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Abstract

This submission is a synopsis of our paper, entitled
“Subset Selection and Summarization in Sequential Data”,
which was presented in NIPS 2017 [1].

People learn how to perform tasks such as assembling a
device or cooking a recipe, by watching instructional videos
for which there often exists a large amount of videos on
the internet. Summarization of instructional videos helps
to learn the grammars of tasks in terms of key activities or
procedures that need to be performed in order to do a certain
task. On the other hand, there is a logical way in which
the key actions or procedures are connected together, hence,
emphasizing the importance of using the dynamic model of
data when performing summarization.

Subset selection, which is the task of finding a small
subset of most informative items from a ground set, has
become an indispensable too for summarization of image
and video and speech data. On the other hand, instruc-
tional video and text data contain important structural re-
lationships among segments or sentences, often imposed by
underlying dynamic models, that should play a vital role in
the selection of key steps. For example, there exists a logi-
cal way in which key segments of a video or key sentences
of a document are connected together and treating seg-
ments/sentences as a bag of randomly permutable items re-
sults in losing the semantic content of the video/document.
However, existing subset selection methods ignore these re-
lationships and treat items independent from each other.

We have develop a new framework for sequential sub-
set selection that incorporates the dynamic model of se-
quential data into subset selection. We have develop a new
class of objective functions that promotes to select not only
high-quality and diverse items, but also a sequence of rep-
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Figure 1: We propose a framework, based on a generalization of
the facility location problem, for the summarization of sequential
data. Given a source set of items {x1, . . . ,xM} with a dynamic
transition model and a target set of sequential items (y1, . . . ,yT ),
we propose a framework to find a sequence of representatives from
the source set that has a high global transition probability and well
encodes the target set.

resentatives that are compatible with the dynamic model of
data. To do so, we have propose a dynamic subset selection
framework, where we equip items with transition probabil-
ities and design objective functions to select representatives
that well capture the data distribution with a high overall
transition probability in the sequence of representatives, see
Figure 1. Our formulation generalizes the facility location
objective [2, 3] to sequential data, by incorporating transi-
tion dynamics among facilities. Since our proposed inte-
ger binary optimization is non-convex, we have develop a
max-sum message passing framework to solve the problem
efficiently. Please refer to [1] for the mathematical deriva-
tions of our optimization and the derivations of our message
passing algorithm.

We have applied our SeqFL to the task of summarization
of instructional videos to automatically learn the sequence
of key actions to perform a task. We use videos from the
instructional video dataset [4], which consists of 30 instruc-
tional videos for each of five activities. The dataset also
provides labels for frames which contain the main steps re-
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1Figure 2: Ground-truth and the automatic summarization result of our method (SeqFL) for the task ‘CPR’.

Task kDPP M-kDPP Seq-kDPP DS3 SeqFL

Change
tire

(P, R) (0.56, 0.50) (0.55, 0.60) (0.44, 0.40) (0.56, 0.50) (0.60, 0.60)
F-score 0.53 0.57 0.42 0.53 0.60

Make
coffee

(P, R) (0.38, 0.33) (0.50, 0.44) (0.63, 0.56) (0.50, 0.56) (0.50, 0.56)
F-score 0.35 0.47 0.59 0.53 0.53

CPR
(P, R) (0.71, 0.71) (0.71, 0.71) (0.71, 0.71) (0.71, 0.71) (0.83, 0.71)

F-score 0.71 0.71 0.71 0.71 0.77
Jump
car

(P, R) (0.50, 0.50) (0.56, 0.50) (0.56, 0.50) (0.50, 0.50) (0.60, 0.60)
F-score 0.50 0.53 0.53 0.50 0.60

Repot
plant

(P, R) (0.57, 0.67) (0.60, 0.50) (0.57, 0.67) (0.57, 0.67) (0.80, 0.67)
F-score 0.62 0.55 0.62 0.62 0.73

All tasks
(P, R) (0.54, 0.54) (0.58, 0.55) (0.58, 0.57) (0.57, 0.59) (0.67, 0.63)

F-score 0.54 0.57 0.57 0.58 0.65

Table 1: Precision (P), Recall (R) and F-score for the summarization of instructional videos for five tasks.

quired to perform that task. We preprocess the videos by
segmenting each video into superframes [5] and obtain fea-
tures using a deep neural network that we have constructed
for feature extraction for summarization tasks. We use 60%
of the videos from each task as the training set to build an
HMM model whose states form the source set, X. For each
of the 40% remaining videos, we set Y to be the sequence of
features extracted from the superframes of the video. Using
the learned dynamic model, we apply our method to sum-
marize each of these remaining videos. The summary for
each video is the set of representative elements of X, i.e.,
selected states from the HMM model. The assignments of
representatives to superframes gives the ordering of repre-
sentatives, i.e., the ordering of performing key actions.

Given ground-truth summaries, we compute the preci-
sion, recall and the F-score of various methods (see our
NIPS’17 paper [1] for details). Table 1 shows the results.
Notice that existing methods, which do not incorporate the
dynamic of data for summarization, perform similar to each
other for most tasks. In particular, the results show that the
sequential diversity promoted by Seq-kDPP and M-kDPP is
not sufficient for capturing the important steps of tasks. On
the other hand, for most tasks and over the entire dataset,
our method (SeqFL) significantly outperforms other algo-
rithms, better producing the sequence of important steps to
perform a task, thanks to the ability of our framework to

incorporate the underlying dynamics of the data. Figure 2
shows the ground-truth and the summaries produced by our
method for the task of ‘CPR’. Notice that SeqFL sufficiently
well captures the main steps and the sequence of steps to
perform these tasks. However, SeqFL does not capture two
of the ground-truth steps. We believe this can be overcome
using larger datasets and more effective feature extraction
methods for summarization.
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