table 3. Recognition results of composite gestures.

Gesture	 Sentence	 Percentage correct

Pushing 	 35	 97.14
Twisting	 34	 100.00
Twisting-anti	 28	 96.42
Dropping	 29	 96.55
Flipping	 32	 96.89
Moving	 35	 94.29
Rotating	 27	 92.59
Stopping	 33	 100.00
Resizing	 30	 96.67
Total	 283	 96.47

	 May 2008	 55

References
	1.	 J.J. Corso, G. Ye, and G.D. Hager, “Analysis of Composite

Gestures with a Coherent Probabilistic Graphical Model,”
Virtual Reality, vol. 8, no. 4, 2005, pp. 242-252.

	2.	 G. Ye et al., “VICs: A Modular HCI Framework Using Spatio-
Temporal Dynamics,” Machine Vision and Applications, vol.
16, no. 1, 2004, pp. 13-20.

	3.	 M. Beaudouin-Lafon, “Instrumental Interaction: An Interac-
tion Model for Designing Post-WIMP User Interfaces,” Proc.
SIGCHI Conf. Human Factors in Computing Systems, ACM
Press, 2000, pp. 446-453.

	4.	 A. van Dam, “Post-WIMP User Interfaces,” Comm. ACM,
vol. 40, no. 2, 1997, pp. 63-67.

	5.	 B. Shneiderman, “Direct Manipulation: A Step beyond Pro-
gramming Languages,” Computer, Aug. 1983, pp. 57-69.

	6.	 R. Sukthankar, R.G. Stockton, and M.D. Mullin, “Smarter
Presentations: Exploiting Homography in Camera-Projector
Systems,” Proc. Int’l Conf. Computer Vision, vol. 1, IEEE CS
Press, 2001, pp. 247-253.

	 7.	 G. Ye, J.J. Corso, and G.D. Hager, “Visual Modeling of
Dynamic Gestures Using 3D Appearance and Motion
Features,” Real-Time Vision for Human-Computer
Interaction, B. Kisacanin, V. Pavlovic, and T.S. Huang, eds.,
Springer, 2005, pp. 103-120.

Jason J. Corso is an assistant professor of computer sci-
ence and engineering at the University at Buffalo, the State
University of New York. His research interests include
computer and medical vision, computational biomedi-
cine, machine intelligence, statistical learning, perceptual

interfaces, and smart environments. Corso received a PhD
in computer science from the Johns Hopkins University.
He is a member of the IEEE and the ACM. Contact him
at jcorso@cse.buffalo.edu.

Guangqi Ye is a staff software engineer at PayPal, an eBay
company. His research interests include human-computer
interaction, machine learning, and computer vision. He
received a PhD in computer science from the Johns Hop-
kins University. He is a member of the IEEE. Contact him
at gye@jhu.edu.

Darius Burschka is an associate professor of computer
science at the Technische Universität München, where
he heads the computer vision and perception group. His
research interests include sensor systems for mobile robots
and human-computer interfaces, vision-based naviga-
tion, and 3D reconstruction from sensor data. Burschka
received a PhD in electrical and computer engineering
from the Technische Universität München. He is a mem-
ber of the IEEE. Contact him at burschka@cs.tum.edu.

Gregory D. Hager is a professor of computer science at
the Johns Hopkins University and the deputy director of
the Center for Computer-Integrated Surgical Systems
and Technology (www.cisst.org). His research interests
include computer vision and robotics. Hager received a
PhD in computer science from the University of Pennsyl-
vania. He is a Fellow of the IEEE. Contact him at hager@
cs.jhu.edu.

� Monthly updates highlight the latest additions to the digital library
 from all 23 peer-reviewed Computer Society periodicals.

� New links access recent Computer Society conference publications.

� Sponsors offer readers special deals on products and events.

Available for FREE to members, students, and computing professionals.

Visit http://www.computer.org/services/csdl_subscribe

For the
IEEE
Computer Society
Digital Library
E-Mail Newsletter

Si
gn

 U
p

To
da

y

