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1. Introduction

Given platforms like YouTube or Vimeo, the avail-
ability of video data has largely increased over the re-
cent years. While approaches for action classification on
pre-segmented video clips already perform convincingly
well [1]], processing of untrimmed videos is still lacking
performance. Especially detecting and segmenting fine-
grained actions within such videos remains a open chal-
lenge in most cases.

One major problem in training such systems is the
availability of suitable training data: Manually annotating
ground truth actions for a sufficiently large amount of video
data is expensive and extremely time consuming. Recent
research therefore focused on weakly supervised learning,
where no frame-level annotation is required but only an or-
dered sequence of actions that occur in the video [2| l6].
Such action transcripts can be annotated more quickly and
can sometimes even be inferred from subtitles.

In order to learn a model for temporal action segmen-
tation with such weak supervision, CNNs or RNNs have
been combined with hidden Markov models (HMMs) and
stochastic grammars [6} [3]. While these approaches are
particularly suited for videos that contain complex actions
and have a huge number of distinct classes, they come with
the major problem that their training requires some heuristic
ground truth. They rely on a two-step approach that is iter-
ated several times. It consists of first generating a segmenta-
tion for each training video using the Viterbi algorithm and
then training the neural network using the generated seg-
mentation as pseudo ground-truth. Consequently, the two-
step approach is sensitive to the initialization of the pseudo
ground-truth and the accuracy tends to oscillate between the
iterations [6].

To overcome those problems, we proposes a novel learn-
ing algorithm that allows for direct learning from the input
videos and ordered action classes only. The approach in-
cludes a Viterbi-decoding as part of the loss function to train
the neural network and does not need any kind of pseudo
ground-truth of framewise labeling as initialization. More-
over, it does not suffer from oscillation effects.
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Figure 1. The input video x7 is forwarded through the network
and the Viterbi decoding is run on the output probabilities. The
frame labels generated by the Viterbi algorithm are then used to

compute a framewise cross-entropy loss based on which the net-
work gradient is computed.

2. Temporal Action Segmentation

We address the problem of temporally localizing activi-
ties in a video x!' = (21, ..., x7) with T frames. The task
is to find a segmentation of a video into an unknown number
of N segments and to output class labels ¢ = (cy,...,cn)
and lengths 1V = (¢y, ..., ¢y ) for each of the N segments.
Using a background class for uninteresting frames, each
frame can be assigned to a segment. For terms of simplic-
ity, we refer to the label assigned to frame x; as Cn(t)» Where
n(t) is the number of the segment frame ¢ belongs to.

Putting the task in a probabilistic setting, we aim to find
the most likely video labeling given the video frames, i.e.
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where conditional independence of the frames is assumed
for the factorization. We refer to p(z¢|c,, 1)) as visual model
(the neural network in our case), to p(¢,,|c,,) as length model



(a Poisson model in this work), and to p(c,|c} ') as context
model (a finite grammar of all possible training transcripts).

The factorization used in Eq. (I)) or a similar factoriza-
tion is widely used in recent works [, 16l [3]. The arg max
can be efficiently computed using the Viterbi algorithm. Re-
call that in our weakly supervised setting, 1V and accord-
ingly the frame-level annotation of the data is unknown dur-
ing training.

2.1. Viterbi-based Network Training

Our proposed training procedure is illustrated in Fig-
ure [I| During training we randomly draw a sequence x7
and its annotation ¢} from the training set. The sequence is
then forwarded through a neural network. Note that there
are no constraints on the network architecture, all com-
monly used feed-forward networks, CNNs, and recurrent
networks can be used. The optimal segmentation by means
of Equation (1) is then computed by application of a Viterbi
decoding on the network output. Since ¢} is provided as
annotation, only 1 needs to be inferred during training. We
switch notation and write the Viterbi segmentation (¢}, 11)
as framewise labels ¢, (1), - - - , ¢ (1), With which the cross-
entropy loss over all aligned frames is accumulated:
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Based on the sequence loss £, the network parameters
are updated using stochastic gradient descent with the gra-
dient VL of the loss. We would like to emphasize that the
algorithm operates in an online fashion, i.e. in each itera-
tion, the loss £ is computed with respect to a single ran-
domly drawn training sequence (x7, c¥) only.

Since videos are frequently several thousand frames long
but contain only a few of the overall possible actions, the
loss in Eq. [2| tends to push the model strongly towards a
small subset of actions and the specific appearance of the
video frames. In order to avoid this effect and enhance the
robustness of our algorithm, we propose to use a buffer B
and store recently processed sequences and their inferred
frame labels. In order to make the gradient in each iter-
ation more robust, K frames from the buffer are sampled
and added to the loss function,

T K
L=— {Zlogp(cn(mxt) + Zlogp(ckp:k)}. (3)
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3. Experiments

We evaluate our method on two widely used datasets, the
Breakfast dataset [4] and 50Salads [7]. For comparability
with other approaches, we use Fisher vectors of improved
dense trajectories as input features. The neural network is a
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Figure 2. Convergence behaviour of our algorithm on Breakfast.

Breakfast 50 Salads
CTC [2] 21.8 11.9
HTK [3] 25.9 24.7
ECTC [2] 27.7 -
HMM/RNN (6] 33.3 45.5
NN-Viterbi 43.0 49.4

Table 1. Comparison of our method to several state-of-the-art
methods for the task of temporal action segmentation. Results are
reported as frame accuracy (%).

recurrent network with a hidden layer of 128 gated recurrent
units and a softmax output.

Figure |2 shows the convergence behaviour of our algo-
rithm as a pure online learning approach (loss from Eq. (2)))
and with the robustness enhancements (loss from Eq. (3)).
While both variants of our algorithm start to converge af-
ter 2,000 to 3,000 iterations, the robustness enhancement
is particularly advantageous at the beginning of training,
adding a huge margin in terms of frame accuracy compared
to the pure online variant.

Compared to current state of the art, our method shows
a significant improvement compared to the best published
results of [6], see Table[T}
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