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Abstract

Shot boundary detection (SBD) is an important compo-
nent of many video analysis tasks, such as understanding
instructional videos. We propose to learn shot detection
end-to-end, from pixels to final shot boundaries, using a
Convolutional Neural Network (CNN) which is fully con-
volutional in time. This allows to use a large temporal
context without repeatedly processing frames. With this ar-
chitecture, our method obtains state-of-the-art results while
running at an unprecedented speed of more than 120x real-
time. For training our model, we rely on our insight that
all shot boundaries are generated and create a dataset with
one million frames and automatically generated transitions.

1. Introduction

A shot of a video consists of consecutive frames which
show a continuous progression of video and are thus in-
terrelated. The goal of shot boundary detection is to pre-
dict when such a shot starts or ends. Representing a video
as a set of shots is useful for many video analysis task,
such as understanding instructional videos, among oth-
ers. Due to the broad use of SBD, it has been researched
for over 25 years [1] and many methods have been pro-
posed, e.g. [1, 2, 3]. But shot detection is not solved yet.
While it may seem a simple problem, as humans can easily
spot most shot changes, it is challenging for an algorithm.
This is due to several reasons, as illustrated in Figure 1.
To tackle these challenges we propose to learn shot bound-
ary detection end-to-end, by means of a fully convolutional
neural network.

We make the following contributions: (i) A way to gen-
erate a large-scale dataset for training shot detection algo-
rithm without the need to manually annotate them and (ii)
a novel and highly efficient CNN architecture by making it
fully-convolutional in time, inspired by fully convolutional
architectures for image segmentation [4]. Our method runs
at 121x real-time speed on a Nvidia K80 GPU.

(a) Adjacent frames
from different shots.

(b) Single shot with
strong frame to frame
variation.

(c) Frames of a dis-
solve, 0.5 sec apart, but
visually similar.

Figure 1: Challenges of shot detection. Understanding if a scene
shows strong variation or if a shot change occurs is often difficult.

2. Method
We pose shot boundary detection as a binary classifica-

tion problem. The objective is to correctly predict if a frame
is part of the same shot as the previous frame or not. From
this output, it is trivial to obtain the final shot boundaries:
We simply assign all frames that are labelled as “same shot”
to the same shot as the previous frame.

Network architecture. To solve the classification prob-
lem described above, we propose to use a Convolutional
Neural Network with spatio-temporal convolutions, which
allows the network to analyze changes over time. The net-
work takes 10 frames as input, runs them through four lay-
ers of 3D convolutions, each followed by a ReLU, and fi-
nally classifies if the two center frames come from the same
shot or if there is an ongoing transition. Using 10 frames as
input provides context around the frames of interest, some-
thing that is important to correctly detect slow transitions
such as dissolves. We use a small input resolution of 64x64
RGB frames for efficiency and since such low resolution are
often sufficient for scene understanding [6]. Our network
consists of only 48698 trainable parameters.

Fully convolutional in time. Our architecture is inspired
by C3D [7], but is more compact. More importantly, our
model consists of 3D convolutions only, thus making the
network fully convolutional in time. The network is given
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F1 score Speed
Apostolidis et al. [2] 0.84 3.3x (GPU)
Baraldi et al. [3] 0.84 7.7x (CPU)
Song et al. [5] 0.68 33.2x (CPU)
Ours 0.88 121x (GPU)
w/o fully conv. inference 13.9x (GPU)

Table 1: Performance and speed comparison on the RAI
dataset [3]. As can be seen our method significant outperforms
previous works, while being significantly faster. We note, how-
ever, that [3] uses a single-threaded CPU implementation, while
we run our method on a GPU.

an input of 10 frames, and trained to predict if frame 6 is
part of the same shot as frame 5. Due to its fully convolu-
tional architecture, however, it also accepts larger temporal
inputs. E.g. by providing 20 frames, the network would pre-
dict labels for frames 6 to 16, thus making redundant com-
putation unnecessary. This allows to obtain large speedups
at inference, as we are showing in our experiments.

Implementation details. We use a cross-entropy loss,
which we minimize with vanilla stochastic gradient descent
(SGD). At inference, we process the video in snipets of 100
frames, with an overlap of 9 frames. If a frame is part of a
transition such as a dissolve, it is labelled as not the same
shot as the previous, as it is part of a transition, not a shot.

3. Training Data
To obtain a dataset large enough to train an end-to-end

model we create a new dataset automatically. The dataset
consists of 79 videos with few or no shots transitions and
has a total duration of 3.5 hours. From this data we sam-
ple snippets of 10 frames, which will serve as the input to
our model. To generate training data we combine some of
these snippets with a transition. Thus, we have two types of
training examples: (i) snippets consisting of frames from a
single shot, i.e. non-transitions and (ii) transition snippets,
which have a transition from one shot to another.

We generate the following transitions: Hard cuts, Crop
cuts (hard cut to a zoomed in version of the same scene),
dissolves, fade-ins, fade-outs and wipes. Dissolves linearly
interpolate between shots, while fades linearly interpolate
from or to a frame of a single color. In wipes a shot is
moved out to a side, while the next shot is moved in.

4. Experiments
We evaluate our method on the publicly available RAI

dataset [3]. Thereby we follow [3] and report F1 scores. We
now discuss these results, which are summarized in Table 1.

Performance. As Table 1 shows, our method outperforms
the previous state of the art methods on this dataset. Our

method improves the mean F1 score from 84% to 88%,
thus reducing the errors by 25%. It obtains an accuracy
of more than 90% in recall and precision on most videos.
We find that the lower precision on some videos stems from
custom transitions such as partial cuts, which are special
cases and extremely hard to detect. Furthermore, such tran-
sitions were not included into training. On common transi-
tions such as hard cuts, fades and dissolves our method is
extremely accurate.

Speed comparison. We measure speed on a machine with
an single Nvidia K80 GPU and 32 Intel Xeron CPUs with
2.30GHz. We measured the speed of [5] and our method on
this machine, using the RAI dataset. For [2, 3] we used the
timings provided in the paper instead. Thus, these numbers
don’t allow for an exact comparison, but rather give a coarse
indication of the relative speed of the different methods.

From Table 1 we can see that our method is much faster
than previous methods. We also show that making the ar-
chitecture fully convolutional is crucial for obtaining fast
inference speed. To the best of our knowledge, our model it
is the fastest shot detection to date.

5. Conclusion
In this paper we have introduced a novel method for shot

boundary detection. Our CNN architecture is fully convo-
lutional in time, thus allowing for shot detection at more
than 120x real-time. We have compared our model against
the state-of-the art on the RAI dataset [3] and have shown
that it outperforms previous works, while requiring a frac-
tion of time. We also note that our model was not using any
manually annotated shot transitions for training.
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