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1 Our Research Interests

We use the expression process interaction graph(PIG) as a general purpose term to cover instances
of network-like structures with specific semantics, including signal transduction networks, gene reg-
ulatory networks, metabolic pathways and so forth, because we believe that despite the differences
in biological significance, they can be treated in a uniform data management framework. Aside
from the fact that they are all graph-like entities, PIGs share a few common characteristics, such as
follows:

• Regardless of what the nodes and edges represent, in many cases there is an inherent temporal
order (perhaps of branching time) that can partition the network into phases. Often, as in the
case of gene regulatory networks, a mutation produces an alternate graph which is structurally
isomorphic to the normal-case, except that the temporal properties have changed. Other gene
mutations produce regulatory graphs whose subgraphs corresponding to certain phases have
been altered.

• The graphs very often represents objects and how they interact; while the interaction has a
generic structure like

reactants: A and B
products: C and D
occurs at: some location L
catalyzed by: E
precondition: first-order formula φ(· · ·)
equation(T): some equation of type T where
T can be a chemical reaction formula,
an ordinary differential equation with rate constants etc.

there is very often a wide heterogeneity in the kind of information represented in this general
structure. For example, the location L can have could be “at -300 to -340 bp upstream of gene
G” in gene regulatory networks, but “at the lipid sublayer of the cell membrane of cell C”
for cell signaling. In the first case, the semantic type of location is a subsequence in a DNA
sequence, while in the second, it is a member of an ontology.

• Very often the objects in the primary graph are members of one or more DAG-structured
(sometimes tree-structured) taxonomies such as the Gene Ontology, the Enzyme classification
tree or the Yeast Functional Categories. In these cases, there is often a need to query the
taxonomy graph and the PIG together, as though they are a compound graph, where the “join
terms” between them are the node (i.e., gene or enzyme) names.
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• The graphs are often not arbitrary, but have some “discipline” in their structure. For example,
while bidirectional edges and cycles usually abound in the graphs, there are likely some natural
constraints (like the number of reactions in one part of the graph) that put a bound on the
lengths of the cycles.

• They often exhibit the need to represent a process or a reaction as an edge as well as a node.
For example, one can have edges

e1 : A
regulates−→ B

e2 : C
inhibits−→ e1, if absent(nutrient)

where e1 is a plain edge but e2 is “an edge to an edge” because it points to e1.

It is important to note that in addition, to being graph structures with interesting properties, the
labels on the nodes and edges of these graph typically bear semantics that are important for a logical
interpretation as well as semantic query processing. In our research, we typically use these graphs
in four ways:

• As graph structures, we need to perform operations like (shortest) path finding, graph pattern
matching, graph differencing based on homomorphic mappings between the two graphs, and
so forth

• As logical entities, we need to perform closure-like operations but often with special rules that
apply to the domain in question. For example, we may need to customize the definition of a
transitive closure for a relation R in the following way:

connected(R)(X,Y) if R(X,Z), R(Z,Y), dist(R)(X,Y) < 4
indirectly connected(R)(X,Y) if R(X,Z), R(Z,Y), dist(R)(X,Y) > 3, dist(R)(X,Y) ≤ 6
maybe connected(R)(X,Y) if R(X,Z), R(Z,Y), dist(R)(X,Y) > 6

• We treat the graph as input to a network simulation engine and are developing a language to
construct a Petri Net from such the properties of the interaction graph, such that the states in
the reachability network of the Petri Net can itself be searched. For example, given an edge like
A

regulates−→ B if absent(nutrient), one can create bound and unbound states (Petri Net places)
for each of A and B, and connect them through a transition called binding. The condition
absent(nutrient) can be modeled as an input place supplying to the same transition. Since
enumerating all states of a Petri Net is a known complex problem, we are exploring methods
to make the state-search procedure more manageable.

• As ontologies, we use the graphs as intermediary knowledge bases i.e., logical entities to define
integrated views over two information sources. For example, a yeast gene information source
like MIPS and a yeast proteome database can be integrated, using a process interaction network
that details the transcription and translation processes.

2 Research Issues

We outline a few research issues that we think are of general interest to the data management
community:

• What are suitable query or DB-programming languages for PIGs? Due to their interest-
ing structural as well as semantic properties, a combination of graph query languages (like
Graphlog, GOOD, and even a more general purpose language F-Logic) and deductive ap-
proaches can be most promising to allow scientists to explore large graphs and elicit different
kinds of “connections” between the objects and processes.
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• Often graph algorithms uses problem specific representations and in many cases, these algo-
rithms are for the main memory. How can we develop representations and index structures
that are general purpose and have can be implemented in secondary memory?

• How can we develop a language to describe the properties of the specific kinds of graph that
appears in a domain such that the system uses it to choose one or more appropriate represen-
tations?

• Should the query architecture for solving general-purpose PIGs be a combination of specialized
“co-processors”. e.g., one to evaluate queries on trees and DAGs, another to process queries
on graphs with bounded-length cycles and few strong components? How will query evaluation
be performed in such architectures?

• How can we use a deductive engine and a large-graph query engine simultaneously? Earlier
attempts to put together two such systems for large semantic graphs have not been very
successful.
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