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Abstract

Building facade detection is an important problem in corepwision, with applications in mobile robotics and semastene
understanding. In particular, mobile platform localipatand guidance in urban environments can be enabled withiateanodels
of the various building facades in a scene. Toward that eredpresent a system for detection, segmentation, and paamet
estimation of building facades in stereo imagery. The psedanethod incorporates multilevel appearance and digpeatures
in a binary discriminative model, and generates a set ofidat planes by sampling and clustering points from the anaigh
Random Sample Consensus (RANSAC), using local normal astgerived from Principal Component Analysis (PCA) toinf
the planar models. These two models are incorporated into-detyer Markov Random Field (MRF): an appearance- andadlisp
based discriminative classi er at the mid-level, and a getiin model to segment the building pixels into facades atftigh-
level. By using object-speci c stereo features, our distnative classi er is able to achieve substantially highecuracy than
standard boosting or modeling with only appearance-bassdifes. Furthermore, the results of our MRF classi catiwlicate a
strong improvement in accuracy for the binary building dgts problem and the labeled planar surface models pravigeod
approximation to the ground truth planes.

Keywords: stereo vision, mobile robot perception, hierarchical Markandom eld, building facade detection, model-based
stereo vision

1. Introduction disparity map. Since most buildings have planar facades, an
many mobile robotic platforms are equipped with stereo cam-
Accurate scene labeling can enable applications that rely Oeras, neither of these assumptions is particularly réisic
the semantic information in an image to make high level de- |, this paper, we propose a method for fully automatic build-
cisions. Our goal of labeling building facades is motivateding facade imaging—detection, segmentation, and paramete
by the problem of mobile robot localization in GPS-denied ar gstimation—for mobile stereo vision platforms. For an inpu
eas, which commonly arises i_n urban environments. Besidegereo image and disparity map, we desire a pixelwise segmen
GPS, other cues from the environment such as compass heaggion of the major building facades in the scene, as welk geo
ings and Time-Di erence-Of-Arrival (TDOA) of radio signals, - metric models for each of these planar facades. Our approach
along with vision-based localization/[1], can enable sean proceeds in three main steps: discriminative modeling with
methods of navigation in these areas. However, these methyi appearance and disparity features, candidate plaee-de
ods su er from low accuracy and are subject to interferenceyjgn, through PCA and RANSAC, and energy minimization of
orin the case of vision-based localization, struggle witblo-  \RF potentials. A diagram of the work ow for candidate plane
sion and clutter in the scene. The vision-based localin@®  yetection and high-level labeling is provided in Figl 1. We
proach being developed by our group depends on the detectiQRake no assumptions on the quality of the input data, and in
of buildings within the eld of view of the cameras on a mobile 5t many of our methods were driven by the need to deal with
platform as a means to reduce theeets of clutter on local-  the missing or inaccurate data that is common to single-view
ization, and to enable navigation based on static, sen@igtic gtereq imagery. Consequently, we adopt a top-down approach
meaningful landmarks detected in the scene. Within thi®pro tting planes globally in the image, rather than a bottom-
lem, accgrate detection and labeling pf the facades is it!_ipbr approach that would ster from missing disparity data on the
for the high level localization and guidance tasks. We i@Str |ocq) scale. This is also directed toward our goal of segimgnt
our approach to identifying only planar building facadesd a {he major facades in the scene, and not every planar surface.
we require image input from a stereo source that produces @ oyr experiments, we use ethe-shelf single-view stereo data
produced by a system-on-a-chip camera that computes dispar
T — ity in real time, and we acknowledge that the maps mayesu
Present addresstniversity of Hawai'i at Manoa, Department of Me-

chanical Engineering, 2540 Dole St.-Holmes Hall 310, Hohal HI 96822 from both missing data and rahge-uncgrta|nty. o
jadd@hawaii.edu Our work leverages stereo information from the beginning.
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Figure 1: Work ow of the proposed method. The proposed BMAclassi er computes a probability map for binary classiticen of pixels into buildings
and non-buildings (Step 1, Secl 3). We then generate a seindidate planes with parameter estimates using a RANSAGhtlodt incorporates local PCA
normal approximations (Steps 2-4, SEC] 4.2). Finally, weesa two-layer MRF to compute labelings for the binary dlassion at the mid-level and for facade
segmentation at the high-level (Step 5, $ed 4.3).

Our discriminative model is generated from an extensiomeft orientations. From these sets of points, we are able to atim
Boosting on Multilevel Aggregates (BMA) methdd [2] that in- the parameters of the primary planes in the image.

cludes stereo features [3]. Boosting on Multilevel Aggtega ~ We then incorporate both of these sources of information
uses hierarchical aggregate regions coarsened from thgeimainto a Bayesian inference framework using a two-layer Marko
based on pixel anities, as well as a variety of high-level fea- Random Field (MRF). We represent the mid-level MRF as an
tures that can be computed from them, to learn a model withinsing model, a layer of binary hidden variables represerttie

an AdaBoost|[4] two- or multi-class discriminative modefin  answer to the question “Is this pixel part of a building fae2d
framework. Since many mobile robot platforms are equippedrhis layer uses the discriminative classi cation probipis a
with stereo cameras, and can thus compute a disparity map f@fior, and e ectively smooths the discriminative classi cation
their eld of view, our approach of using statistical feasrof  into coherent regions. The high-level representation istasP
the disparity map is a natural extension of the BMA approachnodel, where each hidden variable represents the labefing o
given our intended platform. Since buildings tend to hae pl the associated pixel with one of the candidate planes, dr wit
nar surfaces on their exteriors, we use the stereo featst no plane if it is not part of a building. For each pixel, we con-
ploit the property that planes can be represented as linear f  sider its image coordinates and disparity value, and eteatha
tions in disparity space and thus have constant spatialred  tness of each candidate plane to that pixel, and incorpoitat
[5]. We will refer to this extension of BMA to disparity fea#s  into the energy of labeling that pixel as a part of that plake.

as BMA+D. We use the discriminative classi cation probabil- more in-depth discussion of our modeling and labeling matho
ity as a prior when performing inference for the facade label can be found in Sectidd 4.

In order to associate each building pixel with a particudar f ~ The primary contributions of this paper are a novel approach
cade, we must have a set of candidate planes from which to ite discriminative modeling for building facade detectidratt
fer the best t. We generate these planes by sampling theémadeverages stereo data, a top-down plane tting procedutaen
and performing Principal Component Analysis (PCA) on eachdisparity map, and a novel Markov Random Field for fusing the
local neighborhood to approximate the local surface noahal appearance model from the discriminative classi catiod tre
the sampled points. We then t models to those points by iterageometric model from the plane tting step to produce a facad
tively using Random Sample Consensus (RANSAC) [6] to nd segmentation of a single-view stereo image. Our method for
subsets that t the same plane and have similar local normalacade segmentation using the two-layer MRF and RANSAC
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was originally proposed in_[7], but this paper includes d ful boundaries will be vertical) to compute facade-wise segmen
quantitative study on the performance of these methods on tation. However, their impressive results (8% F-score) re-
larger dataset, and this is the rstinclusion of any of thisrlv ~ quire multi-view. With single-view, their approach prodsc

in an archival publication. comparable results to ours (8% pixel-wise F-score vs. our
77:7%). Although they are interested in facade segmentation
1.1. Related Work of the images, they do not pursue any disparity or depth-infor

Other research in the area of modeling with stereo cues imfmation from their multi-view scenario, and thus do not agpém
cludes the work of Konolige et al.|[8], which integrates agype  any modeling of the facades that they segment. The multiview
ance and disparity information for object avoidance, aresus approach inl[17] automatically creates textured 3D modgls o
AdaBoost to learn color and geometry models for ideal routesirban scenes from sequences of images. They perform seman-
of travel along the ground. They use stereo information #r d tic segmentation on the images and partition the resultbhg 3
tection of the ground plane and for distinguishing obstwdiet  facades along vertical lines between buildings. They ptedu
not for classifying and labeling those objects. Li et al. 8p  very realistic looking 3D model for each building by leveirag
disparity data in a template-based AdaBoost frameworkirThethe regularity of buildings in urban areas. However, theee a
work is applied to human pose estimation, and their featares no quantitative results with which to compare our perforogan
strictly pixel-based. Perhaps the most similar approaauto Despite the additional information that multi-view stereo
discriminative modeling method is from Walk et al. [10], whi  provides, we pursue a single-view approach due to our prob-
incorporates object-speci ¢ stereo features into a comdm  lem constraints. For image-based localization from facssde
of classi ers for pedestrian detection. Although thesepdis  timates, we anticipate the need to capture many singlecstere
ity features are very dierent from the ones that we use, the frames in a panorama. Facade orientations within the narrow
use of object-speci c properties to drive those featuresois- eld of view of a single stereo image likely will not constrai
sistent with our approach. However, their ultimate goabis f the location or pose of the camera with respect to the build-
detection of pedestrian bounding boxes, and not for pixel laings in an urban environment. However, by foveating to ob-
beling of those detected pedestrians. An important distinc  serve other buildings in a panorama, a set of facade essmate
between the two problems is also that buildings can occupy #om multiple single-view stereo images can be pieced tugret
much larger percentage of the pixels in the frame, and come ito give a more constraining set of facades from a wider eld
a much greater range of shapes and sizes than humans. of view. Additionally, many semantic scene segmentation ap

Luo and Ma'trel[111] proposed using the same algebraic conproaches exist using single-view camera imagery. By utiliz
straint on planar surfaces, but for the purpose of corrgais-  ing depth from stereo, those single-view approaches car-be e
parity. Their approach relies on the assumption that witiin  tended to extract geometric information about the labeted f
ban scenes, all surfaces will be planes, so their geometifep cades in the form of planar models.
erties can be used to enhance poor disparity calculatians. | The homography approach aslin/[18] could be applied to this
stead, we are using a linear gradient constraint in our digpa problem in order to bypass the disparity map altogether to ob
features to identify those regions which do, in fact, tthda-  tain planar correspondences between images. Howevergve ar
nar assumption. pursuing a purely automatic approach that does not use prior

Building facade detection and segmentation have been arlchowledge or human intervention, and their real quadratie e
continue to be well-studied problems. Many recent papers ithedding approach requires the number of planes to be known a
the literature have focused on segmentation of buildingdas  priori, and their feature points are hand-selected.
for use in 3D model reconstruction, especially in the contex The approach in_[19] uses appearance, stereo, and 3D ge-
of architectural modeling or geo-spatial mapping appiicet = ometric features from a moving camera with structure from
such as Google Earth. Korah and Rasmussen use texture to segetion. They leverage a Manhattan-world assumption in in-
ment building facades, among other facade-related tagds [1 door scenes to achieve a three-class segmentation of the sce
Frohlich et al. |[13] perform facade labeling with a Random-with  75% labeling accuracy. Although their features and ap-
ized Decision Forest, but do not attempt to segment individproach are very dierent from ours, and their problem more
ual facades. Wendel at al._[14] use intensity pro les to nd constrained, their use of stereo and 3D features in addition
repetitive structures in coherent regions of the image depr visual features is in line with our proposed method.
to segment and separate drent facades. Hernandez and Mar-  Posner et al. | [20] classify laser scan points that have been
cotegui employ horizontal and vertical color gradientsaing projected into the camera frame into 10 urban classes (e.g.
leveraging repetitive structures, to segment individaabfles brick, vehicle, grass). They take a bottom-up approach for
from blocks of contiguous buildings in an urban environment plane tting to their point cloud data: the space of the scan
Hoeim et al. [15] use a single camera image to infer coarsés discretized into cubes, and local plane models are t ® th
planar orientations for regions of the image in order to cre{points within them, and these local planes are merged ito pl
ate popped-up 3D views of the scene, but their approach doesr patches based on orientation. The plane orientatiativiel
not consider segmentation or modeling of buildings or tfeir  to the ground becomes a feature, along with numerous cotbr an
cades. Recky et al.| [16] use semantic segmentation of thixture features, for a multiclass SVM classi er. They asta
scene with a discriminative random eld, then nd repetéiv high accuracy (83 91% for di erent types of walls) in classi-
patterns and leverage some contextual constraints (ecgdéa fying the pixels corresponding to points from their lasearss;
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but they do not do produce a full segmentation of the image, oa boosting framework (point and patch-based featureshinare
isolate individual facades. ited in their discriminative power. Since these featuresidb
Several other methods utilize vanishing points for planar s leverage any context from the underlying image, their stiat
face detection. David identi es vanishing points in a momoc are often polluted when the patches capture regions thidicon
lar image by grouping line segments with RANSAC and thenpixels from multiple classes. In order to provide featufest t
determines plane support points by the intersection ofélge s avoid this problem, and that also er a richer set of statistics
ments that point toward orthogonal vanishing points, wtiely ~ to measure from the image, BMA uses adaptive coarsening to
clustering them to extract the planes of the facade [21]eBati  build a hierarchy of aggregate regions from the image, essen
al. [22] implement a system for building facade detectidngs tially a hierarchy of linked superpixels. It links each ixgth
vanishing point analysis in conjunction with 3D point cleud the aggregates above it in the hierarchy, and computesésatu
obtained by corresponding a sweep of images with known orien the aggregates as well as the traditional patch and point-
entations. Lee et all_[23] use a line clustering-based amiro based features on the image. These aggregate featurestare ri
which incorporates aerial imagery, vanishing points, atféio  in information that is not captured in the image-level fea$
projective geometry cues to extract building facade tedur they are computed at multiple scales, and they adapt to the un
from ground-level images, again toward 3D architecturallmo derlying structure of the image to follow object boundaril$
els reconstruction. of the new aggregate features, as well as patch-based Haar fe
Our work draws on the contributions of Wang et al._|[24], tures and x and y coordinate point features, are used todrain
whose facade detection method using PCA and RANSAC witt\daBoost model for discriminative classi cation.
LiDAR data inspired our approach with stereo images. Perhap
the approach most similar in spirit to ours is that of Galltip € 2 1. Adaptive Multilevel Coarsening
al. [25], who also use an iterative method for generatinglzan
date plane models using RANSAC, and also solve the labeling From a graph de ned on the image pixels, we compute a hi-
problem using graph cuts [26]. However, their approacteseli €rarchy of progressively coarser graph layers containguges
on multiview stereo data and leverages photoconsistenay co9ate nodes grouped from the nodes of the ner layer. Ateach it
straints in their MRF model, whereas we perform segmentatioration of coarsening, each node in the current layer, septe
with only single stereo images. In addition, on a fundamientaid @ pixel or aggregate, is grouped with its connected reigh
level their method involves nding many planes that t lobal bors into an aggregate based on thendies of their statistics
and stitching them together in a bottom-up manner, whereas w€-9. intensity). Each aggregate inherits both connegtand
aim to extract our planar models from the global data seh-wit Statistics from its children, the latter being the weighteean
out an explicit restriction on locality. We present quaattite  Of its children’s properties, and all of its features are poited
results on the accuracy of our planar modeling as well. during coarsening. A reduction factor, limits the number of
Although many of these results are directed toward 3D modefhildren per aggregate, and therefore determines the heigh
reconstruction, some other work has been focused toward® hierarchy. Coarsening is stable: the grouping proeetiur
our intended application of vision-based navigation, nigme based on a deterministic decision boundary for aggregatie-st
[21,127/28/ 29]. Additionally, our work is focused on retie tical a nity. Inthe.worst case, the gomplexity of the coarsening
of the estimated plane parameters, as implemented in thampla Procedure is log-linea(nlog: n)) in the number of pixelsy,

surface model of [5], and not on 3D model reconstruction. but linear O(n)) in the average case. This coarsening procedure

Our approach proceeds in ve steps: 1) computing a probaand the aggregate features summarized below are descnibed i

bility map with a discriminative classi er (Sef] 3), 2) satiqg ~ full detail in [2].

the disparity map (Sed._4.2.1), 3) computing local normal es

timates at the sampled points using PCA ($ec. %.2.1), 4-iter 2.2. Aggregate Features
tively generating a set of candidate planes with RANSAC (Sec
[4.2.2), and 5) using a hierarchical Markov random eld to eom
pute facade segmentations (SEc.] 4.3). Please seélFig. 1 fo
visual representation of this work ow.

The features below are de ned on the aggregates at each level
P%the hierarchy for an aggregaiteising the following notation:
L(u) set of pixels it represents
N(u) set of neighbors on same level
C(u) set of child nodes

2. Boosting on Multilevel Aggregates miny(u); miny(u) -~ minimum spatial location
max(u); max(u) maximum spatial location

Our discriminative modeling approach is based on the Boost- X(U);y(u) - spatial location
ing on Multilevel Aggregates (BMA) method proposed|ih [2].  9(W):;a(u);b(u) intensity and color (Lab space)
We use the version of BMA that is extended to include disparit
features (BMA-D, see Sed.13) for producing pixelwise proba- Photometric and Spatial Statistical Features

bilities for the building class. Although the full methodgly is Average Statistics:weighted mean for(u) (similarly for
not reproduced here, the core components upon which our con- vy, g, a, andb) X

tributions are based are described below. The central iflea o m(u) = m(c) 1)
BMA is that the feature types that are traditionally usedisit 2C(U)
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X .
X(U) = % mOX(0) 2 3. BMA+DClassier
c2C(u) We implement the Boosting on Multilevel Aggregates algo-
rithm described above, but with extensions for working with
Aggregate Moments: central moment about the aggre- disparity maps and their associated features. This extensi
gate’s mean statistic, computed over its set of pixels, fokyas initially proposed in[3] and expanded in [7]. In our fa-

x(u) (and similarly fory, g, a, andb) cade segmentation algorithm, the BMB classi er produces
1 X a probability that each pixel in an input image is from thddbui
M&(u) = —— (x() x(u))* (8) ing class. The BMA method builds a hierarchy of aggregate
(u) i2L(u) regions on the input image and then uses novel features com-

puted on these aggregate superpixel regions, in additipixéd

and patch based features, to perform discriminative ctassi

tion within an AdaBoost framework. Our additions to BMA
include accommodations for working with invalid data in the
disparity map: areas of the scene outside the useful range of

Adaptive Histograms: for intensity, colors, and Gabor
responses are computed oléu). Histogram bin weights
are each considered features. For example bbirf the

intensity histogrant: ) X
the stereo camera, and dropouts where the disparity can not
1 X be computed within the camera's range due to occlusion, lack
Hg(u; b) = o (9() b) (4)  of texture, or insu cient similarity between the images for a
i2L() match at that point. Additionally, we introduce several elov
disparity-based features into the boosting framework. Atte
Shape Features aBoost algorithm automatically selects the most discratiirg
Elongation: ratio of height to width of an aggregate's featuresin an adaptive way, and produces the best subset of t
bounding box full feature set, given the training data.
Although in principle any classi er could be used for this
_ h(u) _ max(u) miny,(u) step, so long as it could produce a probability map for binary
&u) = w(u)  max(u) ming(u) ®) classi cation in identifying building pixels, we develogdhe

BMA +Disparity Classi er as a way to incorporate problem-
Rectangularity: measures the degree to which an aggre—.s'pec.i c knovyledge into the boosting framework. Our results
: ; in this domain are superior to approaches that do not leeerag
gate llIs its bounding box ) L o . S
disparity information in their classi cation.
r(u) = w(u)h(u) - m(u) (6)  3.1. Dense Disparity
Computing the dense disparity map of a scene, given a stereo
PCA: compute the 2D spatial covariance matrix and itspair, is a non-trivial problem [30]. Although there have bee-
two eigenvalues: 1(u) and »(u). PCA features are;(u),  cent advancements in sensors such as the Microsoft Kinact th
2(u), the ratio%, and the o-diagonal covariance. produce very dense depth or disparity maps, and therefere en
able high-level tasks that depend on the quality of that (fata
. . example, [[31]), these sensors are unsuitable for outdoar us
Adaptive Region and Contextual Features Many commercial stereo cameras are equipped with embedded
Adaptive Relative Haar-like Features: patch-based Haar processing for real-time disparity map computation. Aligo
features but with spatial coordinates de ned relative to anpege products often have good resolution and do a decent job
aggregate's bounding box. of computing the disparity map, there are limitations irgmein
o both the hardware and software. Stereo cameras generadly ha
Contextual Features:measure the similarity of an aggre- yqq focal length sensors, so the range in which the cameras
gate to its neighbors at a region level. Consider a distancgyp, focus is limited, resulting in a nite region in which dis
measureD(u; v) between neighboring aggregateandv  nrity can accurately be computed. Additionally, the omido
on a statistic (intensity for example). De ne a min-context yrcessors of stereo cameras can not execute the moretaccura
feature (and max and mean features similarly) as: but computationally intensive, disparity map algorithmslsas
TRW-S [32]. Even o-line computation of the disparity map is
imperfect, because occluded regions from one image will not
have a match in the other image, and thus will not have a dis-
parity value. FigurEl2 illustrates a typical example of gdisty
__map with invalid regions (shown in black). We discuss our ac-
Mass: m(u) of an aggregate measures the homogeneity 0f 5 yymodations for these obstacles in sections 3.2 and 3.4.

f(u) = Vrzrgli(ﬂ) D(u; V) @)

Hierarchical Features

aregion.

3.2. Coarsening on Disparity
Number of Neighbors: j N(u) j captures the local com- e perform coarsening on the disparity map in the same
plexity of a region. manner as the image intensity coarsening procedure prdpose



hierarchy. hierarchy. erarchies, and valid dis-
parity.

Figure 2: Atypical image with its disparity map. Invalid regs of the disparity Figure 4: Suitable pixels for training the BMAD model (in white).
map are in black.

] o N which do have valid disparity values, and a second model with
in [2]. Invalid disparities are rst mapped to zero, and wenh 1y image features for classifying the pixels in invalicr-
build a hierarchy of disparity aggregates of equal heighth& ity regions. We train both models on pixels and their corre-
one’for the image. We use the same de nition of pixelaty  gronding aggregates from a single set of training images; in
as [2] does forintensity: exp[s, s,j] for pixels'aggregates  poth cases, we only use a pixel if it has a consistent class la-
andv, and their associated statistissvhich in this case is dis-  pe| i all of the associated aggregates above it in the fibyar
parity. An gxample of |nt.er-13|ty and Q|sp§1r|ty hierarchies-p  This avoids training on pixels whose aggregate statistiag m
duced by this procedure is illustrated in Figlite 3. Althotigh e holluted at some higher level. For the BMB model, we
coarsening proceeds similarly for both intensity and di¥pa  fyrther constrain the set of suitable training pixels by lgiog

and the aggregates for both still tend to adhere to objedi®ou e same criteria to the labels up the disparity hierarahy,zy
aries, the resulting hierarchies have somewhagint charac- restricting the set to those pixels that have valid disparit-

ter. The separate disparity hierarchy allows the aggrefgate es, as in FigurBl4. Since we are using the image-only model
tures to capture the statistics of regions with similar digty o classify those pixels that do not have valid disparity
values, which may not align with regions of similar integsit  he image model on those pixels that have consistent labels i
] ] both hierarchies and invalid disparity in the training dago
3.3. Disparity Features during classi cation, given an input image and disparitypna
The BMA framework for intensity and color images adds pixels from valid regions of the disparity map are classilest
a variety of aggregate features to the pixel- and patchebasdng the model incorporating both image and disparity fesgur
statistics of standard boosting [2], all of which are summa-and pixels in invalid regions are classi ed using the modihw
rized in Sec[ 2 . We implement all of these pixel-, patch-, andbnly image features. As we are performing the coarsening pro
aggregate-based features for disparity, and in additioludle ~ cedure from standard BMA twice (once for the image and once
several disparity-speci c features intended to help disgrate  for the disparity map), the complexity of this step is alsg-lo
between building and non-building pixels. By measuring thelinear (O(nlog: n)) in the number of pixels, in the worst case,
uniformity of the disparity gradient across an aggregategcan  and linear O(n)) in the average case.
separate the building and background classes by the pyopert
that planar facades will have constant gradient [5] in ditpa 4. MRE Model and Facade Parameter Estimation
space. We compute thegradient images of the disparity map
by ltering with the directional derivative of a 1-D Gaussia We have developed a Markov random eld model to per-
distribution in thex-direction (similarly fory): form segmentation and facade model labeling. For each pixel
! in an image, we compute its label for both the binary build-
@G = _1 xexp X (8) ing/background labeling problem, as well as the best t plane
@ 2 3 2 2 label among a set of facade models generated from the data.

o . . . This overall approach was proposed initiallylin [7] but hasiv
that is discretized into a kernel of xed width. From thesegr eypanded and more thoroughly evaluated here.

dientimages, we compute the average and range of the gtadien
in each direction, as well as the vector gradient magnitude a 4.1. Plane Parameters

angle. We have also included the Laplacian as a feature, be-\we now derive the planar model that we use for modeling
cause the Laplacian of a planar surface in a disparity map igycades in disparity space. Throughout this discussiorasve
zero. For this we convolve the image with the 3 Laplacian  gme that we have stereo images in which the extrinsic ealibr
kernel. tion parameters are unknown but constant. Since we do not aim
o o for full 3D reconstruction, we assume that the intrinsidloal
3.4. Training and Classi cation tion parameters are known to the camera or disparity source,
When we wish to classify an image, some regions will notbut they are not required for modeling planes in disparigcsp
have corresponding disparities; we compensate by basing ogiven a disparity map. Thus, we can determine the surface nor
classi cation scheme on two models. We use a model that inmal parameters up to a constant that describes the camera pa-
cludes both image and disparity features for classifyinglgi rameters; and since that constant will be the same across all
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(a) Intensity hierarchy and original image

(b) Disparity hierarchy and disparity map

Figure 3: Intensity and disparity hierarchies. The rstifamages in each row show the hierarchy levels from the lowashe left (aggregates coarsened directly
from source) to the highest on the right. The nal image inreeaw is the source image in order to facilitate the comparisbobject boundaries with top-level
aggregate regions. At each level, the aggregate regioreobmed with random gray values.

candidate planes, we can use the computed surface normals4@®. Candidate Plane Detection

di erentiate between planes. Our MRF computes the optimal label for each building pixel
A plane in 3D space can be represented by the equation:  from a set of candidate planar models. We now describe the
top-down approach that we use to generate the dominantrplana
models in an image.
and for non-zero deptiz, this can be rewritten as: We perform the second phase of our method by iteratively
using RANSAC to extract a set of points that both t a pla-
nar model in disparity space and have a local normal estimate
that is consistent with the model. The extracted plane nsodel
become the set of candidate planes for our high-level MRF la-
tf)eling. Each pixel in the image will be labeled by the MRF as
belonging to one of these candidate planes or else assigned a
null label.

ax+by+cz=d (9)

al(+bY+C:9 (10)
z z z

tiesu=f Xandv=f ¥ wheref is the focal length of the
camera. We can also incorporate the relationship of thester
disparity value at camera coordinatey) to the depthgz, using
the identityD(u; v) = f—ZB, whereD is the disparity and® is the

. ; 4.2.1. Local Normal Estimation
baseline of the stereo camera. Our plane equation becomes:

Based on our assumption of planar building facades, we can

u v d D(u;V) use Principal Component Analysis to determine a local nbrma
ar* b? tCE g (11)  to a point in disparity space as in [33]. Since we are working
with regionally dense disparity data, we sample from thél-ava
which reduces to: able points that have valid disparity. For each sampledtpoin
aB bB! of B! we rst construct the covariance matrix for points in its giei
i u+ v v+ ' = D(u; V) (12)  borhood of the disparity map. To do this, we consider all fmin

pi = (u;vi; D(u; Vi) with valid disparity in a5 5 window
Althoughn = (a;b: )" is the surface normal in world coordi- centgred on this pqint. Note that stereg cameras _that camput
nates, for our purposes we can seek to determine the folipwinth€ disparity map with onboard processing in real-timerofte
uncalibrated plane parameters= (a® b c9), where: not produce dens_e disparity maps, so the neighborhood may be
sparse. Other neighborhood sizes could be used, but we found

o_ aB Bo = bB, ,_cfB 13 thata 5 5 window provided good estjgates while remaining
a=gPTg T g9 (13) local. We compute the centroigh = & Y, p;, of the points
such that fpig=1..n in the neighborhood, and calculate the 3 covari-
ance matrix with:
0 - — .
n \1/ =al+ bV + %= D(u;v) (14) w= = CEONCED) (15)

i=1

This new set of plane parameters relates the image cooedinatwhere is the outer product. We then compute the eigenval-
and their corresponding disparity values by incorporatimgy  ues ofW, and the eigenvectors corresponding to the largest two
constant but unknown camera parameters. eigenvalues indicate the directions of the primary axedadal



planar estimate to that neighborhood of points. The eigenve
tor corresponding to the smallest eigenvalue thus indscthie
direction of the local surface normai,y. Y : Multiclass label - facade

4.2.2. RANSAC Plane Fitting

Once we have normal estimates, we take a greedy approach D Disparly image
to tting planar models to the points in disparity space,gwo-
ing a set of models for the major planes in the image. We take
a sampleS, of image points with valid disparity, and compute D, D )  X:Binary label - planar surface
the local planar surface normal estimates by the afore e )_/_O/ /(% j% )/\
method. We then seek to t a model to some subse} of the C (A ¢ —(
form: Ve ur (DLW =0 (16) e O ()  p: Classification probabilty
SR PP . O O @) @)
wherefi = 2(; ; ) isthe surface normal from Eq. (14). Since O O O O

RANSAC nds the largest inlier set;,, that it can among,

we will tthe most well-supported plane rst [6]. We then re-

move the inliers, leaving® = SnP;,, and repeat this process it-

eratively, nding progressively less well-supported pganuntil Figure 5: Our two-layer MRF model.

a xed percentage of the origin& has been clustered into one

of the extracted planes. In our experiments, we used a sarhple

2000 points from the image, and concluded the plane extracti identi ed by the previous RANSAC procedure. Figure 5 shows

once 80% of the points had been clustered, or when RANSAG graphical representation of this MRF model. Our motiva-

failed to nd a consensus set among the remaining points. Weion for this design stems from the fact that these are relate

assume Gaussian noise on the inlier set for our RANSAC plangut distinct questions, and they are informed byedent ap-

model, and throughout we use a standard deviation of 5. proaches to modeling buildings. The mid-level MRF représen
Although we use RANSAC to t a standard plane model, we an appearance-based model, while the high-level MRF repre-

use a modi ed error term in order to incorporate the infonimiat  sents a generative model for the planar facades.

in the local normal estimates. Here, since our local norrsté e

mate required the use of a three dimensional coordinatersyst

(u;v; D(u;v)), and produces a normal of that form, we musty 3 1. Mid-level Representation

use a slightly dierent normal formulation oy, = (;; ).

The standard measure of error for a plane model is the diistan?u

of a point from the planeE, =j v+ u+ ( D(u;v))+ |,

We want our energy function for the mid-level model to cap-
re the con dence (probability) of our discriminative st -
. o . ; cation, and we want there to be a penalty whenever a pixel with
assumingiy, = (; ; ) is a unit vector. We compute another . o .

a high con dence is mislabeled, but a smaller penalty foefsix
measure of errokorm, the dot product of the model plane nor- . . . o S

with lower con dence in their a priori classi cation. We usa

mal ny, and the local normal estimatg,.), which is the cosine . .
of the dihedral angle between the two planes de ned by thoslesmg model to represent our mid-level MRF, where our labels

. : . . ; Xs, fors2 ourimage lattice, come from the detl; 1g We de-
normals. If we take its magnitude, this metric varies frono O t ne a new variableb, to represent a mapping of tba 2 f 1; 1g
1, with 1 representing normals that are perfectly aligneu, a label to the sef0: 1 To the t f tiob. = X1 F -
0 representing a dihedral angle of 90Since the range dE abetto the setb, 1goy the transtormatiohs = =5=. Fora par
depends on the properties of the image (resolution, dispari

- ticular con guration of labeld, we de ne our mid-level energy

range), we combine these two metrics as follows: function as:
X X
E=(2 EnomEm= (2 hnmnuyij))En  (17) E()= (@ byp(s+bs(l p(s)) m XX (18)
s2 st

such that the dihedral angle scales the error term fEprio
2Enm, depending on the consistency of the model and local nofwhere p(s) is the discriminative classi cation probability at

mals. and p,is a constant weighting the unary and binary terms. The
bs quantity in the unary term essentially switches between a
4.3. MRF Model penalty ofp(s) if the label ats is set to 1, and a penalty of

We model our labeling problem in an energy minimization1 p(s) if the label atsis set to 1. Thus fop(s) = 1, labeling
framework as a pair of coupled Markov Random Fields. Ourxs = 1 will incur an energy penalty of 1, but labeling = 1
mid-level representation seeks to infer the correct conagion  will incur no penalty. Similarly forp(s) = 0, labelingxs = 1
of labels for the question “Is this pixel part of a building fa will incur no penalty, but labeling it 1 will incur a penalty a.
cade?” Based on this labeling, the high-level represemtati A probability of 05 will incur an equal penalty with either la-
seeks to associate those pixels that have been positively aseling. Our smoothness term is from the standard Ising model
signed as building facade pixels to one of the candidategglan In our experiments, we used @ value of 10.
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4.3.2. High-level Representation from the left camera of a stereo imageach with a correspond-

In designing our energy function for the high-level MRF, we ing 16-bit disparity map that was computed onboard the camer
want to penalize points which are labeled as being on a plan#] real time. Allimages have 500312 resolution and human-
but which do not t the corresponding plane equation well.rOu annotated ground truth for both binary classi cation anchide
set of facade labelg, for s2 ,isf0;:::;mg with mequalto Segmentation. The data was collected on a university campus
the number of candidate planes identi ed in the plane ditact With range of architectural styles, as well as a business dis
step. It corresponds to the set of candidate planes indessrd f  trict, and is intended to capture a broad range of common ur-
1 tom, as well as the label 0, which corresponds to “not on &dan settings. There are a total of 251 facades represertieel in
plane”. We de ne a set of equatiori,(s) for p 2 f0;:::;mg dataset, and for each one, we have computed a gold-standard
such that plane model from its ground truth facade segmentation. & her

Eo(9) =i agu + bgv+ C% D(9) (19) are s[x .ima.ges that do not contain any facades, and among the

remaining images of the dataset, many feature occlusioths an

where the surface normap = (al;bj; c9) corresponds to the other objects (cars, trees, people, etc.) common to urbian se
plane with labelp, and D(s) is the disparity value as. We  tings, so there is an adequate representation of negative sa
normalize this energy function by dividing by the maximum ples.
disparity value, in order to scale the maximum energy pgnalt Existing datasets that contained facade images were not ade
down to be on the order of 1. For consistency in our notationgquate for validating our approach, primarily because thay-c
we de ne Eq(s) to be the energy penalty for a label of Osat  tain only optical images and not disparity maps. Even the
corresponding to the “not on a plane” classi cation. We setdatasets that are intended for facade segmentation (fon-exa
Eo(s) = bs, such that a labeling of1 in the mid-level represen- ple eTRIMS [34]) do not contain individually segmented fa-
tation results irbs = 0, so there is no penalty for labelirggs  cades. We are not aware of another publicly available, human
“not on a plane”. Similarly, whems = 1, bs = 1, so there isa annotated, quantitative stereo building facade dataseityae
penalty of 1 to label any of the non-planar pixels as a plane. believe this new set, which is the rst of its kind, can becoane

To construct our overall energy function for the high-level penchmark for the community
MRF, we incorporate the exponential of the set of planar en- | gJi experiments, any parameters of our method's compo-

ergy functionsk, with a delta function, so the energy cost is nent algorithms were set consistent with the values preijou
only for the plane corresponding to the lagel Since we can- o a4in the text

not computeE, without a valid disparity value, we use an indi-
cator variable p 2 f0; 1gto switch to a constant energy penalty L .
for all planes and the no-plane option, in order to rely #tric 5.1. Discriminative Modeling o )

on the smoothness term for that pixel's label. For the smooth We performed 6-fold cross-validation with our method
ness term, we use a Potts model, weighted like the mid-levdBMA+D), appearance-only BMA, and standard AdaBoost
representation with a constant. In our experiments, though, with pixel features (x & y location) and patch-based Haar fea
this value of , was 1. Thus the high-level energy function we tures. See Table 1 for a pixel-wise quantitative comparifon

are seeking to minimize is: these models. With the BM#D classi er, we obtain a 2% in-
X X crease in accuracy over appearance-only BMA model, and a 6%
E(l) = ve=p €Xp(pEp(9)+ n - (20)  increase over the standard AdaBoost classi er. We computed
2 p=0 st thedP statistic for the image-wise performance of all three clas-

si ers and performed a one-tailed student's t-test on thatis
tic for all pairs of classi ers. Both BMA and BMAD exhibited
statistically signi cant performance witp-values below %
when compared to AdaBoost. The comparison of BMDAto

To perform the energy minimization, we use the graph cutappearance-only BMA resulted in @value of 85%, which,
expansion algorithm, speci cally the implementation meted  when coupled with the summary statistics in Table 1, indisat
in [26]. We perform the minimization in two stages. We rst at least modest statistical signi cance to the improveniant
minimize the energy of the mid-level MRF to obtain an approx-classi cation accuracy. Taken over the entire datasetelre-
imation to the optimal labeling of planar surface pixels.isTh sults imply that in this problem domain, disparity featuaes a
step uses prior knowledge from the discriminative classi ¢ bene cial addition to an appearance-only model.
tion. Next, we use the mid-level labeling as well as the detéc Figure 6 shows ROC curves for these classi ers. Addition-
candidate planes as a prior for the high-level MRF, and we usally, one image from each validation set was randomly setkect
graph cuts again to compute an approximation to that optimdbr visual comparison of the three methods. Figure 7 shows
labeling. the probability map of the classi er's output for each of the

methods, along with the two-class labeling with a threshudld

4.4. Energy Minimization

5. Experimental Results

2Tyzx DeepSea V2 camera with 14 cm baseline andt&fizontal eld of

o . . view.
We have performed quantitative experiments using OUr sy dataset is publicly available at:
method on a new dataset that consists of 141 grayscale images:/mww.cse.buffalo.edu/ ~jcorso/rigbs
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Table 1: Quantitative scores for the AdaBoost, BMA, and BMAclassi ers
on the building and background (BG) classes. Recognititesrare computed ool |
pixel-wise over the entire dataset.
TruenPred| BG | Building oo ]
ADB 63.58| 36.42 o orr )
BMA BG |7273| 27.27 € o5 ]
2
BMA+D 75.33 24.67 '§ 05| 1
o
ADB 24.67| 75.33 S o ]
BMA | Building | 23.97| 76.03 | 7
BMA +D 23.51 76.49 ol — BMAD |
ADB 0.6876 — BuA
0.1 Adaboost |
BMA F-scores 0.7282
[ L L L L L L L L L
BMA +D 0.7421 T e

Figure 6: ROC curves for our BMAD method (blue), appearance-only BMA
Table 2: Recognition rate for the building class on the e$rBrclass dataset  (red), and patch-based AdaBoost (green).
[34]. Note: BMA performs 2-class labeling, all other methgzerform 8-class

segmentation.
Table 3: Quantitative scores for the mid-level MRF labelargl the BMA+D
Method Rec. Rate (%) classi er on the building and background (BG) classes.
ICFHGS- [35] 71.9 TruenPred| BG | Building

BMA 70.3 BMA+D BG 75.33| 24.67
ICF [35] 62.0 MRF 79.98| 20.01
RDF-meanshift [36] 60 BMA+D Buildi 23.51| 76.49
RDF-watershed [36] 59 MRF Hieing 21.15| 78.85

ICFwoC [35] 41.1 BMA+D 0.7421

F-scores
MRF 0.7773

0:5. Of these six examples, the appearance-only BMA model

achieved the best accuracy (2% more than BAD) for one  tyres or subsequent MRF segmentation is consistent with the

image, and the AdaBoost classi er achieved the best acguraqapeling accuracy of the building class from the statehaf-art
(4% more than BMAD) for another. However, for the other myti-class labeling approaches.

examples, the BMAD model outperforms the other classi ers

by as much as 8%, and the con dence shown in the probabils 5 £5cade Detection

ity map is often higher for both classes. Since the prokbili ] . ) )
map acts as a prior for the mid-level MRF labeling, higher-con The mid-level MRF results exhibit further improvement in

dence from discriminative modeling can translate to highe accuracy over BMAD alone. Table 3 shows a pixel-wise quan-
accuracy in the MRF binary classi cation. titative comparison of these two methods. With the Bayesian
. . inference of the MRF, we achieve a classi cation accuracy of
Although the state-of-the-art in facade segmentation come . .

. almost 80% for each class, and an improvement in overall ac-
as part of multi-class approaches, we compare the two-class

. . . curacy of 9% over AdaBoost, 5% over BMA, and 3% over
BMA approach to the methods in [36, 35] in Table 2 in order to
. L . BMA+D.

place our results in the context of the existing literatiBance
our BMA+D and MRF methods require disparity maps in ad- i o
dition to camera imagery, we are limited to comparison with®-3- Facade Segmentation and Parameter Estimation
the appearance-based BMA version. These semantic segmen\We computed the facade segmentations and the plane param-
tation methods use the eTrims dataset [34] and label bgidin eters for each of the labeled planes in all of the images from
as well as 7 other classes. We performed two-class labelinghe dataset; some examples are shown in Figure 9. For each
an admittedly easier task, on the same dataset, using 4@smagof the manually labeled planes in the dataset, we computed
for training and 20 for testing as in [35]. But since our goalground truth parameters by sampling the labeled region and u
of facade modeling does not require full semantic segmiemtat ing RANSAC to determine the plane parameters. Out of 251
of the scene, we do not extend our approach to the multi-clagstal facades in the set, 40 of them were misclassi ed as-back
case. The performance without the inclusion of disparig fe ground by the mid-level labeling. The other 211 facades were
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0515 0.607 0.588
0.896 0.850
0.860
0.750 0.757 0.801
0.750
0.671 0.731
0.848 0.870
0.791
0.652 0.718
0.639
Original Ground Adaboost  Adaboost BMA BMA BMA+D BMA+D
Truth Probability Classiecation Probability Classiecation Probability Classiecation

Figure 7: Some examples of discriminative model output. Drege was selected at random from each of the 6 validation $escores are annotated on each
classi ed image.

labeled with at least one candidate plane in the high-leel
ing for a detection rate of 84%.

As noted above, some of the ground truth facades are not
detected by the mid-level MRF, but multiple segmented ane
per ground truth facade are also common. In order to asse:
the accuracy of our plane parameter estimation, we compu!
a weighted error measure as the mean pixel-wise angular err
between the labeled plane and the ground truth facade geara
over all pixel in the dataset where the ground truth and high
level labeling are both non-null. Our angular error metsithie
dihedral angle between the estimated plane and the grouthd tr
plane (with normal vectons, andng, respectively):

= arccosfle Ng)

The average angular error for any such pixel over the entin
dataset is 2407 . A histogram showing the relative number of
pixels labeled with a plane model having angular error irheac
bin (see Fig. 8) indicates that the peak of the distributibn o
errors is the range of 0 10 . Similarly, the examples shown
in Figure 9 indicate that some facades are modeled very acci
rately, while others have high angular error. This discrepa ° 10 20 30 40 50 60 0 80 %0
motivates our further analysis, which we discuss in the segt Angular Error (deg)

tion.

Figure 8: Pixel-wise angular error histogram represerntiregrelative number
5.4 Analysis of pixels that are labeled with a plane model having corradpw angular error

. . _across the full dataset .
Our method often segments a detected facade into multiple

plane labels, which makes 1-to-1 comparisondlilt. In order
to overcome this challenge, and to examine the error distrib
tion of Fig. 8 further, we consider two methods for comparing

11



Original Ground Truth MRF Segmentation Plane Projection

Figure 9: Some examples of MRF labeling output. For eachrgtdruth facade (blue), the closest- tting plane from the M{@reen) is projected along with it to
illustrate the accuracy of the estimation in three dimamsio

the segmentations to the gro.und truth. First, for each gjou.nTabIe 4: Accuracy for our two methods of comparison to growath: largest

truth facade, we compare to it the plane whose label occupi€ggment and most accurate segment

the largest portion of that facade's area in our segmemtatie ,

have noticed that there is often one (or more) accurate gane Method | Avg. Err. | Avg. Size (% of GT area

timate on each ground truth facade, but it may only cover a Largest| 21.973 66.57

minority of the ground truth facade. For example, in the selco Best 13.765 53.00

example of Figure 9, the facade on the left in the ground truth

is best modeled by the plane corresponding to the white label

in the estimate, but the majority of that facade is labeletth wi

less accurate planes. In order to measure the accuracy of otf}fe minor and erroneous plane labels, although that is tieyon

method in estimating at least some portion of each grourtid tru the scope of this paper.

facade, our second method of comparison chooses the most ac-The quality of the disparity map is likely to be at least some-

curate plane estimate out of the set of labels that cover eaahhat responsible for this phenomenon, as the usable range of

facade's region. In both cases, we compute the averageamguimost stereo cameras is limited. For example, the camera used

error between the chosen segmented plane (largest or belst) a&o capture our dataset can only resolve features up tond

the ground truth facade, weighted by the size of the segrasnt, a distance of 1&. Thus, even moderately distant facades are

well as the average percentage of the ground truth facade colikely to be signi cantly more prone to large errors in theti-

ered by the chosen label. These results are collected ie #abl mates; they will be both smallin the frame and less likelyrid

Additionally, for both methods a histogram showing therlist an accurate consensus set in RANSAC due to the uncertainty in

bution of chosen labels binned by both angular error andssize their disparity values. Similarly, for a facade with many in

a percentage of the frame area can be seen in Fig. 10. valid disparity values, it may not be sampled adequatelg, an
These histograms indicate that most of the high-error seghe points it does have may erroneously be included as part of

mentations occur with small areas: for both of the methdds, t an inlier set that does not actually lie on the facade. Perhap

vast majority of facades larger than 10 % of the frame hawe leson account of this phenomenon, we have observed that many of

than 10 degree error. This implies that the errors are géyera the high-error segmentations are rotated primarily abdwdra

small & 10 %) for the major facades in the image, and it mayizontal axis, but are much more accurate in their rotatiayuab

be possible to restrict or post-process the labeling toieite  a vertical axis. Under the assumption that facades tend to be
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Figure 10: Histogram of angular error per segment, with eiaged segment
size (as a % of the image) for the largest segment (top) anchdst accurate
segment (bottom). Blue represents smaller error and redsepts larger error.

vertical planes, it would be possible to impose a vertigaliin-
straint into the RANSAC plane model to restrict the candédat
plane set to only vertical plane models.

Random Field model that allows for inference on the binary
(building/background) labeling at the mid-level, and for seg-
mentation of the identi ed building pixels into individugla-

nar surfaces corresponding to the candidate plane models de

mined by RANSAC.

Our BMA+D discriminative model provides superior perfor-
mance to other classi ers using only appearance featurek, a
our mid-level MRF labeling has proven to further improve the
accuracy of the classi cation to approximately 80%. We were
able to identify 84% of the building facades in our dataséty w
an average angular error of 24om the ground truth. However,
the distribution of errors peaks in frequency below,lifidicat-
ing that a large percentage of the labels provide very ateura
estimates for the ground truth, although some of the labvels p
duced by our method have very high error. Further analysis
shows that these high-error labelings most often occur ailsm
segmented regions. Thus our method produces accurate plane
estimates for at least the major facades in the image.

A further approach that may enhance these results is strict
enforcement of a verticality constraint on the candidasael
models. Extraction of the ground plane would enable us to
leverage the assumption that building facades, in genaral,
perpendicular to the ground plane. Using only locally ezt
candidate plane models is an avenue of future work in this.are
Another avenue for future investigation is the integratibthe
distance-based uncertainty of each point in disparity sji@o
the RANSAC models in order to encourage plane tting to the
more accurate points close to the camera. We also intend to
pursue other methods for either improving the quality ofithe
put data (e.g. multiview stereo) or improving the methods of
compensating for di cult disparity maps.
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Without the context of the ground truth facade segmentationsearch Laboratory.

it would not be possible to choose the largest or best label a

we do in this analysis, but it is encouraging that on average w
are able to achieve 15% error over a majority of each facade.
This result will motivate some of our future work in develogi
ways to better disambiguate the labels in order to decrbaset
average errors and increase the area of the most accureke lab

6. Conclusions

We have presented a system for automatic facade dete
tion, segmentation, and parameter estimation in the doofain
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