NASA Program Plans for Sub-millimeter Wave Astronomy

Mike Kaplan
Chief, Advanced Programs Branch
Astrophysics Division
Office of Space Science and Applications
NASA Headquarters

February 26, 1991

Presentation to the Second International Symposium on Space Terahertz Technology, Jet Propulsion Laboratory, Pasadena, CA
Outline of Presentation

- NASA's Astrophysics Program
- Planned Missions
- Technology Requirements for Future Missions
- Comments and Summary
Program Goal

Conduct a comprehensive exploration of the universe

Themes:
- Astronomy: What is the nature of planets, stars and galaxies?
- Cosmology: What is the origin and fate of the universe?
- Physics: What are the laws of physics in the extreme conditions of astrophysical objects?
Program Strategy

- Contemporaneous observations across the electromagnetic spectrum with high sensitivity, high angular resolution and high spectral resolution
 - Implemented through the Great Observatories
- Fill in crucial gaps in "wavelength" or "spectroscopy" space
 - Implemented through Explorers and moderate missions
- Maintain National science and technology capability
 - Implemented through grants, sub-orbital program and technology development
- Analyze and publish results
 - Implemented through Mission Operations and Data Analysis program
Science Planning Process

- Strong grass roots community involvement in our program
 - Four Management Operations Working Groups (MOWGs) plus "Astrophysics Council"
- National Academy of Sciences
 - Committee on "Space Astronomy and Astrophysics"
 - 10 year strategy from "Bahcall report" to be released March 19, 1991
 - Prioritizes all National astronomy programs
- Integrate astrophysics initiatives into OSSA program plan
Great Observatories

- Hubble Space Telescope (HST)
- Gamma Ray Observatory (GRO)
- Advanced X-ray Astrophysics Facility (AXAF)
- Space Infrared Telescope Facility (SIRTF)
Sub-millimeter Astronomy Missions

- Kuiper Airborne Observatory (KAO)
- Sub-millimeter Wave Astronomy Satellite (SWAS)
- Stratospheric Observatory for Infrared Astronomy (SOFIA)
- Sub-millimeter Moderate Mission (SMMM)
- Large Deployable Reflector (LDR)
- Sub-millimeter Interferometer
Science Strategy: SWAS will perform both pointed and survey observations in 4 lines crucial to the study of interstellar cloud chemistry, energy balance and structure: 487, 557, 492 and 551 GHz

Description:
- 3 axis stabilized, stellar-pointing "Small Explorer" spacecraft (Scout-class)
- 530 km altitude, 3 degree inclination angle orbit
- 55 cm off-axis Cassegrain antenna, passively cooled heterodyne receivers and acousto-optical spectrometer

Launch Date: 1995

Principal Investigator/Payload List:
- PI -- Dr. Gary Melnick, SAO
- Antenna, Star Tracker, Instrument Integration -- Ball Aerospace
- Sub-millimeter Heterodyne Receiver -- Millitech
- Acousto-optical Spectrometer -- University of Cologne

NASA Program Manager: Dr. David Gilman, NASA HQ
Stratospheric Observatory for Infrared Astronomy (SOFIA)

- **Science Strategy:** SOFIA will provide frequent, high-quality access to the IR/sub-mm spectral region

- **Description:**
 - 2.5 m Nasmyth IR telescope housed in a modified Boeing 747 SP aircraft
 - Operates from 0.3 to 1600 microns
 - Sensitivity ~ 10^{-19} W/cm2/SR
 - Angular Resolution: 2 arcsec in near IR and diffraction limited at wavelengths > 30 microns
 - 120 flights/year with 30 - 40 research teams/year

- **Launch Date:** 1998

- **Technology Development Requirements:**
 - Lightweight f/1 primary mirror (Zeiss)
 - Shear layer control
 - Large air bearing

- **NASA Program/Project Manager:** Mike Kaplan, NASA-HQ / Dr. Gary Thorley, NASA-ARC
Sub-millimeter Moderate Mission (SMMM)

- **Science Strategy**: SMMM will be a spectral survey of selected objects from 100 - 750 microns and imaging in the 100 - 300 micron range
- **Description**:
 - 2.5 to 4 m segmented, ambient temperature aperture
 - High orbit, 2 year lifetime
 - Liquid He-cooled focal plane
 -- Fabry-Perot spectrometer with 0.1 deg K bolometers
 -- IR camera with 0.3 deg K bolometers
 -- Ten-band heterodyne radiometer operating at 2 deg K
- **Mission Options**: Explorer-class (2.5 m aperture, spectroscopy only), CNES and/or ESA collaboration
- **Launch Date**: 2001?
- **Technology Development Requirements**:
 - SIS mixers, heterodyne receivers with sensitivities within a factor of 5 of the quantum limit and local oscillators with increased conversion efficiency
 - Far IR integrating arrays (impurity band conduction technology)
 - Bolometers
 - Lightweight precision aperture
- **Science Working Group Chairman**: Dr. Tom Phillips, Caltech
Large Deployable Reflector (LDR)

Science Strategy: LDR will view sources in the wavelength region between 30 and 3000 microns.

- 20 m class diameter antenna for imaging spectroscopy and photometry
- Composed of 90 lightweight, hexagonal panels, 4 mirror, two-stage optical system
- Diffraction limit < 50 microns
- Spectral resolving limit from 10 to 10^5
- Angular resolution of 1 arcsec at 100 microns
- Sensitivity > 2 x 10^{-14} W/cm^2/SR

Launch Date: 2009 ??

Technology Development Requirements:
- Lightweight mirror segments
- Active figure control
- Heterodyne receivers with SIS mixers
- Long lifetime cryogenics

NASA POC: Dr. Larry Caroff, NASA-HQ
Sub-millimeter Interferometer (SMMI)

- **Science Strategy:** SMMI will view sources in the wavelength region between 30 and 1000 microns with 100x better resolution than any other existing or proposed instrument. Based at lunar outpost

- **Description:**
 - Two-dimensional array of 5-meter antennas distributed on baselines from 50 m to several km
 - Actively-cooled, superheterodyne receivers
 - Spectral resolving limit from 10 to 10^6 over the entire spectrum 10 GHz BW
 - Angular resolution of 10 milliarcsec at 100 microns

- **Launch Date:** 2013 ??

- **Technology Development Requirements:**
 - High throughput correlators
 - Lightweight materials that operate at 100 deg K and cycle to 385 deg K
 - Fiber-optics
 - Telerobotic operation

- **NASA POC:** Mike Kaplan, NASA-HQ
Sample Mission Schedule for Major Astrophysics Space Observatory

Mission Phase

Pre-Phase A Phase A Phase B Phase C/D Operations

Science Req'ts.
Definition
Mission / System
Definition
Critical Technologies
Identification
Technology Development
Optics
Instruments
(Detectors/Sensors)
Spacecraft Systems
Full-Scale Development,
Fabrication & Test
Mission Operations &
Data Analysis

Funding Profile

Δ 10%
Technology Requirements for Sub-millimeter Astronomy Missions

- **Sub-millimeter Heterodyne Receivers**: Develop robust, space-qualifiable heterodyne technology for extension into the terahertz regime, increased sensitivity and array applications

 - Local oscillator power of 50 microwatts to 20 mW for 200 GHz to 1 THz

 - Mixers with noise performance < 10 x quantum limit @ > 600 GHz to 3 THz

 - Low power, smaller size, larger bandwidth spectrometer concepts for space

 - Focal plane arrays covering 100 GHz to 2 THz

- **Sub-millimeter Apertures**: Develop large, precise lightweight segmented apertures up to 30 m in diameter with excellent thermal characteristics - NASA OAET Precision Segmented Reflector (PSR) program

- **Others**:

 - Space cooler and cryogenic technology - to support long duration missions
• Release of Augustine report has caused new emphasis on space science within NASA

• We will see a revolution in space astronomy over the next decade

• NASA has ambitious plans to explore the universe in sub-millimeter portion of the electromagnetic spectrum

• These missions are enabled with the development of new sub-millimeter wave technology

• Exciting times for sub-millimeter wave astronomy are around the corner!!