
Embedded Control Systems, Winter 2009, Problem Set 71

issued: Wednesday April 1, 2009 due: Monday April 13, 2009

To receive full credit for your answers to the following questions, please explain your reasoning carefully.

1. In the following code, the function lSecondsSinceMidnight returns the number of seconds since midnight.
A hardware timer asserts an interrupt signal every second, which causes the microprocessor to run the
interrupt routine vUpdateTime to update the static variables that keep track of time.

static int iSeconds, iMinutes, iHours
void interrupt vUpdateTime (void)
{

++iSeconds;
if (iSeconds >= 60)
{

iSeconds = 0;
++iMinutes;
if (iMinutes >= 60)
{

iMinutes = 0;
++iHours;
if (iHours >= 24)

iHours = 0;
}

}

!! service the hardware

}

long lSecondsSinceMidnight (void)
{

return((((iHours * 60) + iMinutes) * 60) + iSeconds);
}

(i) Is this code guaranteed to always return the correct answer? Explain.

(ii) The ANSI C standard allows the compiled C code to read in the variables in any order, including
the following: first iHours, then iMinutes, and lastly iSeconds. What is the maximum amount by
which the returned value of time may be off? (Hint: Suppose that the time is 5:59:59.)

(iii) Suggest a way to fix this code so that it returns the correct time.

1Revised March 30, 2009.

1

2. A reentrant function is one that may be called by more than one task, and will always work correctly
even if the RTOS switches from one task to another in the middle of executing the function. The function
iFixValue below uses the temporary variable iTemp to modify iValue which is shared by all the

tasks that call it. Where would you need to take and release the semaphores to make the function below
reentrant?

static int iValue;

int iFixValue (int iParm)
{

int iTemp;

iTemp = iValue;
iTemp += iParm * 17;

if (iTemp > 4922)
iTemp = iParm;

iValue = iTemp;

iParm = iTemp + 179;
if (iParm < 2000)

return 1;
else

return 0;
}

2

3. Consider the problem of scheduling four tasks, with periods and execution times given as follows:

T1 : P1 = 100, e1 = 20
T2 : P2 = 150, e2 = 30
T3 : P3 = 210, e3 = 80
T4 : P4 = 400, e4 = 100.

(a) Calculate the total utilization, U, for these four tasks. Do these tasks satisfy the sufficient condition

U < n(21/n − 1)

for RMS schedulability?

(b) If your answer to the preceding question is negative, does the answer change if you consider only
the first three tasks? By eliminating tasks do you ever arrive at a combination that does satisfy the
sufficient condition for schedulability?

(c) Determine which tasks satisfy the necessary and sufficient condition for RMS schedulability by cal-
culating the function

Wi(t) =
i−1∑
k=1

d t

Pk
eek + ei

that determines the amount of time the CPU spends executing the tasks T1, . . . , Ti in the interval
[0, t].

(d) For those tasks that are schedulable, determine the times at which they complete by plotting which
task is running at which time.

4. Consider the problem of scheduling three tasks with periods and execution times shown in Table 1. The
deadline for each task is equal to its period.

Task Period Execution
Time

1 P1 = 200 e1 = 50

2 P2 = 400 e2 = 100

3 P3 = 600 e3 = 300

Table 1: Three Periodic Tasks

(a) Compute the total utilization for these three tasks. Do they meet the sufficient condition for Rate
Monotonic (RM) schedulability? Explain.

(b) Are Tasks 1 and 2 RM schedulable (calculate W2(t))?

(c) Are Tasks 1, 2, and 3 RM schedulable?

(d) Sketch the times at which the three tasks will be running under the rate monotonic scheduling
protocol.

3

