Virtual Wall

- **Software loop**
 - read position from encoder
 - compute force $F = 0$ or $F = kx$
 - set PWM duty cycle

- **Rotary motion**
 - degrees \leftrightarrow encoder count
 - torque \leftrightarrow PWM duty cycle
 - 1 degree into wall \leftrightarrow XX N-mm torque

- **Wall chatter**
 - large k required to make stiff wall
 - limit cycle can result due to sampling, computation delay, quantization, synchronization
Wall Chatter

- A “stiff” virtual wall requires large k.
- Large k causes the wall to chatter.
- Limit cycle caused by interaction between human control and computer control at the wall boundary.
- Complete study requires a model of the human.
- Researchers assume the human is passive, and attempt to build passive walls.
“Energy Leak”

digital implementation of virtual spring
⇒ ZOH contributes \(\frac{1}{2} \) sample delay
⇒ spring adds energy

\[W = \int F \, dx \]
Half Step Prediction

• Predict puck position one step ahead and use spring law

\[F(n) = -k(x(n) + \dot{x}(n+1))/2 \]

\[\dot{x}(n+1) \approx x(n) + \dot{x}(n)T \]

\[F(n) = -k(x(n) + \frac{T}{2} \dot{x}(n)) \]

Equivalent to adding damping \(b = kT/2 \) to the virtual wall
Velocity Estimation

• Velocity is not measured and must be estimated:

\[\dot{x}(n) \approx \frac{1}{T} (x(n) - x(n - 1)) \]

• Force becomes:

\[
F(n) = -k\left(x(n) + \frac{T}{2} \dot{x}(n)\right) \\
= -k\left(\frac{3}{2} x(n) - \frac{1}{2} x(n - 1)\right)
\]

• Other issues
 – Computation delay
 – Quantization
 – How to simulate?