COHERENT SYSTEMS IN THE TERAHERTZ

FREQUENCY RANGE:

ELEMENTS

OPERATION

& EXAMPLES

PAUL F. GOLDSMITH

MILLITECH CORPORATION

South Deerfield MA, 01373

and

FIVE COLLEGE RADIO ASTRONOMY OBSERVATORY

Department of Physics and Astronomy

University of Massachusetts, Amherst MA 01003
TERAHERTZ COHERENT SYSTEMS APPLICATIONS

RADIOMETRY / SPECTROSCOPY

ASTRONOMY
ATMOSPHERIC REMOTE SENSING
ALL-WEATHER SYNTHETIC VISION SYSTEMS
CONTRABAND DETECTION

HIGH POWER

PLASMA HEATING
HIGH ENERGY ACCELERATORS

PLASMA DIAGNOSTICS

THERMAL IMAGING
DENSITY PROBING
BACKSCATTER MEASUREMENTS

COMMUNICATIONS

PERSONAL & VEHICULAR
DIGITAL DATA LINKS
TV REMOTE / STUDIO LINKS

MATERIALS MEASUREMENT AND COMMERCIAL PROCESS CONTROL

PAPER MAKING
HV CABLE MANUFACTURING

RADAR SYSTEMS

MILITARY – SEEKERS, INSTRUMENTATION, AND MODELING
AUTOMOTIVE COLLISION AVOIDANCE
ATMOSPHERE, METEOROLOGY, GROUND, ICE, AND FOLIAGE
COMPONENTS OF COHERENT SYSTEMS AT MILLIMETER & SUBMILLIMETER WAVELENGTHS

INPUT OPTICS

COLLIMATING MIRRORS AND LENSES

SIGNAL PROCESSING ELEMENTS

POLARIZING GRIDS WAVEPLATES

COHERENT SOURCE

LOCAL OSCILLATOR; TRANSMITTER

DIPLEXER

COMBINATION OF LOCAL OSCILLATOR AND SIGNAL

ANTENNA/FEED ELEMENTS

EFFICIENCY, BEAMWIDTH, BANDWIDTH, CONSTRUCTION INTEGRABILITY

MIXER

CONVERSION LOSS; NOISE; L.O. POWER; BANDWIDTH

IF SYSTEM

NOISE; BANDWIDTH

DETECTION/SIGNAL PROCESSING

SPECTROMETERS: FREQUENCY COVERAGE; RESOLUTION; FLEXIBILITY; POWER CONSUMPTION
BRIEF OVERVIEW OF SELECTED COMPONENTS

EMPHASIZE AREAS THAT I FEEL DESERVE MORE ATTENTION THAN THEY ARE RECEIVING AT PRESENT

[1] MATERIALS MEASUREMENT

FUNDAMENTAL FOR MANY ASPECTS OF SYSTEMS DESIGN

NEED MORE DATA, BETTER DATA, AND BETTER ACCESS

BORON NITRIDE DATA FROM A. J. GATESMAN, R. H. GILES, AND J. WALDMAN PROC. MATERIALS RESEARCH SOCIETY SYMPOSIUM ON WIDE BANDGAP SEMICONDUCTORS, 1991 FALL MEETING, BOSTON

INTERCOMPARISON OF TECHNIQUES FOR DETERMINATION OF NEAR MILLIMETER DIELECTRIC PROPERTIES

JAMES BIRCH ET AL. – NATIONAL PHYSICAL LABORATORY TEDDINGTON, MIDDLESEX U.K. TW11 0LW

REPORT DES 115, OCTOBER 1991
[2] QUASIOPTICAL COMPONENTS

HOW CAN THEY BE FABRICATED IN SUBMILLIMETER REGION?

TRADITIONAL MACHINING METHODS BECOME VERY DIFFICULT AND EXPENSIVE—

NEED TO FIND CONSTRUCTIVE COMBINATIONS OF METAL-WORKING AND SEMICONDUCTOR PROCESSING APPROACHES SUCH AS SELECTIVE ETCHING

EXAMPLES:

PROCESSING SILICON TO FABRICATE TWO DIMENSIONAL IMAGING HORN ANTENNA ARRAYS (REBEIZ ET AL. IEEE MTT 38, 1473 (1990))

ETCHING AND PLATING SILICON TO MAKE DICHROIC PLATE HIGH PASS FILTERS IN 1000 GHZ RANGE (SIEGEL AND LICHTENBERGER 1990 MTT–S SYMP. DIGEST, 1341)
RADIOMETRY AND SPECTROSCOPY: ASTRONOMY

OBSERVING LOCATION DEPENDS PRIMARIALLY ON FREQUENCY:

GROUND – BASED
AIRPLANE AND BALLOONS: KAO; SOFIA
SPACE: SWAS; SMIM; FIRST

[1] SENSITIVITY

HIGHEST SENSITIVITY ALWAYS REQUIRED

CRYOGENIC COOLING IS ACCEPTABLE

BROADBAND SYSTEMS WILL BE REQUIRED FOR FUTURE SYSTEMS

[2] IMAGING SYSTEMS

FOCAL PLANE ARRAYS DEVELOPED FOR MILLIMETER RANGE:

FCRAO 15 – ELEMENT QUARRY ARRAY 85 – 115 GHZ
NRAO 8–ELEMENT ARRAY IN 230 GHZ RANGE

CANNOT SACRIFICE FEED EFFICIENCY SIGNIFICANTLY JUST TO
OBTAIN LARGER NUMBER OF ELEMENTS DUE TO COST AND
COMPLEXITY OF ASSOCIATED SIGNAL PROCESSING.

[3] OTHER COMPONENT DEVELOPMENT

RAPID PROGRESS IN FREQUENCY MULTIPLIER SOURCES, BUT
FURTHER DEVELOPMENT REQUIRED FOR GREATER BANDWIDTH
AND REACHING HIGHER FREQUENCIES
PLANAR HETEROODYNE ARRAY USING A DIELECTRIC-FILLED PARABOLA

BLOW UP SHOWING ANTENNA ELEMENTS

EXPLODED VIEW (SIDE)

TOP VIEW (COVER REMOVED)

P.H. Siegel
California Institute of Technology Jet Propulsion Laboratory
RADIOMETRY:

AIRCRAFT ALL WEATHER LANDING SYSTEM

APPROACH

FOCAL PLANE IMAGING SYSTEM AT 94 GHZ TO PROVIDE SYNTHETIC VISION CAPABILITY FOR AIRCRAFT LANDING IN ALMOST ALL WEATHER CONDITIONS

MILLIMETER - WAVE IMAGING ALLOWS GOOD VISIBILITY OF RUNWAY BOUNDARIES AND POSSIBLY DANGEROUS OBSTACLES FROM APPROPRIATE DISTANCE

FOCAL PLANE RADIOMETRIC IMAGING PERMITS REAL - TIME (30 / SECOND) UPDATE RATE

IMAGES READILY INTERPRETABLE WITHOUT EXTENSIVE PROCESSING

HEADS-UP DISPLAY STRAIGHTFORWARD TO IMPLEMENT

TECHNOLOGY:

FOCAL PLANE ARRAY OF 256 (TO DATE) PIXELS UTILIZING CONSTANT - WIDTH SLOT ANTENNAS

SINGLE - ENDED HARMONIC MIXERS WITH QUASIOPTICAL LOCAL OSCILLATOR INJECTION

DICKE - TYPE LOAD COMPARISON ESSENTIAL MECHANICAL OR ELECTRONIC (QUASIOPTICAL HYBRID OR MONOLITHIC) REALIZATIONS POSSIBLE

COMPACT OPTICS
DETECTION OF CONCEALED
WEAPONS AND CONTRABAND MATERIAL

PROBLEM:

- DETECTION OF PLASTIC WEAPONS AND
 EXPLOSIVES CONCEALED BENEATH CLOTHING OF
 AIRLINE PASSENGERS.

CONSTRAINTS:

- EFFECTIVE PERFORMANCE
- NON-INVASIVE OPERATION
- RAPID PROCESSING

TECHNICAL APPROACH:

- ACTIVE (REFLECTING) AND PASSIVE (RADIOMETRIC)
 MILLIMETER-WAVELENGTH IMAGING SYSTEMS

- RADIOMETRIC SYSTEM LEAST INVASIVE AND
 OFFERS GOOD FIDELITY

- CLOSE FOCUSED OPTICS AND FOCAL PLANE ARRAY
RADIOMETRY: ATMOSPHERIC REMOTE SENSING

[1] ISSUES:

MEASUREMENT OF TRACE CONSTITUENTS INCLUDING: H_2O

O_3

ClO

N_2O

PHYSICAL CONDITION (TEMPERATURE) PROFILING

DELAY MEASUREMENTS FOR RADAR ALTIMETERS

MESOSPHERIC WIND VELOCITY DETERMINATIONS

TRACE EMISSIONS FROM LOCALIZED SOURCES

[2] OBSERVING LOCATIONS

GROUND – BASED: O_3 AND ClO MONITORING NETWORK

ANTARCTIC AND POLAR REGIONS

AIRPLANE: USEFUL AS TEST PLATFORM AND FOR STUDY OF LOCALIZED PHENOMENA

SPACE: UARS – SUCCESSFULLY OPERATING!

MAS (SHUTTLE LIMB – SOUNDER)

EOS (EARTH OBSERVING SYSTEM)

AMSU – B / METEOSAT
CONFIGURATION FOR GROUND-BASED RADIOMETER TO STUDY ATMOSPHERIC TRACE GASES

DIELECTRIC SLAB SINGLE-SIDEBAND FILTER FOR 279 GHZ C10 RADIOMETER
UARS MICROWAVE LIMB SOUNDER INSTRUMENT SIGNAL FLOW PATH

UARS - MLS TARGETS AND ALTITUDE RANGES
PLASMA DIAGNOSTICS

THERMAL IMAGING – RADIOMETRY WITH HIGH TIME RESOLUTION

EXTREMELY BROADBAND AND/OR SWEPT – FREQUENCY

DENSITY PROFILING – MEASUREMENT OF ELECTRON COLUMN DENSITY THROUGH PLASMA

INTERFEROMETERS – EITHER RADIO OR OPTICAL TYPES DEPENDING ON WAVELENGTH

SCATTERING EXPERIMENTS – PROBE TURBULENCE AND SCALE OF FLUCTUATIONS IN PLASMA

EXAMPLE OF PLASMA DIAGNOSTIC SYSTEM

2 – MM WAVELENGTH 180 DEGREE BACKSCATTER IMAGING SYSTEM DEVELOPED BY DR. P. EFTHIMION (PRINCETON PLASMA LABORATORY) AND E.L. MOORE ET. AL. (MILLITECH CORPORATION)

INCLUDES PHASELOCKED TRANSMITTER AND 64 ELEMENT FOCAL PLANE IMAGING ARRAY
COMMUNICATIONS

APPLICATIONS:

- PERSONAL

- VEHICULAR – CAR TRAIN AND PLANE

- DIGITAL DATA LINKS – SATELLITE AND GROUND

- MILITARY COMMUNICATIONS (MILSTAR)

- TV REMOTE – STUDIO LINKS

DEVELOPMENTS IN FIELD HAVE BEEN REVIEWED BY H. MEINEL IN

PROC. 18th EUROPEAN MICROWAVE CONFERENCE, STOCKHOLM,

pp. 1203 – 1216, 1988
RADAR SYSTEMS

- MILITARY RADAR SYSTEMS

 INSTRUMENTATION RADARS

 SEARCH RADARS

 SEEKERS

 HELICOPTER OBSTACLE AVOIDANCE SYSTEMS

- AUTOMOTIVE RADAR

 PRESENTLY VERY ACTIVE FIELD

 GOALS ARE COLLISION AVOIDANCE AND ULTIMATELY AUTOMATIC CONTROL OF VEHICLE

- ATMOSPHERE

 CLOUD STRUCTURE (ICE & WATER)

 METEOROLOGY

- REMOTE SENSING

 OCEANS

 VEGETATION

 ICE

- MODELING

 MILLIMETER / SUBMILLIMETER MODELING OF LOWER FREQUENCY RADAR SYSTEMS AND TARGETS
DUAL POLARIZATION MONOPULSE LENS ANTENNA
MATERIALS MEASUREMENT AND MANUFACTURING PROCESS CONTROL

MAJOR CONSIDERATIONS

- DEMANDS EXTREMELY RUGGED SYSTEMS
- COST IS A CRITICAL FACTOR
- MOST INDUSTRIES ARE CONSERVATIVE AND NEED TO BE CONVINCED OF VALUE OF NEW SYSTEM
- WHAT ARE THE UNIQUE CAPABILITIES OF TERAHertz RANGE?

APPLICATIONS:

HIGH VOLTAGE CABLE INSPECTION

PAPER MAKING
PAPER MEASUREMENTS AT SUBMILLIMETER WAVE LENGTHS

TRANSMITTANCE OF 80 μM NEWSPRINT AS A FUNCTION OF MOISTURE CONTENT

FROM BOULAY, ET AL., IR & MM WAVES, VOL. 5, PP 1221–1234, 1984
CONCLUSIONS

APPLICATIONS OF COHERENT SYSTEMS IN TERAHERTZ RANGE ARE EXTREMELY DIVERSE AND ARE EXPANDING

RAPID TECHNICAL PROGRESS IS TAKING PLACE ON MANY FRONTS

TRANS-MILLIMETER REGION IS NOW SIMILAR TO MILLIMETER RANGE JUST A FEW YEARS AGO AND $\lambda \leq 3$ MM RANGE IS COMPARABLE TO MICROWAVE REGION IN RECENT PAST

REAL SUBMILLIMETER REGION STILL HAS MANY CHALLENGES INCLUDING BASIC QUASIOPTICAL COMPONENTS, FREQUENCY SOURCES, ANTENNAS (INCLUDING ARRAYS) AND HIGH EFFICIENCY AND RUGGED MIXERS AND DETECTORS

AN IMPORTANT CONSIDERATION: DIFFERENT APPLICATIONS HAVE ENORMOUSLY DIVERSE REQUIREMENTS

THE SINGLE GREATEST OBSTACLE TO BROADER COMMERCIAL AND INDUSTRIAL UTILIZATION OF TERAHERTZ REGION IS COST

WE NEED TO MAKE IT CHEAP AS WELL AS GOOD!

I WOULD LIKE TO ACKNOWLEDGE CONSIDERABLE ASSISTANCE FROM J. BIRCH, P. EFTHIMION, R. GILES, D. KEAVENLEY, R. MCINTOSH, E. MOORE, A. PARRISH, P. SIEGEL, J. WATERS AND OTHER CO-WORKERS AT MILLITECH AND AT F. C. R. A. O.