
Embedded Control Systems

Jeff Cook
jeffcook@eecs.umich.edu

Lecture: MW 130-3PM 1311 EECS
Labs: 4342 EECS

Office: 4238 EECS

Zhaori Cong (Thursday 9:30)
zcong@umich.edu

Jeff Roder (Tuesday, Thursday 1:30)
roderjef@umich.edu

John Schmotzer (Monday 3:30,Wednesday 10:00)
jwschmo@umich.edu

Embedded Control Systems
• Background:

– University of Michigan and Ford Motor
Company, 2004

– Control theorists and computer scientists: why
do we have to hire one of each to develop
embedded controls?

– Teach a little computer engineering to control
theorists, and a little signal processing and
control to computer engineers

– Also taught at ETH (2008)

Important Points
• No textbook

– www.eecs.umich.edu/courses/eecs461

– Lecture notes, microprocessor reference material, laboratory
exercises, homework problems and lots of other important
information will be posted

– Syllabus lists some useful (but not required) books on embedded
systems programmingsystems programming

– I’ll mention during lecture what you should be reading

• Homework will be Matlab, Simulink, Stateflow
– Problem sets will be posted on the website
– Typically have one week per problem set. Homework is due at the

beginning of class. Late homework will not be accepted. The
Homework Policy is posted on the course website, and included in
the syllabus.

Important Points
• Laboratory exercises

– 8 laboratory exercises plus a project using the
Freescale MPC5553 microprocessor
• Most labs are “1-day” (1 lab per week)• Most labs are “1-day” (1 lab per week)
• First lab will be two weeks beginning Monday, 12
January – BUT MLK day on 19 January means
Monday section has only one scheduled lab

• Lab instructors will have “open hours” on Friday, 16
January and/or Friday 23 January for Monday
students. Check with your lab instructor for times

– 6 lab stations with 2 students (“self organize”)

Important Points
• Special lecture on embedded system
programming
– Important information for lab #1
– When to do this lecture? – When to do this lecture?

• Monday? … but lab starts at 3:30
• Special lecture on Friday?

– Same time and place, if I can get the room

Important Points
• Laboratory exercises have 3 parts:

– Pre-lab: questions that require you to read the
microprocessor reference material and gather
the information required to complete the lab
exerciseexercise

– In-lab: the experiment
– Post-lab: questions that should reinforce what
you learned in the lab exercise

– Read the “lab policy” in the syllabus

Other Useful Information
• Grading:

– Homework: 25%
– Laboratory Assignments: 25%
– Quizzes (tentatively scheduled for February 18th and
April 1st): 30%

– Project: 20%– Project: 20%

• Office Hours: 10:00 - Noon, Monday and
Wednesday, but feel free to stop by or email me to
set up an appointment

• Email alias: eecs461@eecs.umich.edu
– See syllabus for instructions

Outline
• Embedded systems and embedded control systems

• Laboratory description
– Freescale MPC5553 microcontroller
– Software development environment
– Haptic interface– Haptic interface

• Lecture Topics

• Laboratory Exercises

What is an Embedded System?

• Technology containing a microprocessor as a
component
– cell phone
– PDA
– digital camera

• Constraints not found in desktop applications• Constraints not found in desktop applications
– cost
– power
– memory
– interface

⇒ Embedded processor is often the performance and
cost limiting component!

What is an Embedded Control System?

• Technology containing a microprocessor as a
component used for control:
– Automobile
– Aircraft and UAV
– Active control of civil structures
– Manufacturing tools
– Household appliances
– Many others …

Characteristics of Embedded Control
Systems

• Interface with external environment
– sensors and actuators

• “Real time” critical
– performance and safety– performance and safety
– embedded software must execute in synchrony
with physical system

• Distributed control
– networks of embedded microprocessors

Skills Required for Embedded Controls

• Algorithms (control, signal processing,
communications)

• Computer software (real time, multitasking)
• Computer hardware (interfacing, memory
constraints)constraints)

• Digital electronics
• Sensors and actuators
• Mechanical design

• Multi-disciplinary!

Industry Trends
• Increasing complexity of embedded control systems and

software
– Actuators, sensors, processors, networks
– Typical small car contains ~70 microprocessors

• Model based embedded control software design
– Matlab/Simulink/Stateflow– Matlab/Simulink/Stateflow
– Autocode generation
– Rapid prototyping
– Hardware in the loop (HIL) testing

• “Separation between control design and controller
implementation is not sustainable in embedded market”*

* Industry Needs for Embedded Control Education, Tutorial Session 2005 ACC
J. Freudenberg (UM), B. Krogh (CMU), J. Cook (Ford), K. Butts (Toyota), J. Ward (Eaton)

An Embedded Design Team

• May consist of:
– Applications engineers

• Model the systems to be controlled, design control
algorithms

– Hardware specialists
• Low-lever drivers and other hardware specific design• Low-lever drivers and other hardware specific design

– Software engineers
• Write C code from specifications given to them by
applications engineers

• Applications engineers, hardware engineers
and software engineers have to communicate!

Languages
• Some assembly language

– device drivers, highly optimized code

• Most coding done in C
– interest in C++ and Java, but too much overhead for
highly constrained applications

• Automatic code generation• Automatic code generation
– automatically generate C code from a Matlab/Simulink
model used to design and test control algorithm

– currently useful for rapid prototyping on non-production
processor

– also used for high end applications (NASA)

MPC5553/5554 Examples: Automotive
Applications

• Powertrain
– Fuel and ignition control
– Aftertreatment control for diesels
– Valve control, turbocharger control, transmission control

including CVT
– Control of hybrid-electric powertrains– Control of hybrid-electric powertrains

• Safety
– ABS, traction control, electronic stability control, rollover

control
• Lots of I/O: sensors & actuators

– Real time critical: performance & safety
– Harsh environment (EMI, noise, vibration, temperature)

• High-speed CAN
• Low-speed CAN
• Local Interconnect Network

(LIN)

Automotive Distributed Systems:
Mobile Networking

(LIN)
• Media Oriented Systems

Transport (MOST)
• Bluetooth
• Intelligent Transportation

System Data Bus (IDB 1394)
• FlexRay, Time-triggered

CAN …

Application of the MPC555 (predecessor of
the MPC5553)

• SeaScan transoceanic pilotless aircraft
• ScanEagle Intelligence, surveillance and reconnaissance support;

USS Oscar Austin (DDG 79) Guided Missle Destroyer
• The Insitu Group: www.insitu.com

Laboratory Overview
• MPC5553 Microcontroller (Freescale)

– Originally automotive control, now used in many
applications

• Development Environment
– Debugger (P&E Micro)
– Codewarrior C compiler (Freescale)

• Haptic Interface• Haptic Interface
– Force feedback system for human/computer interaction

• Rapid Prototyping Tools
– Matlab/Simulink/Stateflow, Real Time Workshop (The
Mathworks)

– RAppID Toolbox (Freescale)
• Real Time Operating System

– OSEKturbo RTOS (Freescale)

Freescale MPC5553 Microcontroller

• 32 bit PPC core
– floating point
– 132 MHz
– -40 to +125 �C temperature range

• Programmable Time Processing Unit (eTPU)
– Additional, special purpose processor handles I/O that would otherwise

require CPU interrupt service (or separate chip)require CPU interrupt service (or separate chip)
– Quadrature decoding
– Pulse Width Modulation

• Control Area Networking (CAN) modules
• 2nd member of the MPC55xx family

– real time control requiring computationally complex algorithms
– MPC5554 replaces MPC555 for powertrain control
– MPC5553 has on-chip Ethernet for manufacturing applications

MPC5553 EVB

•Evaluation board (Freescale)
-32 bit PPC core
-floating point
-128 MHz

• Interface board (UofM)• Interface board (UofM)
– buffering
– dipswitches
– LEDs
– sliding potentiometer

Nexus Compliant Debugger (P&E Micro)

Haptic Interface
• Enables human/computer interaction through
sense of touch
– force feedback joystick
– virtual reality simulators (flight, driving)
– training (surgery*, assembly)
– teleoperation (manufacturing, surgery**)– teleoperation (manufacturing, surgery**)
– X-by-wire cars

• Human visual sensor: 30 Hz
• Human haptic sensor: 500Hz-1kH

* D. Sordid and S. K. Moore, “The Virtual Surgeon”, IEEE Spectrum, July 2000.
** J. Rosen and B. Hannaford, “Doc at a Distance”, IEEE Spectrum, October 2006.

Force Feedback

Haptic Wheel
• Prof. Brent Gillespie, Mech Eng Dept, UofM

– DC motor
– PWM amplifier w/ current controller
– optical encoder
– 128/18 gear ratio

Haptic Wheel
(New and Improved for 2009)

Virtual Environments
§Virtual wall
§Virtual spring-mass

Steer-by-wire Automobiles

R. Iserman, R. Schwarz, S. Stolzl, “Fault Tolerant Steer-by-Wire Systems”
IEEE Control Systems Magazine, October 2002.

Lab Station

Lectures (I)
• Quantization
• Sampling
• Linear filtering
• Quadrature decoding
• DC motors
• Pulse Width Modulation (PWM) amplifiers• Pulse Width Modulation (PWM) amplifiers
• Motor control: current (torque) vs. speed
• MPC5553 architecture. Peripherals: eTPUs, eMIOS, eDMA,…
• Haptic interfaces.

– virtual wall
– virtual spring/mass/damper

• Simulink/Stateflow modeling of hybrid dynamical systems
• Numerical integration.

Lectures (II)
• Networking:

– Control Area Network (CAN) protocol.
– Distributed control

• Interrupt routines: timing and shared data
• Software architecture

– Round robin
– Round robin with interrupts
– Real time operating systems (RTOS)– Real time operating systems (RTOS)
– Multitasking

• Shared data: semaphores, priority inheritance, priority ceiling
• Real time computation. Rate monotonic scheduling.
• Rapid prototyping. Autocode generation.
• Model based embedded control software development
• PID control design

Laboratory Exercises

• Lab 1: Familiarization and digital I/O
• Lab 2: Quadrature decoding using the eTPU

• Each teaches
– a peripheral on the MPC5553
– a signals and systems concept

• Each uses concepts (and code!) from the previous labs

• Lab 2: Quadrature decoding using the eTPU
• Lab 3: Queued A-D conversion
• Lab 4: Pulse Width Modulation and virtual worlds without time
• Lab 5: Interrupt timing and frequency analysis of PWM signals
• Lab 6: Virtual worlds with time.
• Lab 7: Controller Area Network (CAN)
• Lab 8: Rapid Prototyping

Lab 1: Familiarization and Digital I/O

• Use General Purpose Input/Output (GPIO) on MPC5553
• Read two 4-bit numbers set by dipswitches, add the
values and display the results on LEDS

Lab 2: Fast Quadrature Decoding

• Position measurement using an optical encoder
• Optical encoder attached to motor generates two 90� out

of phase square waves:

• QD function on MPC5553 eTPU:
decodes quadrature signal into counter

• CPU must read counter before overflow
Issue: How fast can wheel turn before counter overflows?

Lab 4: Virtual Wall

• Software loop
– read position from encoder

• Wall chatter
– read position from encoder
– compute force F = 0 or F = kx
– set PWM duty cycle

• Rotary motion
– degrees ⇔ encoder count
– torque ⇔ PWM duty cycle
– 1 degree into wall ⇔ 400 N-mm

torque

• Wall chatter
– large k required to make stiff

wall
– limit cycle due to

* sampling
* computation delay
* quantization
* synchronization

Lab 6: Virtual Spring-Mass System
• Virtual spring-mass system: reaction force F = k(w-z)
• Measure z, must obtain w by numerical integration
• Use interrupt timer to generate a time step

zww m
k

m
k =+&&

k

haptic wheel virtual wheel

θw
θz

Jw

zJ
k

zJ
k

w ww
θθθ =+&&

Lab 6: Design Specifications

• Choose k and Jw so that
– virtual wheel oscillates at 1Hz
– maximum torque in response to 45 degree step in wheel
position is < 800Nmm

• Verify design in Simulink before testing on hardware

Lab 7: Controller Area Networking (CAN)

• Networking protocol used in time-critical applications
– automotive
– manufacturing

• Messages have unique identifiers: priorities
• Allows computation of worst case response time
• Lab exercises:• Lab exercises:

– a wall that is chatter free when wall implemented locally can
chatter due to delay when implemented remotely

– connect each wheel to its virtual neighbors with virtual
springs to create a virtual chain of 6 labstations.

– estimate network utilization.

Rapid Prototyping (I)

• Lab 8 involves automatic code generation from
Simulink models:
– Derive a mathematical model of system to be controlled
– Develop a Simulink/Stateflow model of the system.
– Design and test a control algorithm using this model.– Design and test a control algorithm using this model.
– Use Real Time Workshop (RTW) to generate C-code.
– Eliminates coding errors.
– Speeds product development: generated code can be tested
in many design cycles

– Hand coding still required for production

Model Based Embedded Control Software Development

Rapid Prototyping (II)

• Need Simulink blocks:
– device drivers
– processor and peripheral initialization

• Issues:
– efficiency of generated code
– structure of code

• Multitasking
– with RTOS, task states
– without RTOS, nested interrupts

OSEKturbo RTOS (Freescale)

• OSEK/VDX compliant
• Scalable
• Task scheduler
• Priority ceiling protocol• Priority ceiling protocol
• Eliminates

– deadlock
– priority inversion

RAppID Toolbox (Freescale)
• Processor and peripheral initialization blocks
• Device driver blocks
• Enables multitasking with OSEKturbo RTOS
or nested interrupts

RAppID MPC5554 Target Setup

System Clock : 128 MHz
Target : MPC5554

Compiler : metrowerks
Target Type : IntRAM

Operating System : simpletarget

RAppID-EC

Lab 8: Two virtual wheels

• Two subsystems:
– High priority fast subsystem
– Low priority slow subsystem– Low priority slow subsystem

• Model the multi-rate system in Simulink
• Demonstrate real-time operating system
(RTOS)

Project (at UM):
Adaptive Cruise

Control
• Distance Control

– Follows target at timed
headway in ACC mode by use
of throttle and brakes

• Speed Control• Speed Control
– Automatically returns to cruise

set speed when target clears

Headway
Sensor

Adaptive Cruise
Control Algorithm

Path
determination
algorithm

Project: Adaptive Cruise Control

• Driving simulator
• Bicycle model of vehicle
• 6 vehicles interacting
over CAN network

• ACC algorithm: 3 states• ACC algorithm: 3 states
– manual (sliding pot)
– constant speed
– constant distance

• Takes 3+ weeks, all done
with Simulink, Stateflow, and
autocode generation

