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1 Motivation for the Problem

1.1 Computer Vision

Compute properties of the 3d world from one or more digital images.
It is likely that a good amount of information can be obtained through the geometric properties of the projections (images):

shape, position, etc.

1.2 Perspective Projection

Recall that under full perspective projection, a large amount of information is lost during the forward projection (imaging)
process. Think about each optical ray shooting out from the optical center of the camera; for each ray, the result of only the
first collision is known.

The linear matrix equation of perspective projection is:
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where xi,yi,zi represent the projective coordinates of a point p in the image space and Xw,Yw,Zw,1 represent the projective
coordinates of a point P in world coordinates. The actual pixel location of the projected point p denoted (x,y) is (

xi
zi
,

yi
zi
). In

(1), Mint and Mext are the projection matrices containing the parameters of the projection for the current camera system. Mint
is termed the intrinsic matrix as it contains those (linear) parameters intrinsic to the camera itself: focal length ( f ), pixel scale
(sx,sy), optical center (ox,oy), and pixel skew (γ). The intrinsic matrix is

Mint =





f sx − f sx cotγ ox

0 f sy
sinγ oy

0 0 1



 (2)

If we assume that our pixels are square, i.e. the skew is π
2 , the matrix simplifies to

Mint ≈





f sx 0 ox

0 f sy oy

0 0 1



 (3)

Notice that we cannot distinguish between a change in focal length and a change in pixel scale. In this discussion, we are
neglecting any non-linear parameters that may affect pixel distortion (radial, tangential).

Mext is termed the extrinsic matrix as it contains those terms external to the camera itself that relate the camera coordinate
frame to the world coordinate frame. There are six parameters which define a transformation between coordinates frames,
three for rotation encoded into a 3x3 rotation matrix R and three for position, T . The extrinsic matrix is

Mext =





r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



 (4)

Forward projection may also written in a more condensed form:

Pc = RPw +T (5)

pi = Mint Pc (6)
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1.3 Problem Statement

Given this model of forward projection, we compute the camera parameters enabling us compute some metric properties
of the 3d world from images: camera calibration.

Given one or more images of a calibration pattern,
estimate the intrinsic and/or extrinsic parameters.

2 Types of Calibration

2.1 Photogrammetric Calibration

Calibration is performed through imaging a calibration pattern whose geometry in 3d is known with high precision. The
accuracy of the calibration is proportional to the accuracy of the feature detection employed while locating the calibration
pattern in the images.

Pros: Calibration can be performed very efficiently.
Cons: An expensive set-up apparatus is required: 2 or 3 (perfectly) orthogonal planes.
For a detailed explanation of these methods, see Trucco and Verri [3].

2.1.1 Direct Parameter Calibration

With knowledge of the forward projection process, set-up a system of equations and solve for the calibration parameters.

2.1.2 Projection Matrix Estimation

Estimate the projection matrix linking the world and image coordinates.
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We can write the equations per-pixel-coordinate:

x =
xi

zi
=

m11Xw +m12Yw +m13Zw +m14

m31Xw +m32Yw +m33Zw +m34
(8)

y =
yi

zi
=

m21Xw +m22Yw +m23Zw +m24

m31Xw +m32Yw +m33Zw +m34
(9)

M is defined up to an arbitrary scale factor and has 11 independent entries. Thus, we need ≥ 6 points. M can be estimated
through least squares techniques. An example of such a technique is in Trucco and Verri on page 133 [3].

2.2 Self-Calibration

Makes use of some important properties from Projective Geometry to calculate the intrinsic parameters solely from point
correspondences between images of a static scene assuming the intrinsic parameters do not change for the set of images. The
approach is flexible but not well-established yet; since there are many parameters to estimate, it is often difficult to accurately
compute them. A good reference is [2].
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2.3 Multiplane Approach

Refer to [4]. It is a hybrid method pulling theory from both photogrammetric and self-calibration approaches. It uses a
calibration pattern that is different than those used in Photogrammetric approachs in that it is planar and simple to produce:
you print out a pattern and attach is to a planar surface, a text book cover.

Multiple images of the pattern are taken, and a technique from projective geometry is used to compute the intrinsic and
extrinsic parameters from the images. The technique is based on a well-known transformation called a homography which
maps points on a plane to points on another plane with a linear transformation; i.e. it acts as a change of basis for the plane.

This technique has no expensive set-up, is much more practical and fairly easy to implement or use an existing implemen-
tation. It is more flexible than standard photogrammetric methods and more robust than self-calibration.

3 The Multiplane Approach In Detail

3.1 Set-Up Notation

Let a 2D point m = [u v]T and a 3D point M = [x y z]T . Let s be an arbitrary scale factor and A = Mint .
Let x̃ be an augmented vector in homogeneous coordinates: m̃ = [u v 1]T and M̃ = [x y z 1]T .
Projection is written as

sm̃ = A[R T ]M̃ (10)

3.2 Planar Homography

The foundation of this approach rests in the First Fundamental Theorem of Projective Geometry: There exists a unique
homography that performs a change of basis between two projective spaces of the same dimension. A proof can be found in
[1].

What does this mean for us? Given a plane in the 3d world, there is a unique mapping (transformation matrix) that maps
this plane to the imaged plane. The mapping is up to scale.

Let us derive it. Let ri be the ith column of the matrix R. We assume the model plane is at the coordinate Z = 0. s is an
arbitrary scale factor.

s[u v 1]T = A[r1 r2 r3 t][X Y Z 1]T

s[u v 1]T = A[r1 r2 r3 t][X Y 0 1]T

s[u v 1]T = A[r1 r2 t][X Y 1]T

s[u v 1]T = H[X Y 1]T

Here H = A[r1 r2 t]. Thus, a point on the model plane is mapped to the plane in the image by

sm̃ = HM̃ (11)

Homographies can be estimated from at least four points (they have 8 degrees of freedom) in a fashion similar to estimating
the projection matrix in the second algorithm from photogrammetric calibration. See Appendix A of [4].

3.3 Constraints On The Intrinsic Parameters

From (11), we have

[h1 h2 h3] = sA[r1 r2 t]. (12)

Because R is a orthogonal matrix, we can use some of its properties to derive some basic constraints on the intrinsic
parameters.

rT
i r j = 0; (13)

rT
i ri = rT

j r j (14)
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Writing the (12) in terms of its columns, we get

h1 = sAr1

h2 = sAr2

h3 = sAt

(15)

Then, we derive the two basic constraints.

h1 = sAr1

1
s

A−1h1 = r1

1
s

A−1h2 = r2

rT
1 r2 = 0

hT
1 A−T A−1h2 = 0 (16)

rT
1 r1 = rT

2 r2

hT
1 A−T A−1h1 = hT

2 A−T A−1h2 (17)

There are two constraints because there are 6 degrees of freedom for the extrinsic parameters; thus, for each known
homography we can only obtain two constraints on the 5 intrinsic parameters. We need ≥ 3 homography to fully determine
the intrinsics unless we set the pixel skew to 0 after which we would need ≥ 2 homographies to determine the intrinsics.

3.4 Solving the Camera Calibration Problem
So, from this, we can compute a closed-form solution to the problem.

Let B = A−T A−1 =
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where A = Mint =





α γ u0
0 β v0
0 0 1





Since, B is symmetric, we can define a vector based on its 6 parameters b = [B11,B12,B22,B13,B23,B33]
T . Then, we can

use our two constraints on the intrinsics to build a system of homogeneous equations. hT
i Bh j = vT

i j

[
vT

i j
(v11 − v22)

T

]

b = 0; (18)

Thus, with n images, we can stack n such equations into Vb = 0 and solve for b. Given b, we can solve for the intrinsics
by the equations in Appendix B. The extrinsics are also readily computed.

Now, we have an algebraic solution. We need to refine our solution. We can use maximum likelihood inference to do so.
n

∑
i=1

m

∑
j=1

||mi j − m̂(A,Rk,Tk,M j)||
2
, (19)

where m̂(A,Rk,Tk,M j) is the projection of point M j in image k.
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