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Abstract

Technological, institutional, economic and budgetary changes over the past decade have
transformed the life sciences to become increasingly “data rich”. Hundreds of millions of
dollars have been (and are being) spent to develop large biological information resources,
e.g., the human genome sequence, protein structures, and assembling this information
in public databases, e.g, Genbank, PDB. Data management tools to facilitate access
and analysis such data are necessary to obtain the full benefits of the investments in
collecting these large datasets. Sequence data would be of little use if confined to
publication in traditional print media.

Our conclusion is that data management technology has not kept pace with data
generation in biology. We believe that further research and development of data manage-
ment technology is needed to effectively utilize and exploit the large biological datasets
which are now becoming available.

This is the report of a workshop held on Feb. 2-3, 2003 at the National Library
of Medicine, Bethesda, MD on Data Management Technology for Molecular and Cell
Biology. The workshop web site is: http://www.1bl.gov/ olken/wdmbio/

The workshop summary report and many of the workshop white papers appeared in
the journal OMICS — A Journal of Integrative Biology, volume 7, number 1, Spring 2003
published by Mary Ann Liebert, Inc. publishers. Detailed information and citations
can be found in Appendix A.
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Executive Summary

Over the past 15 years we have witnessed a dramatic transformation in the practice
of life sciences research. We have already selected many of the proverbial low hang-
ing fruit of dominant mutations and simple diseases. Chronic and more complex —
non-monogenic — diseases, as well as efforts to design microbes for engineering needs
or to uncover the basis of genetic repair, need the ladder of IT to reach the higher
branches in living systems. At the same time, technological improvements in sequenc-
ing instrumentation and automated sample preparation have made it possible to create
high throughput facilities for DNA sequencing, high throughput combinatorial chem-
istry for drug screening, high throughput proteomics, high throughput metabolomics,
etc. In consequence, what was once a cottage industry marked by scarce expensive data
obtained largely by the manual efforts of small groups of graduate students, postdocs,
and a few technicians has become industrialized and data-rich, marked by factory scale
sequencing organizations (Joint Genome Institute, Whitehead Institute, The Institute
for Genomic Research, Celera, etc.).

Such industrialization and the accompanying growth in molecular biology data avail-
ability demand similar scale up and specialization in the data management systems that
support and exploit this data gathering. Data management tools can interface molecu-
lar and cellular data to image and physiological data, which will be important to scale
across the levels of living systems and particularly to translate the findings of basic
biology to human health care. Similarly, public health depends on ability to integrate
query and model with very diverse, very fragmented, non-standard, distributed data
sources and databases.

We expect that this explosive growth in the amount and diversity of biological and
biochemical data will continue into the 215 century, i.e., that 21st life sciences will
be data-rich. Success in the life sciences will hinge critically on the availability of
computational and data management tools to analyze, interpret, compare, and manage
this abundance of data. Increasingly, much of biology is viewed as an information
science, concerned with how cells, organisms, and ecological systems encode and process
information in genetics, cellular control, organism development, environmental response,
and evolutionary settings.

Instruments, data, and data management systems are complementary goods, i.e.,
their joint consumption is much more useful than consuming a single commodity at a
time. Consider the limited utility of genomic sequence data, if we could only publish
such data in books and manually compare the sequences. The availability of data man-
agement software that permits the rapid searching of large genomic sequence databases



10 Executive Summary

for similar sequences greatly enhances the utility of such sequence data. Quick sequence
comparison routines are not sufficient by themselves: the fact that many (most) of these
sequences have been collected into a few databases (e.g., Genbank) greatly simplifies
the comparison task.

To obtain the full benefit of the massive public investments in generating biologi-
cal data will require commensurate investments in effective data management systems
and judicious choices of how to assemble and manage shared databases. To turn the
vast amounts of new information being generated through scientific experiments into
knowledge that can be applied towards better practice in medicine, agriculture, and en-
vironmental science, the federal agencies need to encourage a profound, deep partnership
between experimental biology and database management.

Orchestrating fruitful interdisciplinary research across biology and data manage-
ment is not easy. Lack of sufficient interaction between biologists and data manage-
ment researchers can easily lead to attempts to reinvent well-known data management
technologies by bioinformaticists, or sterile pursuits of irrelevant (or misunderstood)
problems by data management researchers. Also the time scales of data management
research and development are often incompatible with the production requirements of
ongoing biological laboratories or community databases. It is striking to note that the
major human genome sequencing centers have generally not been major sources of inno-
vative data management technology. The most fruitful endeavors have often come from
data management (or computer science) research groups with looser collaborations with
biologists.

A sustained program by the federal agencies at the frontier between biology and data
management technology will allow us to share the database expertise of the IT commu-
nity with the large number of experimentalists supported across the federal agencies.
There are needs for both fundamental research in database management technologies
as well as their applications to biological problems. Funding agencies will have to set
up appropriately staffed review panels charged with suitable review criteria for fund-
ing such interdisciplinary work. Adequate funding for small, medium and large-scale
collaborative research projects as well as including funding within those collaborative
projects to train a new generation of database management experts in the labs of IT
professionals will be important.

For fastest progress in the biological sciences, we must encourage both the devel-
opment of content for biological databases as well as data management technology for
managing this content. We must recognize that database content development and
database technology development are two complementary but quite different endeavors.
Funding for the two must come in two different colors so that it is not easily possi-
ble to move money from one to the other. Otherwise, the pressing needs of today’s
content will too frequently triumph over technology’s promise of a better tomorrow.
Most research-driven companies recognize this tension and fund (at least some of) their
research activity from corporate sources rather than through product divisions. In sim-
ilar fashion, funding agencies should create a supplemental funding program for data
management specialists to collaborate with life scientists in developing superior data
management technology for life science applications.

We expect, in the foreseeable future, that it will become important to have MDs and
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experimental biologists trained in computational methods (just as training in microbiol-
ogy has now become routine for doctors where it was completely absent only a few years
ago). Biology is often an exercise in induction (generalization from many instances),
whereas computer science is more often a deductive enterprise, because computer algo-
rithms and systems are usually designed (not evolved) artifacts. Solution to a specific
biological data management problem is less of interest to a computer scientist than the
generalization of this problem to a class of data management problems, all of which can
be solved in one fell swoop through an appropriate computational advance. And rightly
S0, since this paradigm is significantly more cost-effective in the domains to which it is
applicable.

This dichotomy has significant repercussions not just on how we undertake research
activities, but also in how we train scientists. Currently, some biological scientists get
trained in performing specific computational tasks, such as sequence analysis. Knowing
how to select Blast parameters is not a transferable skill, in that it is likely to have
little value if a new computational method is devised that is superior to Blast. What
we need is training in the underlying principles so that a completely new and different
sequence matching technique can be utilized rapidly and effectively. To this end, we
need opportunities for people at every level to train themselves in the “other discipline”
and work at the interface between data management and biomedical science. We also
need support for curriculum development. The funding for such activities has to be
ongoing for a substantial period of time — a typical three-year cycle is not enough to see
the sort of major changes required.
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Chapter 1

The Need for Information in
Biomedical Science

Biomedical research is now information intensive; the volume and diversity of new
data sources challenges current database technologies. The development and tuning
of database technologies for biology and medicine will maintain and accelerate the cur-
rent pace of innovation and discovery. There are four main classes of situations in which
data management technology is critical to supporting health-related goals. They are:

1. The rapid construction of task-specific databases to manage diverse data for solv-
ing a targeted problem.

2. The creation of data systems that assist research efforts by combining multiple
sources of data to generate and test new hypotheses, for instance, about diseases
and their treatments.

3. The management of databases to accumulate data supporting entire research com-
munities.

4. The creation of databases to support data collection and analysis for clinical (and
field) decision support.

To make these situations concrete, we present below examples that indicate both
current successes as well as future opportunities and challenges in this regard.

1.1 Rapid construction of task-specific databases

1.1.1 Four Corners Hantavirus Outbreak

Identifying new pathogens used to take months to years. The identification of Legion-
naires’ disease and AIDS pathogens are cases in point. However, in 1993, when healthy
young people in the American southwest began to die from an unknown pathogen, the
virus responsible was identified in only one week using a combination of molecular bi-
ology and bioinformatics approaches. Traditional immunological approaches were only
able to suggest that the virus involved in this “Four Corners” epidemic was distantly
related to a family of viruses known as hantaviruses — not enough information to prevent
or treat the disease. DNA sequences of related viruses in the hantavirus family were

15



16 CHAPTER 1: The Need for Information

retrieved from DNA sequence databases, and allowed the design of molecular probes
(PCR primers) which were used in the first definitive test for the virus (confirming it as
the pathogen) and allowing the determination of the DNA sequence of the new virus.
In turn, the DNA sequence allowed the identification of the new virus’s closest relatives
(in viruses found in Korea), which shared similar animal vectors (rodents) and produced
similar symptoms.

Because the Four Corners hantavirus produces symptoms that resemble those of cold
or flu before progressing to pulmonary arrest and sudden death, the assay developed
based on sequences found in DNA sequence databases was critical in stopping the spread
of this epidemic. If this information had not been available — online, well described,
and searchable — it might have taken several years and many, many deaths before this
pathogen was identified.

In the intervening ten years, electronic data resources have continued to grow, lead-
ing to ongoing challenges in building the kind of integrated, online resources needed
to attack similar diseases. We have much more information today, but also greater
challenges in locating what we need. With the imminent threat of bio-terrorism, every
day spent in obtaining the requisite data in response to a new outbreak can make a
difference of thousands of lives. The 2003 SARS threat underlines this need.

1.1.2 World Trade Center Victim Identification

After the tragedy of September 11, 2001, the coroner’s office in New York City had
the task of identifying the remains of victims, so that they could be returned to family
members. Existing database systems were built predominantly on the assumption that
individual remains would be found and identified on a one-by-one basis. The possibility
of more than 3000 victims and tens of thousands of samples was never considered in
the design of the initial database system. GeneCodes Inc. has published its experience
(still ongoing) in creating a data management system to assist in the identification of
remains [SJ03]. This data management system had to be built on very short notice,
and had to integrate information from a variety of sources.

There are two sources of DNA in tissues: nuclear and mitochondrial. Each of these
sources has a number of attributes that can be measured, and the combination of these
attributes tends to be unique for individuals, thus allowing identification. Given a sam-
ple of known origin (taken from the personal effects of the victims, and gathered from
their families), it can be compared with the profile of attributes gathered from the un-
known samples, and matched. In many cases, additional evidence is required, including
DNA samples from parents and siblings (who share some, but not all DNA attributes
with their relatives), information about where the remains were found, information
about what personal effects were used for identification, and the contact information
about all the people who are reported as missing.

To manage these data, the investigators built a complex system using cutting-edge
database technology and state-of-the-art understanding of how to use genetics and other
evidence to identify victims. The resulting tool continues to evolve, but has assisted
in the identification of many victims, and the return of their remains to loved ones.
Although this database was built under extraordinary circumstances, the need for urgent
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assembly and integration of data, and the provision of novel analytic capabilities based
on this data occurs routinely in both biomedical research as well as in the delivery
of healthcare. When these needs arise, it is too late to perform essential background
research in order to support these efforts, and so these needs must be anticipated in
order to respond in a timely manner to urgent needs.

1.2 Databases to assist in research

1.2.1 Malaria Studies

The malaria parasite, Plasmodium Falciparum, is responsible for nearly 11 million
deaths annually of children under the age of five. One of the great scientific achievements
of 2002 was the publication of the full genome (the DNA sequence) of both the parasite
as well as the mosquito (Anopheles Gambiae) that carries it to human victims, and the
first public release of the full genome database (PlasmoDB, [Pla03]). For the first time
ever, we have the complete triad of genomes involved in this disease (the parasite, the
vector mosquito, and the human host). A primary health goal is to develop new drugs
to effectively treat (and perhaps eradicate) malaria as a major threat to human health.

The genome database provides the list of the genes that are present in the parasite,
but does not organize these genes into the pathways and networks of interaction that
could be used to understand the underlying “wiring” of the parasite and how it works.
Fortunately, there are other databases, including the MetaCYC database [Met03] of
metabolic pathways, that can be used to assemble the genes into the metabolic machine
that makes the parasite run. With a clear picture of this machine, we are able to
identify vulnerable regions that can be targeted for interference with new drugs. In
order to validate these targeted metabolic capabilities, we use other research databases
(revealing where and when genes are turned on and off, including micro-array databases
and proteomics databases) in order to prioritize the possible targets and assess their
likelihood of success. Given a set of genes that would be good targets, we can further
filter them by comparing them to human genes in order to help ensure that the new
drugs will not be toxic for human use.

In some cases, the gene targets are proteins with known three-dimensional structures
(or strong similarity to known structures), stored in the Protein Data Bank (PDB)
[PDBO03], and in those cases we can explore the detailed atomic structure of these genes,
and use databases of existing compounds (such as Chemical Abstracts Service [CAS03])
in order to get a detailed understanding of how a potential drug might actually interact
with its target and what modifications might make the drug more potent.

At the end of this pipeline, then, we will have a relatively small set of candidate for
further drug development that have been filtered using disparate information sources,
each of which provides a unique type of information. The resulting drugs can then be
tested experimentally, and the process of drug discovery has begun, taking full advantage
of all relevant data sources up front, thus decreasing the time to useful new drugs.
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1.3 Long term storage of accumulated data
to support discovery

1.3.1 Analysis in Breast Cancer

Breast cancer is a multi-component disease that appears to reflect both genetic and
potentially environmental factors. Genetic linkage of mutations in the BRCA1 gene
have been associated with high risk for breast cancer and appear to be predominant
in women who develop breast cancer pre-menopause. Sporadic breast cancer, which
includes 90 percent of all cases, tends to occur post-menopause. Conventional pathologic
staging can readily identify cases of both type of breast cancer at seemingly equivalent
stages of progression. It is of research interest to be able to evaluate the two disease
processes to determine if they are identical. Such differences, if they exist, may be critical
for enhancing diagnosis and staging of patients and the development of appropriate
diagnostics and biomarkers, therapeutics, treatment options and outcomes.

For instance, suppose tissue samples are obtained from patients’ biopsies and staged
by pathology as being stage ITA. Some of the patients are known to have a BRCA1
mutation that is most likely linked to their early disease (less than age 40) while the
other group is truly post-menopausal (greater than age 60) and not likely to be related
to BRCA1 mutations.

1. Comparative Genome Hybridization (CGH) micro-arrays using a BAC (Bacte-
rial Artificial Chromosome) clone library can be used on each sample to identify
regions of deletion and amplification at the genomic level.

2. Within the set of BRCA1 patients, regions of common amplification and deletion
are noted across the data set.

3. Similarly, within the sporadic breast cancer patients, regions of common amplifi-
cation and deletion are noted across the data set.

4. The sets of common amplifications and deletions within each patient group are
compared to identify those regions that are common across the patient groups.

5. The common regions need to be analyzed to examine genes that are within the
chromosomal regions and require expansion of the regions to incorporate flanking
regions because the BAC’s are not end-sequenced. This requires both algorithmic
processing for flanking regions as well as analysis using the physical map.

6. These genes should be further compared to expression array analysis data as well
as genotyping data that may exist and the potential presence of single nucleotide
polymorphisms (SNP’s).

7. Those genes that are identified in these regions require association with molec-
ular pathways and determination of potential interaction among the pathways
included. This requires analysis of the graph representation of the pathways for
linkages, direct and indirect, among the pathways. This defines the common pro-
cesses across the patient types within a specific stage of breast cancer.

8. Within each patient group, the additional regions of deletion and amplification re-
quire similar analysis to identify genes and potential pathways associated uniquely
to that patient group.
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9. Potential biomarkers need to be identified based on the pathway associations
within each patient group to assess whether the associated pathways are either
causative or responsive to the common pathway perturbations. These biomarkers
can serve as potential diagnostics for early disease detection as well as yielding in-
formation about the possibility that disease progression within these two patients
groups is different irrespective of the similarity of staging.

1.4 Long term storage of data
to support clinical decision making

1.4.1 Failure-to-Thrive Studies

Every year, thousands of children fail to grow properly. What pediatricians call “failure-
to-thrive” (FTT) has many causes, most prominently metabolic disorders The incidence
is quite high: for hospitalized children under the age of two, 1 — 5 percent have FTT;
and 10 percent of children whose families have medical, social, or economic problems
present the syndrome.

Precise diagnosis offers the best hope of treatment but can be notoriously hard: for
some mechanisms, less than ten cases world-wide have ever been diagnosed, let alone
recorded in the literature For these cases, clinicians send email via one of several different
metabolic disease listserves, asking each other if they have seen a similar case, requesting
advice on which assays to perform (and asking which laboratories perform those assays),
and attempt to form an hypothesis and plan a treatment strategy by discussing the case.
In many instances, we have no known therapies. This “email grand rounds” is certainly
better than nothing, but we believe that advanced database technology can enable us
to do much, much better.

In our vision, clinicians would query a consortium of databases containing informa-
tion on syndromes, cases, biochemistry, genetics, endrocrinology, physiology, laboratory
analyses, treatments, and outcomes, looking for cases similar to the one they have right
now in the clinic. As they identified exact, near, or non-matches, these data would be
scooped up automatically, fully anonymizing the data to protect patient privacy, so as
to continuously record the incidence and causes of FTT. Based on the results of this
initial pattern discovery query, the databases would generate sets of possible hypotheses
and the results of assays and suggested therapies and their contraindications for each
hypothesis would be quantitatively modeled so that the clinician could consider these.

Many of the assays, such as metabolic heavy-atom tracer experiments, require so-
phisticated mathematical models to interpret and analyze their results, and using these
models to explore different ideas and test hypotheses now requires both a firm under-
standing of the clinical side and the mathematics. Today, designing a treatment regimen
relies heavily on clinical intuition and experience, and is very much a trial-and-error pro-
cess. In the future, the clinician would “test-drive” proposed treatments by simulating
them, playing with the generated simulations or designing his or her own through in-
terfaces. As treatment proceeded, the results would be reported back automatically to
the database consortium via the local electronic medical record, again taking full care
to completely anonymize the data.
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1.4.2 HIV Studies

The HIV virus has caused roughly half a million deaths in the United States, and
there are 42 million HIV infected persons worldwide [NIA02]. One of the features of
this virus that makes it very difficult to treat is its ability to rapidly mutate in order to
become resistant to medications. This mutation is manifested by changes in the genome
of virus that are captured in the blood stream of individuals. In order to understand
which sequence changes explain resistance, we must correlate the sequences found in the
bloodstream with the history of exposure to medications, and the history of response
to the medications. Thus, HIV researchers have created databases in which the history
of medication regimens and their effectiveness for individual patients are stored along
side the HIV viral sequences that were present before and after treatment (for example,
[HIVO3].

Analysis of these data allows researchers to do two things. First, they can look at
statistical trends in the data in order to recognize which genetic alterations correlate
with resistance to particular drugs. Second, they can use this knowledge to make de-
cisions for individual patients about which drugs are likely to be best, based on the
history of drug exposures and the responses of other, similar patients to different drug
regimens. In this way, each patient benefits from both detailed understanding of the
HIV virus in their own bloodstream, as well as the community-experience with different
approaches to treatment.

1.5 Data management needs

Considering the scenarios above, several data-related needs are seen. Perhaps the need
that is most immediately evident is the requirement for effective integration of data
from multiple data sources. Such data integration is technically difficult for several
reasons. First, the technologies on which different databases are based may differ and
do not interoperate smoothly. Standards for cross-database communication allow the
databases (and their users) to exchange information. Second, the precise naming con-
ventions for many scientific concepts (such as individual genes, proteins, drugs) in fast
developing fields are often inconsistent, and so mappings are required between differ-
ent vocabularies. Third, the precise underlying biological model for the data may be
different (scientists view things differently) and so to integrate these data requires a
common model of the concepts that are relevant and their allowable relations. This
reason is particularly crucial because unstated assumptions may lead to improper use of
information that, on the surface, appears to be valid. Fourth, as our understanding of
a particular domain improves, not only will data change, but even database structures
will evolve. Any users of the data source, including in particular any data integrators,
must be able to manage such data source evolution.

When a scientist obtains data from any electronic source, even if there is no data
integration involved, many of the questions above remain. How is the data source struc-
tured? What is the model and underlying assumptions of the data provider? How did
the data provider obtain this data — what is the “provenance” of the data? (For in-
stance, in the World Trade Center example above, where an object was found would be
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quite different from where it was at the time of the blast, which could also be different
from where it was at the time of the tower collapse. An attribute such as “location”
has to be interpreted accordingly.) If the data is a direct report of experimental ob-
servations, what were the precise experimental conditions? (For example, a scientist,
working on the breast cancer scenario above, who finds an interesting database entry on
phenotypes associated with the BRCA1 gene may need to know the age distribution of
the population studied — and this information may not be mentioned in a typical terse
database entry.) If data is derived from other sources, what was the derivation process?
How reliable is the data? Is there a likelihood of error? (For example, this sort of anno-
tation is crucial for the statistical odds the physician needs to associate with hypotheses
when faced with a failure-to-thrive diagnosis scenario. Similarly, statistical trends are
required in HIV studies to be able to correlate genetic alterations with resistance to
particular drugs.)

The types of data representation and queries can also present challenges. The re-
quirements in life sciences are often different from what is typically needed by business
data processing for which commercial databases are designed. (For instance, metabolic
pathways are important to represent and access in a cancer research scenario. Similarly,
3-dimensional structure representation is required to find ligand docking sites required
for drug discovery studies.) New types of queries present an additional set of challenges
— commercial databases expect keyword-based or predicate match queries for equality
and range predicates; much richer query types are frequently required for biological
data. While several sequence similarity tools are in wide use, there are many other
types of similarity searches. (For instance, finding similar cases in the failure to thrive
scenario above, or structural matching for proteins and drugs.)

To summarize, there are many data management needs to address a wide range of
biological and health-related efforts. Some of these are evident as obstacles to scientific
progress if not addressed. Others are opportunities for much faster progress, if capital-
ized upon. While no individual bio-medical research project may have the resources to
make the necessary data management advances on its own, the combined need of multi-
ple health-related research efforts makes the development of biological data management
technologies a critical element of the national research infrastructure.
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Introduction

To study the issues surrounding the management of data for life sciences, a workshop
was held at the NTH campus in Bethesda, MD on Feb 2 and 3, 2003. Approximately
sixty experts in a range of related disciplines participated in this event. See the list of
participants at the front of this report. This report represents the central recommen-
dations of this group of experts.

Integration and exchange of data within and among organizations is a universally
recognized need in bioinformatics and genomics research. We begin this report with
a study of some of the obstacles to effective data integration, in the next section. We
continue thereafter with a discussion of a few central research challenges in data manage-
ment, addressing which will make a huge difference to biological science research. While
most of these research challenges will require several years of work to be addressed fully,
we believe that benefits can start accruing almost immediately from partial solutions
that are generated in response to these challenges. We present our analysis of risk and
time line associated with these efforts, and conclude with recommendations for specific
actions that should be taken now.

Our bottom-line conclusion is that effective information management is crucial to
rapid advancement in the life sciences. While there are incredible opportunities at the
interface of life sciences and computer science, exploiting these opportunities requires
an understanding of the differences between the two fields and the careful crafting of
symbiotic mechanisms.

2.1 Overcoming Obstacles to Data Integration

By far the most obvious frustration of a life scientist today is the extreme difficulty
in putting together information available from multiple distinct sources. A commonly
noted obstacle for integration efforts in bioinformatics is that relevant information is
widely distributed, both across the Internet and within individual organizations, and
is found in a variety of storage formats, both traditional relational databases and
non-traditional data sources (e.g., text data sources in semi-structured text files or
XML, and the results of analytic applications such as gene-finding applications or ho-
mology searches). This syntactic heterogeneity is currently being addressed by two
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main approaches: data warehousing (e.g., [Com], [VCC'03], and data federation (e.g.,
[HSKT01], [DCB*01], [Won00a], [TKM99]. In practice, a hybrid of the two approaches
is generally able to handle most syntactic integration needs.

Arguably an even more critical need in data integration is to overcome semantic
heterogeneity, i.e., to identify objects in different databases that represent the same
or related biological objects (genes, proteins, etc.), and to resolve the differences in
database structures, or schemas, among the related objects [KS99]. The same protein
sequence is known by different names or accession numbers (synonyms) in GenBank
[BKML'00], and SwissProt [OMG™02]. The same mouse gene (broadly understood)
may be identified and represented as a genetic map locus in the Mouse Genome Database
(MGD) [BRB'02], as the aggregation of multiple individual exon entries in GenBank,
or as a set of EST (Expressed Sequence Tag) sequences in UniGene [WCL*102]. Its
product has a single protein entry in SwissProt, and perhaps a structure entry in Protein
Data Bank (PDB) [PDBO03], which may reflect a slightly different amino acid sequence.
Semantic integration also deals with how different data sources are to be linked together.
For example, according to documentation at the Jackson Lab web site [JAX03], MGD
links to SwissProt through its marker concept, to RATMAP [Gro02] through orthologies,
to PubMed [WCL102] through references, and to GenBank through either markers (for
genes) or molecular probes and segments (for anonymous DNA segments). Finally, a
schema element with the same names in two different data sources can have different
semantics and therefore different data values. For example, retrieving orthologues to
the human BRCA1 gene in model organisms from several commonly used web sites
yields varying results: GeneCards [RCCPL98| returns the BRCA1 gene in mouse and
C. elegans; MGD returns the mouse, rat and dog genes; GDB [TKM99] returns genes
from MGD and FlyBase [GCM*97], [Gen97]; and LocusLink [WCL"02] returns only
mouse.

In this discussion we consider integration of the results of back-end analysis packages
such as BLAST [AGM™90], as well as more traditional data sources. Many scientifi-
cally relevant queries involve joins between the input or output of BLAST and other
data sources (e.g., GenBank). We have chosen not to address integration of front-end
tools such as visualization packages in this report, even though integrating them is an
important goal. Their integration obstacles and potential solutions, while overlapping,
are not co-extensive with obstacles and solutions for integrating back-end data sources
(e.g., declarative optimized query languages). Finally, we consider integration in the
context of read-only systems.

2.2 Obstacles to Integration

Four major categories of obstacles currently make integration of biological data difficult:
syntactic and semantic issues; issues around the evolution of data sources; sociological
factors; and systems issues.
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2.2.1 Syntax and Semantics

Biological data sources differ widely, in both their syntax and their semantics: their
format, structure, the meaning of their key concepts, and the query capabilities they
support. Documentation of the contents and structure of data sources is often missing
or incomplete, and often there is a mismatch between the actual database and its docu-
mentation, either because the documentation is outdated or because mistakes are made
in specifying complex database constraints. There is little to no formal specification
of database schemas and semantics, APIs, the semantics of operators, etc. Biological
knowledge is often represented only implicitly, in the shared assumptions of the com-
munity that produced the data source, and not explicitly via metadata that can be
used either by human users or by integration software. Identifiers are often not shared
by multiple data sources, leading to the need to discover relationships among objects
in multiple data sources, and to maintain synonym tables to map among them. Many
biological data sources do not use controlled vocabularies, making them difficult to
query. Many data sources require extensive cleansing and transformation before they
are optimally useful for querying: for example, GenBank is sequence-centric instead
of gene-centric, and contains legacy functional characterizations of sequences that are
frequently incorrect. Finally, machine processable documentation of measurement units
is often lacking or incomplete — for example concentrations may be specified as ratios
(parts per million) without indicating whether they are mass, molar, or volume ra-
tios. Adherence to standard S. I. (metric) measurement units can reduce problems of
heterogeneous units.

2.2.2 Evolution of data sources

Biological research is a fast-paced, quickly evolving discipline, and data sources evolve
with it: new experimental techniques produce more and different types of data, re-
quiring database structures to change accordingly; applications and queries written to
access the original version of the schema must be rewritten to match the new version.
Incremental updates to data warehouses (as opposed to wholesale rebuilding of the
warehouse from scratch) are difficult to accomplish efficiently, particularly when com-
plex transformations or aggregations are involved. Finally, insufficient attention is paid
to data provenance: e.g., where did the characterization of a given GenBank sequence
originate? Has an inaccurate legacy annotation been “transitively” propagated to other
similar sequences? What is the evidence for this annotation? (See sections below on
provenance and on data evolution.)

2.2.3 Sociological issues

Several sociological issues appear to stand in the way of effective integration. The intense
competition for ever-dwindling resources in the form of grants produces incentives to
data providers to make integration difficult. If a small effort makes it too easy to
access its database, the fear is that a large database effort will simply absorb its data,
making it harder to argue that the continued existence of the small effort is necessary.
Holding back critical information can give the scientist data owners an edge over their
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competition; hence, key data items are often missing. Intellectual property (IP) issues
become more difficult when data is shared, since it is harder to establish IP claims over
ones data if it has been downloaded to other, related databases. Community deposition
and curation of data is critically important for biological research, but monitoring and
ensuring the quality of data in such a scenario can be very difficult. (No one wants
to contribute to databases that do not keep track of data provenance and credit the
contributor.)

2.2.4 Systems Issues

Internet sites, in particular academic and government sites, whether central resources,
e.g., NCBI [NCB02], EMBL [EMBO02], ExPASy [Swi02], or boutique databases, e.g.,
EpoDB for the erythropoetic cascade [CJSSBO99], SCDb for stem cells [PEIT00],
GPCRDB for G-Protein Coupled Receptors [HVCO01], are of critical importance to re-
search in biology and bioinformatics. Genomics prides itself on its long tradition of
publicly funded, public domain data, including GenBank, the Human Genome Project
[HGMO03], and the WashU-Merck EST sequencing project [WES95, HLBT96]. But per-
formance on the Internet can be unpredictable, and therefore any integration approach
that accesses sources via the Internet inherits this unpredictability. Furthermore, data
sources on the Internet lack a common query interface, and there is no single directory
of data sources on the Internet that an application can use to automatically identify
and access Internet data sources.

2.3 A Continuum of Integration Approaches

As we attempt to address the issues raised above, it should be noted that database
integration is not necessarily a monolithic enterprise, but rather comprises a continuum
of approaches, from very simple to very complex and powerful. At one end of the con-
tinuum is a system that accesses a single source and fetches a single page or entity from
that source. Next is a system that accesses multiple sources via relatively limited access
methods, e.g., via web services. In the relative center of the continuum are systems that
provide declarative, optimized query access over multiple sources that are mutually se-
mantically compatible, i.e., sources whose central concepts (gene, protein, etc.) reflect
a common understanding. Above average in difficulty and complexity is a system that
provides declarative, optimized query access over multiple semantically heterogeneous
sources. At the far end of the continuum is an idealized system that actively identifies
data sources of interest, automatically overcomes syntactic and semantic heterogeneities
wherever it discovers them, and provides transparent declarative, optimized query access
over all of the sources.

The continuum of solutions based on the degree of integrated access, integration
across data sources, and semantic heterogeneity, is as follows:

1. Point-to-point object (fetch) from multiple sources and integration across the ac-
cess methods supported by these sources.

2. Distributed computation access to multiple semantically compatible sources.
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3. Distributed declarative optimized computation over multiple semantically hetero-
geneous Sources.

The farther we are able to move along this continuum, the better our ability to
advance the science. Existing approaches for data integration fall short of the ultimate
goal. We briefly review the advantages and disadvantages of some of the more popular
solutions that have been deployed in the biological enterprise and identify some example
systems.

Scripts written in Perl or Python are the most common solution. The drawbacks
of these solutions are well known and include the difficulty of maintaining and re-using
scripts, especially as the underlying data sources evolve. Source evolution is discussed
in a later section. More important, scripts provide no support for the incorporation of
data management and data analysis tools. As the size of data sets increases, scripts are
unable to provide reliable and efficient access.

Data warehousing is also a popular solution to create data repositories for specific
tasks. Data warehousing entails the pro-active collection of data from multiple sources
into a single site. By replacing query access to many different data sources with queries
to a central warehouse, data warehousing permits more rapid and reliable access to
warehoused data. Other advantages include the availability of tools for data cleaning;
and support for privacy and security. Weaknesses are that data warehousing technology
traditionally supports only the relational data model and (R)OLAP ((Relational) Online
Analytical Processing) and is arguably not optimally suited for the complex and variable
structure of biological data. There is little support to resolve semantic heterogeneity
across sources. Further, data warehousing solutions cannot utilize complex search and
query processing services, e.g., BLAST or search engines, hosted at remote servers, nor
can they explore the increasing number of hyperlinks and annotations that are frequently
added by data curators. Finally, the greatest drawback of data warehousing solutions
is that data in the warehouse becomes stale and must be refreshed. Data sources such
as GenBank or PubMed are constantly being updated. This dynamism can impose
substantial burdens to propagate these updates into the data warehouse.

A more recent solution that has been adopted by the biological enterprise includes a
variety of architectures for federated access or mediation. Strengths include the ability
to provide reliable and efficient access to remote data sources that are accessible over
wide area networks. These solutions are more tolerant of semi-structured data since they
are typically built on DBMS platforms that are not always limited to relational data
models. A major advantage is that they can exploit complex search and computational
services hosted at remote servers. As with data warehousing solutions, federation or
mediation also does not provide many tools to process complex or semi-structured data.
There is little support to resolve semantic heterogeneity across sources. Finally, such
solutions may fail when remote servers are inaccessible. Data warehousing and federated
database management fundamentally confront the same problems of data integration.
Data warehousing does eager evaluation, federated database perform lazy evaluation.

Web services technologies, such as WSDL (Web Service Description Language)
[CGMWO02] and SOAP (Simple Object Access Protocol — actually an XML-encoded
remote procedure call protocol), are gaining increasingly wide adoption in commercial
settings. Such web services technologies could provide an infrastructure for standardized
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registration and invocation of retrieval (or processing) services across the World Wide
Web. These web services technologies are based on widely deployed HT'TP servers and
XML encodings. They can provide a convenient platform for data federation.

The Semantic Web is an effort by the World Wide Web Consortium, DARPA, and
related researchers and developers to move web content from text content directed pri-
marily at human readers toward documents with more rigorous semantic specifications
intended for machine processing. This effort encompasses a variety of efforts in the de-
velopment of knowledge representation languages (e.g., RDF, DAML+OIL, and OWL),
development of formal ontologies for various domains (e.g., Gene Ontology (GO)), and
related software tools (e.g., description logic based inference engines), and rules systems
(e.g., RuleML and related systems). The semantic web efforts are directly concerned
with the most difficult question in data integration - understanding, representing, and
communicating the semantics (meanings) of data. Ongoing ontology efforts in the biol-
ogy community (GO, Biopax, ...) are adopting these technologies.

Finally, workflow management systems (WFMS) offer a potentially attractive paradigm
for specifying complex (or repetitive) scenarios of biological data analysis involving com-
bined querying of databases and computations over the retrieved data. WFMS targeted
at data retrieval and computation are known as “scientific workflow systems”, as distin-
guished from WFMS deployed for managing laboratory activities (usually called LIMS
(Laboratory Information Management Systems)). WFMS also offer the prospect of
automatically recording information regarding the provenance of derived datasets.

2.4 Content Development Policies

While the most effective solutions can only be developed over several years, through
addressing the research questions in the next section, there are short-term steps that
could be taken by content providers to facilitate database interoperation, which we
address next. In a nutshell, our recommendation is that creators of biological databases
improve their operating procedures to utilize best practices for database development
and dissemination, and thereby render individual databases into well-behaved citizens in
an interoperable database infrastructure for molecular biology. Funding agencies should
adopt a set of new review criteria for grants that fund data set creation, where those
criteria are aimed at increasing the use of best practices for database development.
In addition, funding agencies should develop policies for enforcing use of these best
practices through other means in addition to the review process.

A good starting point for best practices guidelines might be the following guidelines
adapted from the bioinformatics core guidelines from the GLUE Grant RFP [NIG]:

o What are the data release policies and what are the associated intellectual property
issues?

e How will the data be available to the scientific community? Will there be browser
access, formats for downloading complete data sets, on-line computational aids,
etc.? We recommend a common format, such as XML, WSDL/SOAP.

e What is the nature and structure of the data? Present the plans to date for
ontologies, schema, or other data models. Schemas must be well-documented,
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and the documentation kept up to date. Explain provisions for documenting
measurement units for every data element.

What is the underlying structure of the database, e.g., relational, object-oriented,
etc.?

What is the mechanism for communication (both computational and human) be-
tween the distributed sites and the database managers? Will there be data li-
aisons? What are the key interacting databases? How will the data be linked?
How will progress be available to the public, e.g., will lists of the systems being
analyzed be available?

What experience in bioinformatics is available in the group, and what resources
can the consortium draw on?
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Data Types and Queries

3.1 Priority Data Types

One of the most striking features of biological data is the great diversity of data types
used. Relational DBMS traditionally provide a handful of scalar data types (Booleans,
integers, floating point, strings, date-time) and one collection type constructor (sets
and perhaps bags). Object-oriented databases provide the capability of constructing a
richer type system, but typically ship with a limited set of standard data types similar
to that of relational DBMSs. However, nearly all OODBMSs come with a richer set
of bulk types, e.g., arrays, sets, and symbol tables. Here we discuss some of the top
priority biological data types both for individual data elements and for collection types,
directing most of our attention to data types that have not been well supported by
conventional DBMSs.

3.1.1 Sequences

The availability of sequence data, e.g., DNA, RNA, amino-acid sequences (proteins), has
grown explosively over the past decade with the development of automated sequencing
machines and large scale sequencing projects such as the human and mouse genome
sequencing projects.

Sequences (DNA, RNA, amino acid) are presently often stored as text strings, but
this representation is awkward when we want to annotate sequences, since text strings
typically lack addressability at the level of individual letters (nucleotides, or amino
acids). Often DNA sequences include not only individual nucleotides, but also gaps,
usually with a length (or bounds on length) specification of the gap.

3.1.2 Graphs

Another common type of biological data is a graph, which could be a directed (or
undirected) labeled graph, nested graph, or a hypergraph. Examples of this type of
data include various biopathways (metabolic pathways, signaling pathways, and gene
regulatory networks), genetic maps (partial order graphs (i.e., directed acyclic graphs),
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taxonomies (either trees or DAGs), chemical structure graphs, contact graphs (for 3D
protein structure), etc. See discussion in [Olk03].

Biologists are interested in performing a variety of comparative analyses and pattern
matching queries against biopathways databases. Such queries are the analogs of similar
queries in sequence databases. Graphs are easily stored in existing DBMSs, e.g., rela-
tional DBMSs. However, many graph queries, e.g., subgraph isomorphism, subgraph
homomorphism, and subgraph homeomorphism are difficult (or impossible) to pose and
answer efficiently in existing relational DBMSs, which know nothing of graphs. See
additional discussion below and in [Olk03].

Sequences can be viewed as linear directed graphs (with nucleotide labels for the
nodes). Multiple sequence alignments can then be described as partial order graphs.
Such representations have been used as the basis of efficient multiple sequence alignment
algorithms [Lee03].

Laboratory protocols (for molecular biology labs, clinical labs, etc.) can be modeled
as workflow process model graphs. This could be used to support formal representation
and querying of laboratory protocols, and automated support of lab protocols (Labo-
ratory Information Management Systems (LIMS)). Formal representation of laboratory
protocols and experimental conditions is also often needed for subsequent data analysis,
e.g., of microarray data.

3.1.3 High-Dimensional Data

High-dimensional data sets are of increasing importance in molecular biology. Most of
the this data arises from microarray experiments of gene expression. It is not unusual
for these experiments to involve thousands (or tens of thousands) of genes and hun-
dreds (or thousands) of experimental conditions and samples. Hence the datasets are
arrays of spot intensities over the Cartesian product of genes and samples (e.g., experi-
mental conditions). Often researchers are interested identifying clusters of genes which
exhibit similar (or opposite) patterns of gene regulation. Specialized data structures
and clustering algorithms are needed to support nearest neighbor, range searching, and
clustering queries in high-dimensional spaces.

3.1.4 Shapes

Three dimensional molecular (protein, ligand, complex) structure data is another com-
mon data type. Such data includes both shape information (e.g., ball and stick models
for protein backbones) and (more generally) scalar and vector field data of charge, hy-
drophobicity, and other chemical properties which are specified either as functions over
the volume of a molecule or complex, or over the surface.

3.1.5 Scalar and Vector Fields

Scalar and vector field data is normally thought of primarily in the context of spatio-
temporal applications such as computational fluid dynamics, weather, climate, oceanog-
raphy and combustion modeling. However, a number of participants of the workshop
argued that such data is quite important for molecular and cell biology applications.
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Examples include modeling reactant and charge distribution across the volume of a cell,
calcium fluxes across the cell surface or cell volume, reactant or protein fluxes across cell
membranes, transport across cellular compartments, clinical response to drugs. Efforts
in the visualization, computational fluid dynamics, and geographic information systems
communities to deal with vector and scalar field data have focused on the development
of fiber bundle or vector bundle data models. See the discussion of fiber bundle data
models in [Tre03].

3.1.6 Temporal Data

Temporal data of various types (e.g., scalars, vectors, etc.) is also another prominent
class of data types when studying the dynamics of biological systems. Examples in-
clude cellular response to environmental changes, pathway regulation, dynamics of gene
expression levels, protein structure dynamics, developmental biology, and evolutionary
biology.

Temporal data is critical for incorporation of the analysis of biological processes that
occur over time. This can be applied to a variety of problems, ranging from stages of
development of a cell or organism to the impact of aging on establishing the background
for accurate disease diagnosis.

Temporal data in biological settings can either be absolute or relative. Absolute
timestamping is common in administrative or long term ecological observational databases
- time is recorded relative to an absolute global temporal coordinates such as UTC date-
time. Relative timestamping records time relative to some event — e.g., cell division,
organism birth, oncogenesis, diagnosis, cold shock, etc. Most implementations of time in
the database community have focused on absolute time, whereas relative time is much
more commonly used in most biological experiments. In complex settings such as dis-
ease progression, there may be many important events against which time is reckoned.
The Al community has addressed many of these issues in temporal reasoning research.

3.1.7 Patterns

Much effort has gone into specifying, characterizing, and finding patterns (a.k.a. motifs)
in DNA, RNA, and protein sequences. Of particular interest are regulatory sequences
in genomic (DNA) sequences. Similar efforts are proceeding with respect to three-
dimensional protein structure data, microarray data, pathways data, proteomics data,
metabolomics data. In sequences these patterns are often represented as regular ex-
pressions or Hidden Markov Models (HMMs) or other types of grammars. Increasingly,
biologists are interested in collecting, storing, and querying these patterns. Patterns
thus need to be considered as first class data types, with support for storage and query-
ing. Unfortunately, many queries will require testing for equivalence of variously en-
coded patterns (regular expressions, grammars, HMMs) - often a difficult matter. See
additional discussion below under pattern matching.
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3.1.8 Constraints

Historically, DBMS systems have provided mechanisms to specify and enforce a variety
of logical constraints on the contents or allowable updates of the database, e.g., refer-
ential integrity constraints. Most of these constraints are fairly localized in scope. In
recent years there has been increasing interest in rule-based systems (e.g., RuleML) for
specifying and enforcing more elaborate logical constraints (logic programs).

Biological databases require a variety of constraint specifications, both logical rules,
and mathematical constraints (e.g., equations or inequalities) as first class data types
in a biological data management system, with the ability to store, enforce, and query
such constraints.

Examples of mathematical constraints include various conservation constraints such
as mass, momentum and energy conservation. Thus individual chemical reactions in a
bio-pathway database must satisfy mass balance for each element. Such constraints are
local. In contrast, cycles of reactions in thermodynamic database must satisfy energy
conservation constraints. These are non-local (global) constraints. Another example of
non-local constraints are the prohibition of cycles in overlap graphs of DNA sequence
reads for linear chromosomes, or in the directed graphs of conceptual or biological
taxonomies.

3.1.9 Mathematical and Statistical Models

Much of modern biological data analysis is concerned with the specification, develop-
ment, parameter estimation, and testing (statistical or simulation) of various mathemat-
ical and statistical models of biological systems and datasets. Thus far the database
community has largely been concerned with storing and querying input data sets, esti-
mated parameters sets, and simulation output datasets. Relatively little attention has
been paid to systematic methods of representing, storing, and querying the mathemat-
ical and statistical models being used. One would like to have declarative specification
of mathematical and statistical models, means of recording bindings of model variables
to database contents, and some way of recording the statistical analysis method (or
simulation method) used.

There have been two major efforts in the systems biology community aimed at
developing markup languages, e.g., SBML [SBM03] and CellML [Cel03], for the declar-
ative specification and exchange of mathematical models of cells. These efforts have
been primarily concerned with issues of expressiveness. Software efforts have focused
on model entry, syntax validation, and simulation, not model storage and querying.
;From a database standpoint, these models have largely been viewed simply as XML
documents, not mathematical models. Treating models as mathematical objects would
likely require some sort of computer algebra tools — e.g., to recognize that two models
that use different variable names or measurement units are mathematically equivalent.

Model management systems have long been pursued in the operations research com-
munity, mostly in the context of large linear programming and nonlinear mathematical
programming models. Similar issues arise in the estimation and testing of statistical
models. The need for model management systems arises from the large size and com-
plexity of the models being developed, the computation (simulation) of many versions
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of similar models which often differ only in model parameters, and the development
(and testing) of large numbers of models. The need for model management in systems
biology will grow along with expanding research in the area.

3.1.10 Text

Text data types were seen as important, both for annotations, and permit inclusion and
processing of biomedical literature along with other types of data. Existing text support
in relational DBMSs was not seen as adequate to encompass the varied requirements
of natural language processing. Note that the development of XML databases has seen
increased greatly increased attention to (semi-structured) text data types. However,
even XML databases have a ways to go before they have good support for text.

3.2 Priority Query Types

Conventional database applications are dominated by equality, range, and equi-join
queries. In biological applications we see a much broader set of query types.

3.2.1 Similarity Queries

The single most popular type of query in molecular biology are similarity queries, most
commonly sequence similarity queries, e.g., BLAST or Smith-Waterman sequence sim-
ilarity queries. Such queries can be computed over DNA, RNA, or protein sequences.
Similarity queries also arise on graphs (comparison of metabolic pathways), 3D protein
structures, time series, high-dimensional data sets (e.g., microarray data), etc.

The popularity of similarity queries in biology arises from evolutionary biology. DNA
sequences and hence the mRNA sequences and the proteins that they code for are all
subject to random mutation and recombination. Many of these mutations will leave the
function undisturbed, or will lead to genes or proteins with similar functions. Hence, it
is often very useful to query for similar DNA, RNA or protein sequences in the hopes
of finding similar genes or proteins with similar function. Comparative analyses of
DNA sequences across diverse organisms (e.g., humans and mice) can identify conserved
sequences that are often biologically important.

Some similarity queries, e.g., clustering microarray data, are performed over data
(gene expression values) that can be viewed as vectors in high-dimensional spaces. Of-
ten, biologists must perform these queries over data which are not coordinate vectors.
Common examples of non-coordinate similarity queries include sequences (due to inser-
tion or deletion errors), biopathways graphs, and protein-structure data (3D shapes).

Similarity queries are typically computed with respect to either similarity or distance
measures. We need the ability of users to specify which similarity or distance measure is
to be used for a particular query. Some distance measures satisfy the triangle inequality,
i.e., the direct distance between two points is never more that the distance via an
intermediate point. Such distance metrics permit the use of special indices and pruning
of the search processes. These techniques work for any distance measure that satisfies
the triangle inequality.
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Dissimilarity queries (e.g., outlier detection) were also viewed as important.

3.2.2 Pattern Matching Queries

A second class of queries consists of pattern matching queries, i.e., queries which find
instances of sequences, etc. which match a specific pattern. On strings these queries in-
volve pattern specifications such as regular expressions, Hidden Markov Models, or chart
grammars. Graph pattern queries might involve patterns specified by graph grammars,
subgraph homomorphism queries, etc.

One will also want to be able query collections of patterns (motifs). One such query
would involve finding all patterns which match a sequence (the inverse of the customary
query). Alternatively, one might ask for patterns which are similar to a specified pattern.
Pattern similarity might be defined either structurally (akin to sequence similarity) or
in terms of the overlap in the sequences matched by the two patterns from a specified
database.

3.2.3 Pattern Discovery Queries

A third class of queries involve pattern discovery, elsewhere known as data mining.
This includes the detection of frequently occurring patterns in sequences, graphs, 3D
structures, etc. Such queries have been extensively treated in relational settings (in the
database literature), and in sequences (sometimes in the database literature, mostly
in computational biology). Little is known about pattern discovery in graphs. There
has been work on 2D shape pattern discovery in the imaging and pattern recognition
community, but less is known about shape pattern recognition algorithms in three di-
mensions, which is important for structural biology.

3.2.4 Spatio-Temporal Queries

Spatio-temporal queries form another important class of biomedical queries. One ex-
ample use would be spatial genomics — the mapping of gene expression and protein
abundance over fine-grained spatial scales (e.g., cellular or sub-cellular resolution) and
time scales. One such query could ask for up-regulated genes (or proteins) in a partic-
ular anatomical or cellular region in a specified time interval following an experimental
intervention (e.g., drug administration). Similarly, one could ask for gene co-regulation
in both time and space. Other examples would include spatio-temporal queries of brain
activity — from real-time MRI imaging. Note that there are well known problems of
spatial registration of variable geometries across time and individuals — due to motion
of organs (e.g., heart), microbial cell movement, organism development, or anatomical
variation across populations (e.g., brain geometry).

Again we note that the primary market for such technologies are likely to be geo-
graphic information systems and computational fluid dynamics applications. In addition
to spatio-temporal range queries, and iso-quant surfaces we envision that ultimately one
would like to have a query language that supports interpolation and queries based on
the vector calculus (e.g., queries that include div, grad, curl operators, line and sur-
face integrals). Thus a query over a vector field of chemical transport data, might ask
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to compute the integral of the chemical flux across a specified compartmental or cell
surface.

3.2.5 Computational Queries

Classic relational database systems provide simple arithmetic operators over numeric
data types, and comparison operators over a somewhat larger set of data types, e.g.,
date-time, strings, etc. Biological research entails much more complex mathematical
and statistical operators. For example, we often commence the analysis of microarray
data by computing the correlation matrix of some subset of the data. Queries on the
correlation matrix are basis for clustering of genes and genetic regulatory inference.

Many computational biology scenarios involve intermixed database queries and com-
putations. Thus we believe that the ability to specify computational workflows as a type
of query would be highly desirable. Some database investigators have also viewed com-
putational workflows as a mechanism for data integration.

3.3 Constraints and Constraint Enforcement

Biological databases utilize rules and constraints extensively, including those reflecting
biological, chemical, and physical constraints; logical and temporal constraints; data
and model validation constraints; equational, linear programming, and inequality con-
straints. Classical database constraints such as key and referential integrity constraints,
triggers and some consistency checks (to a limited degree) are managed by current
database systems. However, utilization of the new kinds of constraints, e.g., linear pro-
gramming constraints used to model metabolic pathway constraints [EIP01], [PRPT03],
[SVCO02], need efficient, effective and scalable techiques to model and manage so that
they can be incorporated into biological databases. Note that many physical, chemical,
and thermodynamic databases have either (or both) localized and global constraints
arising from conservation of mass, momentum, energy, and charge. Thus metabolic
pathways databases need to satisfy conservation of mass (for each element) across chem-
ical reactions. Such constraints have been used for consistency checking in the Ecocyc
pathway database.

3.4 Research Issues

The research issues arising from the diverse data types and queries are the familiar
DBMS design issues specialized to these data types and queries:

e What sorts of data structures (e.g., indices) are best suited for these data types
and queries?

What algorithms are efficient for processing such queries?

How should such queries be expressed in a declarative query language?

How should query optimization of such queries be done?
e How can we build extensible DBMSs to support diverse data types and queries?
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e How can we make such a DBMS scalable for large databases and large numbers
of users?

The issues above need to be addressed for individual data types and query types.
There is also a need for research on methods of synthesizing individual data types and
queries into a composite DBMS. While the issue was contentious, some researchers at
the meeting believed that contemporary (e.g., commercial) DBMS have grown unwieldy,
and it has become difficult to extend their functionality, e.g., by external research groups,
despite mechanisms to support “data blades”. Hence, we conclude that software engi-
neering of DBMSs needs to return to the research agenda of the database community.
Issues here include better methods of extending the query language to incorporate new
data types and queries and better methods of integrating novel query operators and
indices into the operation of query optimizers.

There is also a question of boundary definition for biological DBMSs. Where to stop?
DBMSs are typically not very friendly development environments. What functions
should we not attempt to include in the DBMS?

To facilitate progress in the development of such DBMSs the following sorts of
infrastructure would be useful:

e Software testbeds for new access methods and query operators
Public test data sets for software testing and benchmarking
Synthetic database and query generators for testing and benchmarking

Example queries

We note, by way of example, that the image processing and pattern recognition com-
munity has been developing a database of graph problems for testing and benchmarking
graph-based image processing codes.
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Bio-aware design patterns

How do we use existing data models effectively in the bio-community? Simply placing
data modeling tools in the hands of biologists and bioinformaticians doesn’t guarantee
the creation of a good information model. However, at this point there are a number
of extant information models for certain paradigms - e.g. sequence and gene expression
databases. Can we identify what is good in these and identify re-useable patterns in
them? One outcome of this effort would be a catalog of common design patterns for
bioinformatics databases, listing alternative representations for certain kinds of con-
cepts. This pattern book could evaluate patterns in terms of their storage efficiency,
complexity of implementation, ease of querying, amenability to integration, and exten-
sibility. Data modeling and schema evaluation tools could use these patterns and offer
them as templates or “mix-ins”, and ultimately application development tools could
become pattern aware.

Some examples of patterns include:

e Similar steps of experimental protocols

e Taxonomies or other hierarchical domains

e Versioning

e Annotation

e Dimensioned value

It is also useful to collect examples of how common biological concepts have been
modeled in particular databases, e.g. sequences and variants, mutations, sequence as-
sembly and gene prediction, gene expression, protein interaction, metabolic pathways,
protein abundance, and protein structure.

One way of packaging patterns could be with data entry and display widgets, along
with standard APIs. A “design wizard” could be used to encode some knowledge of the
design process, and give an order in which to make design decisions.
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Chapter 5

Provenance, Pedigree, Lineage

Data collections have little utility if humans cannot judge their suitability for the prob-
lem at hand. Part of the meaning of data is not its semantics vis a vis the data model,
but the process by which it arrived: the “how” and “why” of data. This information
is what researchers use to judge the suitability of the data for a particular task. Bio-
logical data may come from experiments, either in vivo or in vitro; from computational
techniques (in silico); from (human) interpretation of primary data; and so forth. As
a result, it is difficult to judge how much to trust a particular data item: In Genbank,
do you have enough information to trust any entry? Is it the case that you trust some
parts of the entry more than others? Similarly, entries in pathways databases (such
as KEGG, MetaCyc, WIT, DIP, BIND) combine information from a large diversity of
sources, and contain computational information, experimental information, and as well
information derived from the literature.

Unfortunately, much of the data available in biological databases today has little
or no provenance information associated with it. This lack has been recognized by
scientists, and we are making progress in small steps towards correcting it, such as
the MIAME (Minimal Information About a Microarray Experiment) standard for data
derived from micro-array experiments. However, even MIAME leaves out many details
of the experiment that may be crucial to effective data interpretation. Yet there has
been resistance to MIAME compliance because of the perceived up-front overhead of
recording all this information.

To address these issues, we suggest the following steps:

e Capture metadata at original data entry, automatically, with low overhead (see
subsection on Workflow below). Even with ease of recording, coercion (social or
software enforced) may be required to ensure that adequate provenance informa-
tion is recorded with data.

e Develop techniques to record for each single datum, where it comes from and why.
This may be non-trivial when facts are not easily modeled as independent discrete
units. As data is derived based on other data, keep track of provenance through
the derivation process.

e Develop techniques to manage issues of efficiency as these derivation chains grow
long and have many branches. In effect, we need to develop a “pathway chart”
for data.
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As we construct aggregate provenance for a fact derived from two or more basis facts,
an important question to answer becomes “Do these two facts have an independent
basis?” Effective means to answer such questions must be developed.

Biological data often admits interpretation and annotation. In typical data man-
agement scenarios, these annotations are often considered metadata. In the realm of
biological data management it is critical to distinguish this information from data prove-
nance information. In fact, it is worth noting that base experimental data (recorded
experimental observation), and their associated provenance, should not change, whereas
we can have many versions of interpretation and other derived data. Effective means
are required to model and manage this sort of data versioning.

Occasionally, for instance to protect patient privacy as required by U.S. HIPAA
(Health Insurance Portability and Accountability Act), it may actually be necessary to
mask the provenance of data. Unfortunately, data provenance, once lost, can never be
recovered. We must develop techniques that permit the recording of full provenance for
the data, while masking out appropriate components of provenance, thereby meeting
both the highest standards of privacy protection while permitting the maximum possible
correlational use of data.

Further discussion of data provenance issues can be found at the web site(s) for
the recent Workshop on Data Derivation and Provenance [BF02], [Zha02]. A second
workshop on Data Provenance and Annotation will be held in Edinburgh in Dec. 2003
[BBFT03].



Chapter 6

Uncertainty

Biological data has a great deal of inherent uncertainty. Often, when a scientist says
“A is a B” they mean “A is probably a B, because there is some (possibly substantial)
evidence suggesting that such is the case”. For example: Yeast 2-hybrid experiments
for protein-protein interaction are known for producing many false positives. Data in
GenBank is sometimes erroneously reported (for instance, there may have been only a
partial protein recorded), and then is propagated when another scientist runs a Blast
search against sequences in GenBank and reports matches against such an erroneous
sequence.

For all of these reasons, it is important to recognize uncertainty in data recorded
in biological databases. Standard database technology provides no support for un-
certainty, since business-oriented commercial databases typically contain data that is
certain. When biological data is processed by trained scientists, they “know” which
data to believe based on what it says and how it was obtained and therefore may not
need support for managing uncertainty. In fact, the issue of uncertainty and error is
explicitly dealt with through a manual curation process, based primarily on the exercise
of human judgment. As we move to automated processing of large amounts of data, the
inability of computers to exercise human judgment can lead to errors that compound
in unmanaged fashion (as in the GenBank example above).

To effectively manage biological data in this context, we need management of un-
certainty in databases. There are many research challenges in this regard, and we list
some central ones here:

There are many different dimensions of uncertainty in biology. We could have con-
taminants in an experiment, errors in sources from which the data was derived, inherent
error in the experimental technique used, honest disagreements in interpretation (where
two reasonable scientists may interpret the same data differently), and so on. We must
model these sources of uncertainty in biology, and develop appropriate mathematical
(statistical) representations of them. Often, scientists are not used to thinking quantita-
tively about errors and uncertainty. To help them validate data that is being produced,
we should define standards for specific experimental processes and create reference data
that can be used to calibrate error rates.

We have discussed above the need to preserve provenance information with data.
This requirement by itself will only provide the raw information that a human would
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need to understand the reliability of the data. Quantitative uncertainty annotation
will permit automated processing and aggregation of uncertainty information. We must
develop techniques to propagate such uncertainty annotation as we develop derived data
sets.

Given the large size of biological data sets, and the expectation that these will grow
ever larger with time, we must develop efficient techniques to query and manipulate
data with uncertainty annotation. These techniques will include means to retrieve
efficiently only data with certainty above some set threshold, in the presence of a great
number of less likely data points, also recorded in the database; and a means to compute
efficiently the derived uncertainty annotation as multiple large data sets are combined
in some computational process to create a new (computationally derived) data set.

Finally, the creation of linkages between data items is a key part of in silico biology
today. To the extent there is uncertainty in the data, one must expect corresponding
uncertainty in the linkages between data. Appropriate technologies must be developed
to model such uncertainty in data linkages, through support for “fuzzy pointers” or
similar means.



Chapter 7

Workflow and Derived Data

Workflows and data derivations occur at all scales and multiple settings in biological
research. At one end, for example, there are “industrial-scale” investigations, such as
sequencing of a complete genome, with parallel sample preparation feeding a farm of
sequencers and hundreds of computer processors working on sequence assembly. At
the other end of the spectrum is an individual researcher at a workstation searching
a public repository of protein structures and performing a series of computations and
visualizations on the results. While the volume, multiplicity and nature of processing is
quite different in the two cases, in both it is valuable to record the sequence of steps that
lead up to the results produced. Such a process record has many uses. It helps assure
replicability of an experiment or computation. It can form part of the provenance of
the results, providing a means by which users can judge the reliability or applicability
of data. These records in the aggregate can be used to diagnose quality problems and
refine experimental protocols.

The issues identified in this area, however, do depend somewhat on setting and
scale. Large “production” laboratories often use a LIMS (Laboratory Information Man-
agement System) to track samples and processing steps. A limitation to their use is that
they are relatively expensive to purchase and expensive to operate. They often require
a “LIMS wrangler” to administer the database, update data entry forms, interface new
instruments, and encode standard operation procedures (SOPs) and protocols. Devel-
opment of automated or assisted LIMS wrangling systems is a research opportunity.

On a smaller scale, electronic laboratory notebooks (“e-notebooks”) are now offered
by several vendors and provide for flexible representation of laboratory steps, calcu-
lations and comments. However, their adoption at the bench-top has been limited,
because of the need to stop and interact with a device to record information. Research
on less intrusive interfaces, such as voice, touch screen or even barcode sensing could
lead to more widespread acceptance and the ability to capture more of the early steps
of the processing pipeline electronically. (One advantage to electronic recording of such
information is that it can provide opportunities for automated capture of metadata.)

Explicit representation of inputs, parameters and procedures involved in the gener-
ation of data products has value at the level of an individual investigator as well as in
a large-scale production line. Developing methods to separate a product definition or
“product recipe” from the invocation of that recipe on particular inputs and parameters
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would yield many advantages, including:

e Developing a data product by incremental manipulation and evaluation of a recipe.

e Allowing suites of related products to be created by editing and rerunning of a
recipe.

e Enabling calculations of quality or uncertainty in parallel with production of data.

e Helping biologists take advantage of data and computational grids, where de-
scriptions of computations to be carried out must be submitted to servers that
schedule and distribute those computations (rather than being accessed through
direct interactive interfaces).

Traditional data access (based on traditional data management technology) requires
the specification of the query (e.g., SQL) or some application program that is to be
evaluated against the data. Browsing, resource discovery, querying, computation, and
complex computational workflow management are distinct and disjoint activities, not
readily intermixed. This requirement is a limitation on the process of scientific discovery
where the scientist wants the ability to express a workflow of potentially complex opera-
tors, each of which may have some domain specific semantics. An example is where the
scientist wishes to gather a collection of proteins that has a maximal number of links
to certain publications and are associated in a specific database with specific sequences.
Thus, the development of a biological query language that can support the user as he
or she browses the metadata, links, and query processing services of multiple sources,
and allows the user to express a complex workflow and domain specific semantics cor-
responding to her task is critical. Without such support, the scientist will be hindered
by the limitations of current query languages.



Chapter 8

Data Integration

The ultimate goal of data integration, as discussed in Chapter 2, is to be able to accom-
plish distributed declarative optimized computation over multiple semantically hetero-
geneous sources. This long term solution will provide support for integration over the
contents of heterogeneous multi-modal sources whose data types include text, image,
structured data, semi-structured data, graphs, results of computations. It is only at
this point that we will have true ease-of-use in a manner that can adequately address
the opportunities for life-saving impact described in the target scenarios in Chapter 1.

Several systems have been designed for domain specific integration of biomolecu-
lar data. BioKleisli [ DOTW97], [BCD"98] and its extensions K2 [DCB*01] and Piz-
zkell/Kleisli [Won00b] follows a mediation approach and enables queries against inte-
grated data sources. P/FDM [GKO03] [KDGY96] provides support to access specific capa-
bilities of sources such as SRS [EUA96, EA93]. No semantic knowledge is expressed or
utilized in either system. TAMBIS [BBB198] is primarily concerned with overcoming
semantic heterogeneity through the use of ontologies. It provides an integrated view of
data sources but offers no ability to explore and exploit alternate identifiers and alter-
nate links (paths). Garlic and its new extension for life science DiscoveryLink [HSK'01]
encapsulate the access to specialized search capabilities into wrapper functions. While
they provide extensive cost-based optimization to support efficient and seamless data
integration, they too are hindered by the lack of knowledge about source capabilities as
well as semantic knowledge about relationships among sources and their contents. The
OPM multi-database system is based on the Object Protocol Model (OPM) [CM95] and
object views [MCKS99]. While OPM provides the ability to evaluate complex queries,
it too does not capture knowledge of semantic equivalences of scientific entity instances,
links and paths. The Sequence Retrieval System SRS [EV97] applies full text indexing
and keyword-based search techniques that are indeed very powerful. However, it is lim-
ited in that SRS was not designed to support semantic equivalences. For example, the
SRS interface available at EBI offers the powerful capability of retrieving all sequences
from EMBL that contain the keyword apoptosis in their description field (DE). How-
ever, an SRS query against both EMBL and MEDLINE no longer offers this powerful
capability and is limited to full text search on apoptosis; thus the search on both data
sources may return large numbers of irrelevant hits.

To summarize, no single existing technology appears to dominate all others for
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purposes of biological data integration. Research may result in the development of new
technologies, or suitable hybrids of two or more of the technologies described above,
with some appropriate cost and benefit tradeoff. While long-term research objectives
are important, their accomplishment depends upon progress along some of the other
issues mentioned here, such as data provenance, source evolution, and the management
of multiple models. As such, we recommend, in addition to the longer-term research,
the development of short-term research milestones for data integration, particularly in
the form of wrapper toolkits.

8.1 Toolkits for Data Providers to Quickly Wrap Data
Sources

It is desirable to develop plug-and-play toolkits that are data provider friendly and
can be used to create new data sources that are compliant with the requirements for
successful integration, i.e., they provide data, schema and metadata information, the
data has been cleaned or transformed as required for integration, etc. In addition to
their use in creating new resources, wrapper toolkits may also be of some use in easing
the overhead of wrapping existing legacy data sources. Features of toolkits include the
following;:

e Data transformation and data cleansing.

e Specifying APIs for computations services of data providers, for example, BLAST
or search engines.

e Registration of sources, services and data types. Discovery of sources and services
based on content, overlap of content, capabilities, as well as quality of their content
(IMRV00, MRVO01]).

e A default cost model, and the ability to plug in alternative cost models. An
automated means of discovering cost-related statistics (metadata) such as table
cardinality, column-value distributions, average execution time of sample queries,
etc.

8.2 Managing multiple models

Mapping between different data models or data representations is an integral part of
any biological database application. For example, there is often external information or
archival data that must be imported to augment local computationally or experimentally
derived data. Even within a single project, there can be the need for multiple models
or representations for the same kind of information, as it moves through various stages,
e.g., data entry, data query, data interchange, and data archiving. With Affymetrix
gene expression data, for example, data entry may be what Affymetrix produces, data
query may be a relational database with some local model, data interchange may use
MAGE-ML, and data archive is what some consortium requires.

Issues that must be addressed to manage suites of models related to the same ab-
stract information include the following;:
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e Enabling mappings: Models are typically large and complex, and the process of
discovering and specifying how concepts in one relate to another can be laborious.
Semi-automated approaches and mapping wizards could help with this task.

e Verifying mappings: Models often capture the semantics as well as the syntax
of data. As mappings are performed, automatic checks for semantic conflicts
between models should be enabled, e.g., a one-to-many relationship in model one
being mapped to a one-to-one relationship in the other.

e Semantic propagation: As models evolve, changes in one model must “prop-
agate” to the corresponding portions of related models.

e Making data comparable and self aware: Much biological data has been
developed as a “silo”, i.e., as a specialized resource with little attention to be-
ing interoperable with other data sources. However, no one data resource is all-
encompassing and therefore requires linkage to other sources. One strategy that
has emerged for making data comparable is the development of common naming
schemes (thesauri, terminologies (controlled vocabularies)) and ontologies.

Data about scientific entities, e.g., genes or proteins, are stored in multiple sources.
Each source captures some features (attributes) describing both the structure and func-
tion of the scientific entity. Typically, information about a single instance of some scien-
tific entity, e.g., the gene TP53, may be found in multiple data sources. While there is
overlap of data among sources, typically these sources are not replicates. Instead, each
source references instances in other sources, and each source captures some information
about the structure or function of the scientific entities. Under these circumstances,
solving the challenge of data integration across multiple data sources, successfully, re-
quires the acquisition of metadata about the contents and overlap of contents among
these sources in order to correctly identify and completely characterize the structure
and function of an instance of a scientific entity across multiple sources. Currently,
neither data warehousing nor federated or mediated solutions provide adequate support
to address this issue. Needed are:

Tools to define and manage semantics.

Tools for the resolution of semantic heterogeneity.

Tools for ontology specification.

Tools for ontology management.

Scalable tools and methodologies (algebra) to integrate ontologies.

Another effect of data silos is that specialized domain knowledge frequently resides
only in the minds of the developers and expert users. As data silos are made available
to non-expert users and linked to other types of data sources, this implicit domain
knowledge must be explicitly represented. Ontologies can also be used in this situation
to enable the “self-awareness” of data. (For example, knowing that crystallographic
coordinates are centered on an internal atom whereas protein structure coordinates are
in an external coordinate space.) Making implicit knowledge explicit can be used to
enable one database to explain itself to another.

If we do not know implicit assumptions then there is the danger of a data item
crossing out of the context where these assumptions hold and being misinterpreted.

Despite the emergence of many useful ontologies (see SOFG [SOF03] and the Jan.
2003 issue of Comparative and Functional Genomics [Oli03]) and some technologies for
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ontology representation (e.g. DAML-OIL), more work is needed on both models for
representing and tools for managing taxonomies and ontologies, and to facilitate the
automatic creation of linkages. In particular:

e Coping with clash: overlapping nomenclature and terminology may exit (homonyms).
For example, independently discovered proteins in mouse and human may have
been given the same name, but are completely different proteins.

e Managing the ontology life cycle: ontologies are initially developed for humans,
then used by programs to make connections between data, then used for reasoning.

e Pluralistic versus unitary: multiple ontologies may exist for the same domain.
Many of the same issues must be addressed as mapping between multiple models
(schemas).

8.3 Evolution of Data Sources

Data sources evolve as knowledge changes and as new experimental techniques produce
more data and different characterizations of the data. As a result, both the schemas
that describe the data as well as applications and queries written specific to the original
version of the schema must be updated. This is difficult to accomplish, particularly
when the data types and structures are complex and when the analysis involves complex
transformations or aggregations. Keeping up with evolution becomes significantly more
difficult if there is a fundamental change in our understanding of the meaning or the
characterization of the data.

The value of biomedical data increases as it is combined with other data. Thus, we
address the issue of schema evolution within the greater context of data integration. We
consider the impact of the evolution of a single source as it relates to data integration
from other sources. Data sources may be integrated in the following manners:

e Mapping data values through a controlled vocabulary or ontology.

e (Cleaning and transforming the data sources before importing the data into a

warehouse.

e Wrapping the data sources with a commonly agreed-upon query language and

defining views over the data sources.

e Wrapping the data sources using a commonly agreed-upon API.

Each of these approaches depends on the schemas that define each data source
and on the “mapping”, “transformation” or “wrapping” that is utilized to integrate
them. Thus, if the schema of any one source were to change, it will have a negative
effect on any applications or queries that access this source and on the correctness
and successful operation of the data integration process. For simplicity, we use the
generic term “mapping” to describe all of the above transformations to facilitate data
integration.

Sometimes, a schema change is purely an extension that changes neither the format
nor the semantics of any of the existing data. In this case, the problem is how to
determine quickly that existing mappings can still be relied upon. This schema-matching
problem is relatively straightforward, and where existing algorithms [RB01] would likely
be quite effective.
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Alternately, the schema change may entail a more radical reformatting. For example,
it may partition a table into sub-tables or expand a scalar element into a compound
structure. In this case, it is often useful to define a view that presents the newly
formatted data in the old format, so that existing mappings can be executed without
changing them. Today, this process is a manual process. Graphical tools are beginning
to appear that simplify this manual process. Research is underway to partially automate
this view construction, for example the Clio project at IBM [IBM03, Mil03, HMHO1,
MHH00, HSK*01] The process involves automated schema matching (to determine
portions of the schema that are unchanged), schema analysis (to identify join clauses to
combine schema elements) and data mining (to identify parts of the modified structure
that store the same values as the old structure). A complementary approach is model
management, which contains operators that can update mappings automatically based
on changes to schemas that are incident with the mapping [Ber03, SM03].

Finally, the most extreme schema change is one that alters the semantics or our
understanding of the data source. For example, one may add a data structure whose
content semantically overlaps the existing data source but it is syntactically incom-
patible with the original representation in the schema. Other changes may require a
modification of the actual contents of the source, not just the schema, in order to recon-
cile the data source with a controlled vocabulary or ontology. Since the data semantics
has changed, this modification in effect creates a new data integration problem, and
typically will require manual solution by a database designer.

8.4 Performance metrics and quality of service

A key objective of data integration is seamless and efficient access to remote sources.
This requirement can be addressed by appropriate performance metrics that affect the
quality of service. The first aspect of quality of service is the end-to-end latencies or
delays associated with a computational task. The second aspect is support of the task of
scientific exploration that reflects domain specific semantic knowledge and the quality
of the results. Once the scientist has accomplished a process of discovery he or she is
able to formulate a complex computational task to be evaluated across multiple remote
data sources. Mediation, data warehousing, and workflow technologies are all suited to
support a reliable and efficient computational platform for integration. Further research
is needed to support learning the costs of query evaluation in noisy wide area networks
(WANS); query evaluation with delayed, bursty or unavailable sources; and cost-based
query optimization that can exploit the existence of multiple, alternative data sources
and the complex search and query processing services hosted by remote servers.
Challenges to this task include the following: Difficulty of predicting access costs ac-
curately. Learning and other techniques are needed to construct cost models ([GRZZ00],
[KLMMO03], [NKNV02]). A variety of optimization approaches are needed, e.g., perfor-
mance targets; alternate sources; adaptive evaluation strategies by ([Hal00], [HFC*00],
[ZRVT02] [PMT03]). In many situations, clients, especially automated clients such as
crawlers, can overwhelm the computational capability of a data source. There is a
need for servers to be able to advertise their service constraints and semi-automated
mechanisms to enforce these constraints. An example of server constraints are those



8.4. PERFORMANCE METRICS AND QUALITY OF SERVICE 49

published by NCBI for users of their E-Search utilities, which prohibit automated tools
from accessing their servers during peak access periods.

Typically, query optimization with multiple alternate data sources makes the as-
sumption that the results are independent of the particular source or query evaluation
plan that is chosen. For biological data sources, while there is significant overlap of
sources, few of the sources are exact replicas. As an example, the three sequence data
sources, GenBank, DDBJ and EMBL, do not all contain the same data about DNA se-
quences. There has been some research on query evaluation with incomplete, imprecise
or alternate but dissimilar sources, as well as flexible query answering and approximate
query answering [DGLO00], [NFL03], [Nau01], [FLMS99] Issues include the following: im-
precise values or incomplete data sources with missing data or dirty data, unavailable
sources, alternate sources and query evaluation plans with dissimilar semantics, e.g.,
result cardinality may vary or characterization of objects in sources may be different
[LNRV03]. As was discussed in a previous section, both data provenance and data cu-
ration can vary, and this variability has a significant effect on the quality of the results.
A simple example is an archival data source, which can contain obsolete data versus a
(human) curated data source.

The challenge is query planning and evaluation for scientific exploration that can
exploit domain specific semantics to provide answers that closely match the desired
result quality and semantic requirements of the biological scientist or application. For
example, a scientist who is exploring some hypothesis will very like be interested in
reducing access latencies as (s)he explores multiple alternatives. However, for a valida-
tion task, a scientist would probably want to explore the results from all the relevant
sources, despite the overlap of their content.

Traditional data access (based on traditional data management technology) requires
the specification of a query (e.g., in SQL) or some application program that is to be
evaluated against the data. This is a limitation on the process of scientific discovery
where the scientist wants the ability to express a workflow of potentially complex op-
erators, each of which may have some domain-specific semantics. An example is where
the scientist wishes to gather a collection of proteins that has a maximal number of
links to key publications and is associated in a specific database with specific curated
sequences. Thus, the development of a biological exploration language that can support
the user as he or she browses the metadata, contents and links, and query processing
services of multiple sources, allows the user to express a complex workflow, and allows
the user to specify their desired result quality and semantic requirements is critical.



Chapter 9

Benchmarking and Prototype
Development

9.1 Benchmarking and Evaluation of
Existing Approaches and Technologies

Existing technology solutions must be evaluated for their potential benefits for biological
data management and integration. More important, the pitfalls and limitations of each
solution when considering the specific challenges of biological data sources must be
clearly identified. Specific challenges include the following;:

e Partial replication of data across multiple autonomous sources;

e The lack of a common unique identifier for instances of the same scientific object
across these sources;

Challenges associated with dirty and incomplete data;

e Evolution over time of both data and schema as scientific knowledge is updated;
e Potential for efficient and seamless access to data from remote sources;

e Potential to exploit semantic knowledge.

This sort of benchmarking and evaluation is particularly important for understand-
ing biological data integration since, over the last decade, there has been much activity
in developing architectures and tools for this purpose. While these efforts were not
targeted at the biological enterprise, several systems have been built to support biol-
ogy. We must evaluate the strengths and weaknesses of these systems, paying particular
attention to the impediments to successful data integration enumerated previously.

9.2 Prototype Development

We propose a series of prototype systems, corresponding to the series of challenge prob-
lems that have been described above. These systems will range from short-term proto-
types, built primarily with current off-the-shelf technology, to extensive solutions that
require new technology. It is important to invest both in short-term prototypes, which
can bring value to biomedical science today, and in long-term prototypes, which can
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bring much greater value to biomedical science tomorrow. A focus on one, to the ex-
clusion of the other, will be counterproductive. For instance, consider the problem of
data integration. Lightweight prototypes, such as MOBY and DAS, have already made
an initial stab at the data integration problem. In the short term, we expect it to be
feasible to support point-to-point object (fetch) from multiple sources and integration
across the access methods supported by these sources. While such solutions do not solve
issues of semantic heterogeneity and semantic mismatch, nevertheless, they can greatly
benefit the biological enterprise. In the medium term, in addition to support for query
evaluation, prototypes may be able to incorporate tools for schema and data transfor-
mation and tools for data cleansing, and thus become of greater use to the scientist. In
the longer term, solutions to even harder problems, such as mismatch in nomenclature,
can be addressed.

9.3 Time scales and risks for various research topics

We can classify research topics by the time scale over which they can be addressed, and
the level of risk involved in addressing the topic. Often, the two attributes (time scale
and risk) are correlated, with longer term project often entailing higher levels of risk.
We have classified a number of topics below:

e Short term topics: data management support for molecules and molecular com-
plexes — the study of individual molecules and complexes of a few molecules.

e Medium term topics: data management support for reactions, pathways, pro-
cesses, physiology study of molecular interactions, signaling pathways, small net-
works (medium risk), biomarkers (medium risk)

e Long Term topics: data management support for large networks (higher risk) —
whole cell, systems biology, understanding control mechanisms; for clinical Models
— disease models, models of therapies

Our assessment of the required time and degree of scientific risk of this research
agenda is given above. We expect a significant number of new queries on molecules and
molecular complexes, from sequences to three-dimensional structures changing confor-
mation over time, to appear in the short term. This area builds on an existing, large
infrastructure of sequence and structure databases and algorithms, so that the initial
problems to be solved are the design, implementation, and optimization of new queries
more closely integrated with the databases. We perceive this shortest time frame to
also be of relatively low risk.

In the medium term, we believe elementary queries of reactions, pathways, networks,
and processes will be successful. Some of the graph-theoretic queries, such as path-
finding and certain types of partitions, are of relatively low risk: efficient algorithms for
the first, and algorithms for the second that are robust to cycles, are known. Similarly,
numerical simulation of small systems of stiff, nonlinear, ordinary differential equations
or small PDE systems (the most demanding cases) is for now largely a hand-crafted use
of existing numerical packages that would seem amenable to at least partial scale-up
and automation. We should also be able to progress from running Perl scripts over large
data sets to the use of effective query interfaces made available over the web.
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A special instance of a molecule is a biomarker. These serve as more easily detected
indicators of a particular physiological state, such as a disease; of an organism, such as
a pathogen; or of itself or another molecule, such as a toxin or antigen. Ideal biomarkers
are highly sensitive to low concentrations of the detectant; robust to noise in the organ-
ism or environment; non-, or minimally, invasive; easily deployed; and cheap. Identifying
and evaluating candidate biomarkers is of prime importance for public health, both for
more rapid and accurate diagnosis and for early warning of biological and chemical
weapons, and we view improving current methods for these tasks as a medium risk
effort.

Higher risk is likely to occur either when data are absent and must be acquired or
when the performance is poor. For instance, with biological data types and queries, poor
performance is most likely to occur in four situations: when the queries are NP-hard,
the graphs are inconvenient in topology (e.g., non-planar cyclic), the graphs are large
(where “large” could mean as few as a hundred nodes and edges), and the equational
systems expand past some threshold of size and complexity. Methods that exploit
parallelization may prove relevant in this regard, but parallel graph algorithms for the
types of graphs that occur most often in biology are in their infancy. Obviously parallel
numerical algorithms and packages may prove useful, but we also expect significant
research to be devoted to the development and evaluation of qualitative and semi-
qualitative approximate models.

We believe the challenges of scale and structural complexity will be addressed over
the longer term, especially in two key areas: the exploration, simulation, and under-
standing of much larger networks, such as at the level of the whole cell; and predictive
models of clinical states, diseases, and therapies. Research in these areas is presently of
the highest risk, in part due to our inexperience in integrating data and models that are
very large and complex, and which differ in their mathematical structure and assump-
tions. Nonetheless, this area offers the greatest payoff, and sets the stage for further
advances in the decade beyond.
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Related Work

The importance of data management to the biological sciences has been well-recognized
in recent years, and there have been several efforts to address this issue. Many of
these have dealt with concerns such as intellectual property, standards definition for a
particular community, computational training for biological scientists, and such other
concerns that are beyond the scope of the current study. We mention below three studies
of particular relevance:

10.1 Report of the Workshop on Interconnection
of Molecular Biology Databases (WIMBD),
Stanford, CA, August 9-12, 1994

The workshop on interconnection of molecular biology databases pointed out the advan-
tages of interconnection and interoperation of databases. Specifically, biological data are
more meaningful in context and no single database supplies all context for any datum.
For example, we better understand a gene when we know the function of its product, the
sequence of the gene and its regulatory regions, the three-dimensional structure of its
products, and the functions of evolutionarily related genes. These types of information
are scattered across different databases. New biological theories and regularities are
derived by generalizing across a multitude of examples, which again are scattered across
different databases. Integration of related data enables data validation and consistency
checking.

A number of non-technical barriers to interoperation were identified at the workshop:

¢ Workshop participants expressed strong resistance to standards, in part out of
concern that standards stifle creativity, and because significant efforts are often
required to modify existing software to conform to standards. Many existing
molecular biology databases are not accessible via Internet query; similarly, many
biologist users do not have Internet access. The semantic descriptions of many
molecular-biology databases are terribly incomplete. Without an understanding
of the semantic relationships among databases, interoperation is impossible. Few
incentives now favor interoperation; funding and scientific credit often reward
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efforts that distinguish themselves according to how they differ from prior work,
rather than according to their compatibility with prior work.

Today, nine years later, significant progress has been made with respect to many
of these points. Community efforts to develop standards are now prominent —
in particular one can note the adoption of the mmCIF [BBM*97] standard for
3-dimensional structural data, the development of MIAME [MGE03] and MAGE
[Cov03] standards for micro-array data, and the establishment of the Gene On-
tology (GO) Consortium [Con00]. Most molecular biology data resources are now
backed by relational database management systems and are accessible via the
Internet. Problems identified in 1994 remain important; although formal specifi-
cation of semantics is now widely recognized as important, many databases still
lack such specifications. Cultural and sociological issues that discourage interop-
eration unfortunately remain largely unchanged.

10.2 Report of the NSF Invitational Workshop

on Scientific Database Management,
March 1990

This seminal workshop identified seven main issues, many of which remain important
to this day. These issues were:

e Metadata:

— Who did what and when.

— Characteristics of experimental devices and processes.

— Definitions of (computational) transforms.

— Documentation and citations.

— Structure and format descriptions.
It is imperative that the metadata remain attached to the data for it to be mean-
ingful.
Locating Data: Early in any scientific inquiry, the need to find data becomes
critical to the successful outcome of the investigation. Hypotheses need to be
corroborated, or perhaps, archived data is to be mined for possible undiscovered
properties. It becomes necessary to address questions such as: What data exists
and where is it? Is the data relevant to my interests? Do useful data items exist?
This need requires a general data browsing capability providing facilities first for
locating data sets, and then for scanning them for indications of probable interest.
User interfaces: To manipulate data and produce information, a scientist needs
to access data and apply analysis tools in concert. Failure to integrate the data
management and analysis environments restricts the productivity of the scientist.
More Flexible Representational Structures: Perhaps the single unifying cry
of the workshop was that existing data models are inadequate for science data
needs. The relational model has some advantages. Chief among them is that it is
well-defined and has solid theoretical underpinnings. And, more pragmatically, it
exists within successful commercial products. However, the semantic gap between
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the relational model and what scientists need must be addressed. We must seek
alternatives such as extending the relational paradigm, object-oriented database
technology, extensible tool kits, and logic databases. We must also consider alter-
natives to the relational model for efficiently supporting temporal, spatial, image,
sequences, graph, and other more richly structured data.

e Appropriate Analysis Operators: One area of concern noted by most of
the participants was the lack of appropriate operators within existing DBMS for
manipulating the kinds of data encountered in scientific applications. For example,
more flexible comparison operators are necessary when attempting to match DNA
sequences or retrieve image data. There was not universal agreement as to where
these operators belong — within the DBMS as intrinsic operators or external to
the DBMS as utilities or part of an analysis package. The approach used now is
to have a commercial DBMS export data for use by external utilities.

e Standards: Heterogeneity in data and operational environments is a fact of life.
We must find ways to promote consistency within and across scientific disciplines.
It is unreasonable to expect all disciplines to converge on some unifying standard,
so heterogeneity will continue to be a force to be reckoned with.

e Standards for Data Citation: There was strong sentiment that data used in
the conduct of an investigation should be cited prominently. A standard citation
mechanism would allow other researchers to locate and examine precisely the data
used in the investigation. It would also give due credit to the data collectors.

e GenBank and PDB: Two of the most visible success stories in terms of data
sharing for biomedical research are GenBank and PDB. As new genes are discov-
ered, and the sequence information available to science has exploded, GenBank
has become a valuable central repository for information regarding known genes,
including their DNA sequences. The Protein Data Bank has structural informa-
tion regarding proteins and is a central research resource for organic crystallo-
graphers and structural biologists. Both of these valuable community resources
have been created through a judicious combination of administrative pressure and
social goodwill. While both are of great value, it is not hard to see how they
could become even more valuable. For instance, much of the data in GenBank is
not considered reliable enough so that many scientists create their own curated
derivatives. Better tracking of provenance, and techniques to manage reliability,
could make GenBank that much more valuable. Similarly, the data in PDB is very
useful once a protein of interest has been identified. However, search facilities for
structurally similar proteins would greatly enhance the value of PDB to a scien-
tist. In the body of this report we identify several such technological opportunities
that can lead to significant benefits for advances in biological science.
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10.3 Report of Dagstuhl Seminar on
Information and Process Integration: A Life Science
Perspective

A seminar [AEF103] was held at the Schloss Dagstuhl International Conference and
Research Center for Computer Science, Dagstuhl, Germany on Jan. 28-31, 2003 on
Information and Process Integration: A Life Sciences Perspective, shortly before our
workshop.

Considerable emphasis was given to issues of semantic integration of different life
sciences data sets, since the organizer believed that the semantic integration issues are
much more difficult than syntactic issues.

The Dagstuhl meeting also discussed issues of process integration — encompassing is-
sues of workflow management in life sciences laboratories and data analysis and protocol
representation.

There was also discussion at the Dagstuhl meeting concerning integration of tempo-
ral and spatio-temporal data from the life sciences.



Chapter 11

Recommendations

11.1 Research Funding

A sustained program by the federal agencies at the frontier between biology and data
management technology will allow us to share the database expertise of the IT commu-
nity with the large number of experimentalists supported across the federal agencies.
Funding agencies will have to set up appropriately staffed review panels charged with
suitable review criteria for funding such interdisciplinary work. Adequate funding for
small, medium and large-scale collaborative research projects as well as including fund-
ing within those collaborative projects to train a new generation of database manage-
ment experts in the labs of IT professional will be important.

For fastest progress in the biological sciences, we must encourage both the develop-
ment of content for biological databases as well as technology for managing this content.
While the direct benefits are typically obtained from the content, it must be recognized
that it is the technology that enables delivery of the relevant content, in the right format,
at the right time.

Imagine the rate of scientific advance possible if DNA sequences had to be stored
in books, in the absence of even the rudimentary data management facilities available
today. We must recognize that database content development and database technology
development are two complementary but quite different endeavors. Funding for the two
must come in two different colors so that it is not too easily possible to move money from
one to the other. Otherwise the pressing needs of today’s content will too frequently tri-
umph over technology’s promise of a better tomorrow. Most research-driven companies
recognize this tension and fund (at least some of) their research activity from corpo-
rate sources rather than through product divisions. In similar fashion, funding agencies
should create a supplemental funding program for data management specialists to col-
laborate with life scientists in developing superior data management technology for life
science applications.

One way to accomplish this end is by providing explicitly earmarked supplemental
grants for I'T development in association with standard grants for biological science. In
this fashion, it will be possible to review proposals for such supplemental funding purely
on the basis of the quality of the proposed IT research, yet ensure that it is conducted
in close collaboration with the primary funded biological science effort.

o7
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To energize and focus research activity at this boundary of two disciplines, it is
valuable to define challenge problems that push the boundaries of data management
technology and if successful would enable major advances in biomedical science. Cre-
ation of test data sets and benchmarks towards this end are worthwhile endeavors in
themselves, and should be supported as appropriate and possible.

11.2 Information Sharing Standards

The structural biology community and the genetics community have evolved strong
mechanisms over decades to ensure sharing so that the richness of the data can be
mined by all. For the rest of the life sciences, we need to accelerate the process. Data
sharing approaches will need to be built into the structure of the entire publishing and
grant processes. To be successful, the federal program managers will need to work with
professional societies and journal editors to develop policies with teeth to enforce re-
quirements on data standards and sharing at the time of grant funding and renewal.
Current best practices should be required of anyone developing a data collection of
any significance. Hence, we should expect that new data collection projects will use
existing, community-based data exchange formats — e.g., some dialect of XML such as
SBML — where feasible, rather than idiosyncratic data exchange formats. Database
developers should also be expected to provide carefully specified and appropriately doc-
umented schemas in machine processable formats, as well accessibility across the web
using standards such as SOAP and WSDL.

The sociological barriers to data sharing must be addressed, and technology can
sometimes provide paths around some of these barriers. For instance, mechanisms
to record provenance of data can make it possible to give credit to a contributor of
data. Mechanisms to count data usage and accesses can make it possible to create for
a data provider the social equivalent of a citation count for a research paper author.
Unfortunately, caching, data warehousing, or the use of derived data will often mask
references to the underlying data sets. Some of these issues have begun to be addressed
in web caching protocols, wherein the cache manager propagates aggregated reference
counts to the original data source. In commercial settings, proper reference counts drive
advertising revenues.

11.3 Work force Training

We expect, in the foreseeable future, that it will become important to have MDs and
field biologists trained in computational methods (just as training in microbiology has
now become routine where it was completely absent only a few years ago). The addi-
tion of this computational training is likely to require a significantly greater effort than
the addition of microbiology because of fundamental differences in the way knowledge
is organized and imparted in computer science and the biological sciences. Biological
objects (humans, plants, pathogens, cells, proteins) are enormously complex, but have
underlying commonalities that an intelligent practitioner can benefit from. Experience
with repeated instances, each slightly different, makes the practitioner that much more
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able to deal with the diversity. A surgeon in the operating theater is able to draw
upon experience with patients seen in the past to determine what to do with a specific
patient with a specific tumor location the surgeon has never seen before. Computa-
tional artifacts, on the other hand, while simpler and more controllable than biological
objects, are endlessly more diverse. There is no reason to expect two computational
artifacts to behave in similar fashion unless they were explicitly designed to be so. A
computer scientist will therefore establish a result once, in general, and never consider
re-establishing it repeatedly for one instance at a time. Solution to a specific biological
data management problem is less of interest to a computer scientist than the general-
ization of this problem to a class of data management problems, all of which can be
solved in one fell swoop through an appropriate computational advance.

This dichotomy has significant repercussions not just on how we undertake research
activities, but also in how we train scientists. Currently, some biological scientists get
trained in performing specific computational tasks, such as sequence analysis. Knowing
how to select Blast parameters is not a transferable skill, in that it is likely to have
little value if a new computational method is devised that is superior to Blast. What
we need is training in the underlying principles so that a completely new and different
sequence matching technique can be utilized rapidly and effectively. To this end, we
need opportunities for people at every level to train themselves in the “other discipline”
and work at the interface between data management and biomedical science. Potential
vehicles for delivering such training include conference tutorials, short courses, and
summer schools. We also need support for curriculum development. The funding for
such activities has to be ongoing for a substantial period of time — a typical three-year
cycle is not enough to see the sort of major changes required.
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