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1. Introduction

Given platforms like YouTube or Vimeo, the avail-
ability of video data has largely increased over the re-
cent years. While approaches for action classification on
pre-segmented video clips already perform convincingly
well [1], processing of untrimmed videos is still lacking
performance. Especially detecting and segmenting fine-
grained actions within such videos remains a open chal-
lenge in most cases.

One major problem in training such systems is the
availability of suitable training data: Manually annotating
ground truth actions for a sufficiently large amount of video
data is expensive and extremely time consuming. Recent
research therefore focused on weakly supervised learning,
where no frame-level annotation is required but only an or-
dered sequence of actions that occur in the video [2, 6].
Such action transcripts can be annotated more quickly and
can sometimes even be inferred from subtitles.

In order to learn a model for temporal action segmen-
tation with such weak supervision, CNNs or RNNs have
been combined with hidden Markov models (HMMs) and
stochastic grammars [6, 3]. While these approaches are
particularly suited for videos that contain complex actions
and have a huge number of distinct classes, they come with
the major problem that their training requires some heuristic
ground truth. They rely on a two-step approach that is iter-
ated several times. It consists of first generating a segmenta-
tion for each training video using the Viterbi algorithm and
then training the neural network using the generated seg-
mentation as pseudo ground-truth. Consequently, the two-
step approach is sensitive to the initialization of the pseudo
ground-truth and the accuracy tends to oscillate between the
iterations [6].

To overcome those problems, we proposes a novel learn-
ing algorithm that allows for direct learning from the input
videos and ordered action classes only. The approach in-
cludes a Viterbi-decoding as part of the loss function to train
the neural network and does not need any kind of pseudo
ground-truth of framewise labeling as initialization. More-
over, it does not suffer from oscillation effects.
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Figure 1. The input video xT
1 is forwarded through the network

and the Viterbi decoding is run on the output probabilities. The
frame labels generated by the Viterbi algorithm are then used to
compute a framewise cross-entropy loss based on which the net-
work gradient is computed.

2. Temporal Action Segmentation
We address the problem of temporally localizing activi-

ties in a video xT
1 = (x1, . . . , xT ) with T frames. The task

is to find a segmentation of a video into an unknown number
of N segments and to output class labels cN1 = (c1, . . . , cN )
and lengths lN1 = (`1, . . . , `N ) for each of the N segments.
Using a background class for uninteresting frames, each
frame can be assigned to a segment. For terms of simplic-
ity, we refer to the label assigned to frame xt as cn(t), where
n(t) is the number of the segment frame t belongs to.

Putting the task in a probabilistic setting, we aim to find
the most likely video labeling given the video frames, i.e.

(ĉN1 , l̂N1 ) = argmax
cN
1 ,lN1

{
p(cN1 , lN1 |xT

1 )
}

= argmax
cN
1 ,lN1

{ T∏

t=1

p(xt|cn(t)) ·
N∏

n=1

p(`n|cn) · p(cn|cn−1
1 )

}
,

(1)

where conditional independence of the frames is assumed
for the factorization. We refer to p(xt|cn(t)) as visual model
(the neural network in our case), to p(`n|cn) as length model
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(a Poisson model in this work), and to p(cn|cn−1
1 ) as context

model (a finite grammar of all possible training transcripts).
The factorization used in Eq. (1) or a similar factoriza-

tion is widely used in recent works [5, 6, 3]. The argmax
can be efficiently computed using the Viterbi algorithm. Re-
call that in our weakly supervised setting, lN1 and accord-
ingly the frame-level annotation of the data is unknown dur-
ing training.

2.1. Viterbi-based Network Training

Our proposed training procedure is illustrated in Fig-
ure 1. During training we randomly draw a sequence xT

1

and its annotation cN1 from the training set. The sequence is
then forwarded through a neural network. Note that there
are no constraints on the network architecture, all com-
monly used feed-forward networks, CNNs, and recurrent
networks can be used. The optimal segmentation by means
of Equation (1) is then computed by application of a Viterbi
decoding on the network output. Since cN1 is provided as
annotation, only lN1 needs to be inferred during training. We
switch notation and write the Viterbi segmentation (cN1 , lN1 )
as framewise labels cn(1), . . . , cn(T ), with which the cross-
entropy loss over all aligned frames is accumulated:

L = −
T∑

t=1

log p(cn(t)|xt). (2)

Based on the sequence loss L, the network parameters
are updated using stochastic gradient descent with the gra-
dient ∇L of the loss. We would like to emphasize that the
algorithm operates in an online fashion, i.e. in each itera-
tion, the loss L is computed with respect to a single ran-
domly drawn training sequence (xT

1 , c
N
1 ) only.

Since videos are frequently several thousand frames long
but contain only a few of the overall possible actions, the
loss in Eq. 2 tends to push the model strongly towards a
small subset of actions and the specific appearance of the
video frames. In order to avoid this effect and enhance the
robustness of our algorithm, we propose to use a buffer B
and store recently processed sequences and their inferred
frame labels. In order to make the gradient in each iter-
ation more robust, K frames from the buffer are sampled
and added to the loss function,

L = −
[ T∑

t=1

log p(cn(t)|xt) +

K∑

k=1

log p(ck|xk)
]
. (3)

3. Experiments
We evaluate our method on two widely used datasets, the

Breakfast dataset [4] and 50Salads [7]. For comparability
with other approaches, we use Fisher vectors of improved
dense trajectories as input features. The neural network is a
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Figure 2. Convergence behaviour of our algorithm on Breakfast.

Breakfast 50 Salads

CTC [2] 21.8 11.9
HTK [5] 25.9 24.7
ECTC [2] 27.7 −
HMM/RNN [6] 33.3 45.5

NN-Viterbi 43.0 49.4

Table 1. Comparison of our method to several state-of-the-art
methods for the task of temporal action segmentation. Results are
reported as frame accuracy (%).

recurrent network with a hidden layer of 128 gated recurrent
units and a softmax output.

Figure 2 shows the convergence behaviour of our algo-
rithm as a pure online learning approach (loss from Eq. (2))
and with the robustness enhancements (loss from Eq. (3)).
While both variants of our algorithm start to converge af-
ter 2, 000 to 3, 000 iterations, the robustness enhancement
is particularly advantageous at the beginning of training,
adding a huge margin in terms of frame accuracy compared
to the pure online variant.

Compared to current state of the art, our method shows
a significant improvement compared to the best published
results of [6], see Table 1.

References
[1] J. Carreira and A. Zisserman. Quo vadis, action recognition?

a new model and the kinetics dataset. In CVPR, 2017.
[2] D.-A. Huang, L. Fei-Fei, and J. C. Niebles. Connectionist

temporal modeling for weakly supervised action labeling. In
ECCV, 2016.

[3] O. Koller, S. Zargaran, and H. Ney. Re-sign: Re-aligned end-
to-end sequence modelling with deep recurrent CNN-HMMs.
In CVPR, 2017.

[4] H. Kuehne, A. B. Arslan, and T. Serre. The language of ac-
tions: Recovering the syntax and semantics of goal-directed
human activities. In CVPR, 2014.

[5] H. Kuehne, A. Richard, and J. Gall. Weakly supervised learn-
ing of actions from transcripts. CVIU, 2017.

[6] A. Richard, H. Kuehne, and J. Gall. Weakly supervised action
learning with RNN based fine-to-coarse modeling. In CVPR,
2017.

[7] S. Stein and S. J. McKenna. Combining embedded accelerom-
eters with computer vision for recognizing food preparation
activities. In UBICOMP, pages 729–738, 2013.

This work has been accepted for CVPR 2018 under the same title.


