
Query Optimization in Database Systems

MATTHIAS JARKE

Graduate School of Business Administration, New York Uniuersity, New York, New York 10006

JijRGEN KOCH

Fachbereich Znformatik, Johann Wolfgang Goethe-Universitiit, 6000 Frankfurt 1, West Germany

Efficient methods of processing unanticipated queries are a crucial prerequisite for the
success of generalized database management systems. A wide variety of approaches to
improve the performance of query evaluation algorithms have been proposed: logic-based
and semantic transformations, fast implementations of basic operations, and
combinatorial or heuristic algorithms for generating alternative access plans and choosing
among them.

These methods are presented in the framework of a general query evaluation procedure
using the relational calculus representation of queries. In addition, nonstandard query
optimization issues such as higher level query evaluation, query optimization in
distributed databases, and use of database machines are addressed. The focus, however, is
on query optimization in centralized database systems.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey;
H.2.2 [Database Management]: Physical Design--access methodq H.2.3 [Database
Management]: Languages-query languages; H.2.4 [Database Management]:
Systems-query processing; H.2.6 [Database Management]: Database Machines; 1.1.1
[Algebraic Manipulation]: Expressions and Their Representation-simplification of
expressions

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Database implementation, query optimization, query
simplification

JNTRODUCTION

Database management systems (DBMS)
have become a standard tool for shielding
the computer user from details of secondary
storage management. They are designed to
improve the productivity of application
programmers and to facilitate data access
by computer-naive end users.

There have been two major areas of re-
search in database systems. One is the anal-
ysis of data models into which the real
world can be mapped and on which inter-
faces for different user types can be built.

Such conceptual models include the hier-
archical, the network, the relational, and a
number of semantics-oriented models that
have been reviewed in a large number of
books and surveys [Brodie et al. 19841.

A second area of interest is the safe and
efficient implementation of the DBMS.
Computerized data have become a central
resource of most organizations. Each im-
plementation meant for production use
must take this into account by guarantee-
ing the safety of the data in the cases of
concurrent access [Bernstein and Good-
man 19&c], recovery [Verhofstad 19781,

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and ita
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1984 ACM 0360-0300/84/0600-0111$00.75

hnputing Surveys, Vol. 16, No. 2, June 1964

112 l M. Jarke and J. Koch

CONTENTS

INTRODUCTION
1. THE QUERY OPTIMIZATION PROBLEM

1.1 Queries
1.2 Optimization Objectives
1.3 Top-Down Approach to Query Optimization

2. QUERY REPRESENTATION
2.1 The Relational Calculus

2.2 The Relational Algebra
2.3 Query Graphs
2.4 Tableaus

3. QUERY TRANSFORMATION
3.1 Standardization
3.2 Simplification
3.3 Amelioration

4. QUERY EVALUATION
4.1 One-Variable Expressions
4.2 Two-Variable Expressions

4.3 Multivariable Expressions
5. ACCESS PLANS

5.1 Generation of Access Plans
5.2 Cost Analysis of Access Plans
5.3 Selection of Access Plans
5.4 Support for Multiple Queries

6. NONSTANDARD QUERY OPTIMIZATION
6.1 Higher Level Queries
6.2 Distributed Databases
6.3 Database Machines

I. SUMMARY
ACKNOWLEDGMENTS
REFERENCES

and reorganization [Sockut and Goldberg
19791. One major criticism of many early
DBMSs has been their lack of efficiency in
handling the powerful operations they of-
fer, particularly the content-based access
to data by queries. Query optimization tries
to solve this problem by integrating a large
number of techniques and strategies, rang-
ing from logical transformations of queries
to the optimization of access paths and the
storage of data on the file system level.

Traditionally, each of these approaches
has used a different language. This is prob-
ably one of the reasons why no comprehen-
sive survey of query optimization tech-
niques has yet been presented. The goal of
this paper is to review query optimization
techniques in the common framework of
relational calculus. This has been shown to
be technically equivalent to a relational
algebra representation [Codd 1972; Klug

1982a] and extendable to the implementa-
tion of network DBMSs [Dayal and Good-
man 19821. Moreover, many popular query
languages, such as SQL [Astrahan and
Chamberlin 19751 or QUEL [Stonebraker
et al. 19761, map easily into relational cal-
culus.

In the interest of space, the focus of the
paper is primarily on the problem of opti-
mizing queries in the centralized DBMS.
Centralized query optimization is not only
important in many mainframe databases-
and more recently in microcomputer
DBMSs-but also appears as a subproblem
of query optimization in distributed sys-
tems. Distributed query optimization itself
[Bayer et al. 1984; Sacco and Yao 1982;
Ullman 19821 is only addressed briefly, and
the following two related areas are not
treated at all:

User Optimization. The overall cost of an
information system is composed of the
DBMS cost and the costs of user efforts to
work with the system. The interface in the
two areas consists of the functional capa-
bilities and usability of the query language
[Vassiliou and Jarke 19841, mainly in the
response time of the system. If one assumes
given functional capabilities of the query
language and a response time minimization
goal of the query evaluation system, query
optimization can be handled as a separately
tractable subproblem of user optimization.

File Structures. A query optimization al-
gorithm has to choose among a variety of
existing access paths to resolve a query.
The internal details of implementing such
access paths and the derivation of the re-
lated cost functions (see, e.g., Teorey and
Fry [1982]) are beyond the scope of this
paper.

The paper is organized into six sections,
following a top-down approach. In Section
1 we present a global framework for query
optimization. In Section 2 we compare four
techniques for representing queries in
terms of their suitability for optimization.
In Section 3 we utilize one of these tech-
niques, the relational calculus, for present-
ing logic-based transformations, including
the emerging methods of semantic query
optimization.

Computing Surveys, Vol. 16, No. 2, June 1984

Query Optimization in Database Systems l 113

After being transformed, a query must be
mapped into a sequence of operations that
return the requested data. In Section 4 we
analyze the implementation of such opera-
tions on a low-level system of stored data
and access paths. In Section 5 we present
optimization procedures for integrating
these operations into a globally optimal
access plan.

A number of query optimization prob-
lems require special treatment because of
higher query complexity or certain charac-
teristics of the underlying hardware. Three
such problem areas-higher level queries,
distributed queries, and queries using da-
tabase machines-are summarized in Sec-
tion 6.

1. THE QUERY OPTIMIZATION PROBLEM

Exact optimization of query evaluation pro-
cedures is in general computationally in-
tractable and is hampered further by the
lack of precise statistical information about
the database. Query evaluation algorithms
must rely heavily on heuristics. Neverthe-
less, the term “query optimization” will be
used to refer to strategies intended to im-
prove the efficiency of query evaluation
procedures. In this section we state the
objectives of query optimization and pre-
sent a general procedure designed to struc-
ture the solution process.

1.1 Queries

A query is a language expression that de-
scribes data to be retrieved from a database.
In the context of query optimization, it is
often assumed that queries are expressed
in a content-based (and mostly set-ori-
ented) manner, giving the optimizer suffi-
cient choices among alternative evaluation
procedures.

Queries are used in several settings. The
most obvious application is that of direct
requests by end users who need information
about the structure or content of the data-
base. If the requests are limited to a set of
standard queries, they can be optimized
manually by programming the associated
search procedures and restricting the user’s
input to a menu format. However, an
automatic query optimization system be-

comes necessary if ad hoc queries are to be
asked by use of a general-purpose query
language.

A second application of queries occurs in
transactions that change the stored data
based on their current value (e.g., “give all
assistant professors a 10 percent salary in-
crease”). Finally, querylike expressions can
be used internally in a DBMS, for example,
to check access rights [Griffiths and Wade
19761, maintain integrity constraints
[Stonebraker 19751, and synchronize con-
current accesses correctly [Reimer 19831.

1.2 Optimization Objectives

The economic principle requires that opti-
mization procedures either attempt to max-
imize the output for a given number of
resources or to minimize the resource usage
for a given output. Query optimization tries
to minimize the response time for a given
query language and mix of query types in a
given system environment. This general
goal allows a number of different opera-
tional objective functions. The response
time goal is reasonable only under the as-
sumption that user time is the most impor-
tant bottleneck resource. Otherwise, direct
cost minimization of technical resource
usage can be attempted. Fortunately, both
objectives are largely complementary; when
goal conflicts arise, they are typically re-
solved by assigning limits to the availability
of technical resources (e.g., those of main
memory buffer space).

In order to allow a fair comparison of
efficiency, the functional capabilities of the
query evaluation systems to be compared
must be similar. The requirement of “rela-
tional completeness” coined by Codd [19721
(compare Section 2.1) has become a quasi-
standard. The techniques surveyed in this
paper are presented as contributions to the
implementation of queries in a relationally
complete language with minimal evaluation
cost or response time. Queries of higher
complexity [Chandra and Hare1 1982a] are
considered in Section 6.1. The total cost to
be minimized is the sum of the following:

Communication Cost: The cost of trans-
mitting data from the site where they are
stored to the sites where computations are

Computing Surveys, Vol. 16, No. 2, June 19.34

114 l M. Jarke and J. Koch

performed and results are presented. These
costs are composed of costs for the com-
munication line, which are usually related
to the time the line is open, and costs for
the delay in processing caused by transmis-
sion. The latter, which is more important
for query optimization, is often assumed to
be a linear function of the number of data
transmitted.

Secondary Storage Access Cost: The cost
of (or time for) loading data pages from
secondary storage into main memory. This
is influenced by the number of data to be
retrieved (mainly by the size of intermedi-
ate results), the clustering of data on phys-
ical pages, the size of the available buffer
space, and the speed of the devices used.

Storage Cost: The cost of occupying sec-
ondary storage and memory buffers over
time. Storage costs are relevant only if stor-
age becomes a system bottleneck and if it
can be varied from query to query.

Computation Cost: The cost for (or time
of) using the central processing unit (CPU).

The structure of query optimization al-
gorithms is strongly influenced by the
trade-off among these cost components. In
long-range distributed DBMSs with rela-
tively slow communication lines, commu-
nication delay dominates the costs, whereas
the other factors are relevant only for local
suboptimization. In centralized systems,
the costs are dominated by the time for
secondary storage accesses although the
CPU costs may be quite high for complex
queries [Gotlieb 19751. In locally distrib-
uted DBMSs, all factors have similar
weights, which results in very complex cost
functions and optimization procedures.

Since the focus of this paper is on cen-
tralized databases, comuunication costs are
not considered because in such systems
communication requirements are inde-
pendent of the evaluation strategy. For the
optimization of single queries, storage costs
are usually also assumed to be of secondary
importance. They are considered only for
the simultaneous optimization of multiple
queries.

There remain the costs of secondary stor-
age accesses (usually measured by the num-
ber of page accesses) and CPU usage (often

measured by the number of comparisons to
be performed). A number of common ideas
underly most techniques developed to re-
duce these costs. They try to (1) avoid
duplication of effort, (2) use standardized
parts, (3) look ahead in order to avoid un-
necessary operations, (4) choose the cheap-
est way to execute elementary operations,
and (5) sequence them in an optimal fash-
ion. The following simple example demon-
strates what can be expected from query
optimization.

Consider the relational schema of a da-
tabase that describes employees offering
computer lectures to departments of a geo-
graphically distributed organization:

employees (e, ename, status, city)
papers (enr, title, year)
departments (dname city, street address)
courses (E, cz’abstract)
lectures (cnr dname enr daytime) -5 -3 -2

Key attributes are underlined; a given com-
bination of key attribute values identifies a
relation element uniquely. Assume that a
user is interested in the

“names of departments located in New
York offering courses on database
management.-”

There are many possible strategies to solve
this query, three of which are compared
with respect to the following assumptions
on actual data values. Note that the de-
tailed data used for the computations below
are not usually available to the query op-
timizer, but have to be estimated.

There are 100 “departments”, 5 of which
are located in New York. A physical block
can take 5 department records or 50 dname
values.

There are 500 “courses”, 20 of which are
on database management. The physical
block size is 10 records.

There are 2000 “lectures”. Three hun-
dred are on database management, 100 are
held in New York departments, and 20
(from 3 departments) satisfy both condi-
tions. The physical block size is 10 records.

Assume further that sorting time is N *
log(B)N, where iV is the file size in blocks,
and that there is a buffer of one block for

Computing Surveys, Vol. 16, No. 2, June 1984

Query Optimization in Database Systems l 115

each relation. Finally, all relations are
physically sorted by ascending key values.

The first strategy presented here follows
a straightforward approach of translating a
relational calculus expression into a se-
quence of algebra operations [Codd 19721.
Together with each step of the strategy, the
numbers of secondary storage accesses re-
quired to read (r) or write (w) a physical
block are given:

Strategy I
1. Form the Cartesian product of the “courses”,

“lectures”, and “departments” relations, and
(r: 200000)

2. Retain the dname column of those “depart-
ment” records, for which

the cnr of “courses” and “lectures” match,
and
the dname of “lectures” and “departments”
match,
and cname = ‘database management’
and city = New York, (w: 1)

total: approximately 200000 accesses.

The extremely high cost of this strategy
results from the fact that it generates an
intermediate result, of which only a very
small portion is actually relevant for fur-
ther processing. Efficiency can be improved
substantially by considering only those
combinations of elements from different
relations that have matching values in com-
mon attributes. By making use of existing
sort orders, such combinations can be
formed by “merging” the participating re-
lations. This operation is called a “join”:

Strategy 2
1.

2.

3.

4.

5.

Merge %ourses” and “lectures”.
(r: 50 + 200; w: 400)

Sort the result by dnames.
(r + w: 400 log(2)400)

Merge the result with “departments”.
(r: 400 + 20; w: 400 + 400)

Select the combinations with city = ‘New
York’ and cname = ‘database management’,
and

(r: 800)
keep only the dname column.

(w: 1)

total: approximately 6000 accesses.

The cost for answering the query can be
reduced further by performing value-based

selections as early as possible and thereby
reducing the cost for sorting and merging
intermediate results:

Merge “courses” with “lectures”, and
(r: 50 + 200)

keep only the dnames of combinations
with cname = ‘database management’

(w: 2)

Strategy 3
1.

2.

3.

4.

5.

Sort the dname list generated.
(r + w: 2)

Merge the result with the “departments” re-
lation, and

(r: 2 + 20)
keep only those dnames with city = ‘New
York’.

(w: 1)

total: 277 accesses.

Thus a reduction by a factor of approxi-
mately 700 has been achieved. For larger
databases and more complex queries, more
sophisticated techniques may result in even
higher reductions.

1.3 Top-Down Approach
to Query Optimization

Query optimization research in the litera-
ture can be divided in two classes, which
can be described as bottom up and top
down. Researchers found the overall query
optimization problem to be very complex.
Theoretical work began with a bottom-up
approach, studying special cases, such as
the optimal implementation of important
operations and evaluation strategies for
certain simple subclasses of queries. Sub-
sequently researchers attempted to com-
pose larger building blocks from these early
results.

A need for working systems triggered the
development of full-scale query evaluation
procedures, which stressed the generality
of solutions and handled query optimiza-
tion in a uniform and heuristic manner
[Astrahan and Chamberlin 1975; Makinou-
chi et al. 1981; Niebuhr et al. 1976; Palermo
1972; Schenk and Pinkert 1977; Wong and
Youssefi 19761. As this often did not
achieve competitive system efficiency, the
current trend seems to be a top-down ap-
proach that incorporates more knowledge

Computing Surveys, Vol. 16, No. 2, June 1964

116 l M. Jarke and J. Koch

about special case optimization opportuni-
ties into the general procedures. At the
same time, the general algorithms them-
selves have been augmented by combina-
torial cost-minimization procedures for
choosing among strategies.

This paper follows the top-down ap-
proach, utilizing the general evaluation
procedure that follows as a framework for
the specific techniques developed in query
optimization research:

Step 1. Find an internal query represen-
tation into which user queries can easily be
mapped that leaves the system all neces-
sary degrees of freedom to optimize the
evaluation.

Step 2. Apply logical transformations to
the query representation that (1) standard-
ize the query, (2) simplify the query to avoid
duplication of effort, and (3) ameliorate the
query to streamline the evaluation and to
allow special case procedures to be applied.

Step 3. Map the transformed query into
alternative sequences of elementary opera-
tions for which a good implementation and
its associated cost are known. The result of
this step is a set of candidate “access plans”.

Step 4. Compute the overall cost for each
access plan, choose the cheapest one, and
execute it.

The first two steps of this procedure are
to a large degree data independent and thus
often can be handled at compile time. The
quality of Steps 3 and 4, that is, the richness
of the access plans generated and the opti-
mality of the choice algorithm, heavily de-
pends upon knowledge about the values in
the database.

The consequences of data dependence
are twofold. First, if the database is volatile,
Steps 3 and 4 can be done only at run time.
This means that the possible gain in effi-
ciency must be traded off against the cost
of the optimization itself. Second, a meta-
database (e.g., an augmented data diction-
ary) must maintain general information
about the database structure as well as
statistical information about the database
contents. As in many similar operational
research problems (e.g., inventory control),
the costs of obtaining and maintaining this

additional information must be compared
to its value.

2. QUERY REPRESENTATION

Queries can be represented in a number of
forms. In the context of query optimization,
an appropriate query representation form
must fulfill the following requirements: It
should be powerful enough to express a
large class of queries, and it should provide
a well-defined basis for query transforma-
tion. In this section we present four differ-
ent query representation forms, each of
which has been used in a number of ap-
proaches to query optimization.

2.1 The Relational Calculus

The (tuple) relational calculus as intro-
duced by Codd [1971, 19721 is a notation
for defining the result of a query through
the description of its properties. The rep-
resentation of a query in relational calculus
consists of two parts: the target list and the
selection expression.

The selection expression specifies the
contents of the relation resulting from the
query by means of a first-order predicate
(i.e., a generalizedBoolean expression pos-
sibly containing existential and/or univer-
sal quantifiers). The target list defines the
free variables occurring in the predicate
and specifies the structure of the resulting
relation. Example 2.1 demonstrates the re-
lational calculus representation using the
syntax of the database programming lan-
guage Pascal/R [Schmidt 19771.

Example 2.1. Names of processors who
published some paper in 1981.

[(e.ename) OF
EACH e IN employees:

e. status = professor
AND

SOME p IN papers
(e.enr = p.enr AND p.year = 1981)]

In the target list, that is, the subexpres-
sion preceding the colon, the range of the
(free) variable e is restricted to elements of
the relation “employees”. The relation “em-
ployees” is therefore called the range relu-
tion of e. The target attribute specification

Computing Surveys, Vol. 16, No. 2, June 1984

Query Optimization in Database Systems l 117

“(e.ename)” indicates that only the names
of employees are retained for the query
result.

The selection expression-the predicate
following the colon-defines constraints on
the free variable. The first constraint is a
restrictive or monadic term, restricting the
free variable to those “employees” records
that have the status value “professor”. This
constraint is AND-connected with a join or
dyadic term, relating “employees” to “pa-
pers”, and another monadic term, further
restricting the result to those employees
who published some paper in 1981. The
comparison operators usually allowed in
terms are =, #, <, >, 5, and ZZ.

In contrast to the one-sorted predicate
calculus, the relational calculus allows var-
iables to be bound to different sorts (range
relations); for instance, variable e is bound
to “employees” and variable p is bound to
“papers”. The consequences of the many
sortedness of the relational calculus with
respect to query transformation are dis-
cussed in Section 3.1. -

In addition to the logical operator AND,
the operators OR and NOT can also be
used in predicates. Relational calculus
predicates are completely defined by the
following recursive rules:

1. Atomic predicates:

(i) A (monadic or dyadic) term is an
atomic predicate.

(ii) TRUE is an atomic predicate.
(iii) FALSE is an atomic predicate.

2. An atomic predicate is a predicate. Let
A be a predicate, r an element variable,
and rel a relation. Then

(i) SOME r IN rel(A),
(ii) ALL r IN rel(A)

are also predicates.
3. Let A and B be predicates. Then

(i) NOT (A) (negation),
(ii) A and B (conjunction),

(iii) A OR B (disjunction)

are predicates.
4. No other formulas are predicates.

In Codd [1972] the relation calculus has
been introduced as a yardstick of expressive

power. A representation form is said to be
relationally complete if it allows the defini-
tion of any query result definable by a
relational calculus expression. Clearly, re-
lational completeness has to be considered
as a minimum requirement with respect to
expressive power. An often cited example
for a conceptually simple query that goes
beyond relational completeness is “find the
names of employees reporting to manager
Smith at any level”, provided that a hier-
archy of employees is modeled in a single
relation (e.g., via a name and manager at-
tribute) [Pirotte 19791. Furthermore, quer-
ies in today’s applications often contain
aggregations that cannot be expressed in
pure relational calculus. However, the ex-
tension of relational calculus by aggregate
functions is rather straightforward [Klug
1982b; Maier and Warren 19811.

2.2 The Relational Algebra

The relational algebra as defined by Codd
[1972] is a collection of operators on rela-
tions. These operators fall into two classes,
that is, traditional set operators, such as
Cartesian product, union, intersection, and
difference, and special relational algebra
operators, such as restriction, projection,
join, and division. The special operators are
defined below by relating them to equiva-
lent relational calculus expressions.

The restriction operator applied to a re-
lation “rel” constructs a horizontal subset
according to a quantifier-free predicate
containing only monadic terms or intrare-
lational dyadic terms (comparisons be-
tween two attributes of the same relation
element):

Rest(re1, pred) = [EACH r IN rel: pred].

The projection operator serves to con-
struct a vertical subset of a relation “rel”
by selecting a set A of specified attributes
and eliminating duplicate tuples within
these attributes:

Proj(re1, A) = [(r.A) OF EACH r IN rel:
true].

The join operator permits two relations
“reli” and “re12” to be combined into a

Computing Surveys, Vol. 16, No. 2, June 1964

118 . M. Jarke and J. Koch

single relation whose attributes are the alent algebra expression. An analogous re-
union of the attributes of “reh” and “relp”: sult for algebra and calculus expressions

Join(re&, A op B, relz)
extended by aggregate functions has been

= [EACH rl IN reh, EACH r-2 IN re12:
proven by Klug [1982a].

r1.A op r&l]. 2.3 Query Graphs

The comparison operators “op” allowed in
joins are the same as those in dyadic terms
of the relational calculus. If “op” is the
equality operator ‘=‘, the “natural” join
omits either A or B in the result.

The division operator provides an alge-
braic counterpart to the universal quanti-
fier. It is defined as follows:

Divi(relr, A by B, re12)
= [(r.compl(A)) OF EACH rl IN re&:

ALL r2 IN re12 SOME r3 IN rell
(rl.compl(A) = r2.compl(A) AND
r2.B = r3A)].

Graphs have been used for the visual rep-
resentation of structured objects in a num-
ber of areas. Two well-known examples are
the use of syntax trees in compiler con-
struction and the use of AND/OR graphs

artificial intelligence applications.
graphs are used in query optimization for
the representation of queries or query eval-
uation strategies. Two classes of graphs can
be distinguished: object graphs and opera-
tor graphs.

where compl(A) is the complement of A in
the attribute set of “reh”. As the definition
indicates, division is a rather complex op-
eration, which can make the understanding
of a query a difficult job.

Example 2.2 represents the query of Ex-
ample 2.1 in relational algebra.

Example 2.2. Names of professors who
published some paper in 1981.

Proj(Rest(Join(employees,
enr = enr,
Rest(papers, year = 1981)),

status = professor),
ename)

As opposed to a relational calculus

Nodes in object graphs represent objects
such as (relation) variables and constants.
Edges describe predicates that these objects
are to fulfill [Bernstein and Chiu 1981;
Palermo 1972; Youssefi and Wong 19791.
Object graphs contain the properties of the
query result and are therefore closely re-
lated to the relational calculus. Operator
graphs describe an operator-controlled data
flow by representing operators as nodes
that are connected by edges indicating the
direction of data movement. In Smith and
Chang [1975] and Yao [1979], operator
graphs have been used for the representa-
tion of algebra expressions. Figures 1 and 2
give one example, respectively, for an object
graph and an operator graph.

expression, which describes the relation re-
sulting from a query by means of its prop-
erties, a relational algebra expression de-
fines an algorithm for the construction of
the resulting relation. A calculus expression
appears to be a better starting point for
query optimization since it provides an op-
timizer only with the basic properties of the
query; optimization opportunities may be-
come hidden in a particular sequence of
algebra operators. With respect to rela-
tional completeness, however, the rela-
tional algebra is at least as powerful as the
relational calculus. In Codd [1972] it has
been shown that any relational calculus
expression can be translated into an equiv-

Query graphs have many attractive prop-
erties. The visual presentation of a query
contributes to an easier understanding of
its structural characteristics. In addition,
graph theory offers a number of results
useful for the automatic analysis of graphs,
for example, discovery of cycles and tree
property. Finally, an important advantage
of query graphs is that they can be easily
augmented with additional information.
For example, the augmentation of graphs
with details of the physical data organiza-
tion of a database has been proposed by
Rosenthal and Reiner [1982].

2.4 Tableaus

Tableaus as defined by Aho et al. [1979a,
1979b, 1979c] are tabular notations for a

Computing Surveys, Vol. 16, No. 2, June 1984

Query Optimization in Database Systems l 119

e.ename

Figure 1. An object graph representing the example query.

t

I

ename

t

status =

a

professor

t

I

enr

“c3

= enr

t
employees t

year =

a

1981

t

(projection)

(restriction)

(join)

(restriction)

papers

Figure 2. An operator graph representing the example query.

subset of relational calculus queries, char-
acterized by containing only AND-con-
nected terms and no universal quantifiers.
Thus tableau queries are a particular kind
of conjunctive queries [Char&a and Merlin
1977; Rosenkrantz and Hunt 19801.

Tableaus are specialized matrices, the
columns of which correspond to the attri-
butes of the underlying database schema.
The first row of the matrix, the summary,
serves the same purpose as the target list
of a relational calculus expression. The
other rows describe the predicate. The sym-
bols appearing in a tableau are distin-
guished variables (corresponding to free
variables), nondistinguished variables (cor-

responding to existentially quantified var-
iables), constants, blanks, and tags (indi-
cating the range relation).

Figure 3 illustrates the construction of a
tableau representing the query of Example
2.1. It starts with tableaus for single rela-
tions and proceeds by combining these ta-
bleaus into new tableaus for larger and
larger subexpressions. Distinguished vari-
ables are denoted by a’s; nondistinguished
ones are denoted by b’s.

Expressions containing disjunction (set
union) and negation (set difference) can be
represented by sets of tableaus [Sagiv and
Yannakakis 19801. Klug [1983] and John-
son and Klug [1983] use sets of tableaus

Computing Surveys, Vol. 16, No. 2, June 1984

120 l M. Jarke and J. Koch

status e*llM enr year

T(employees) =

T(papers) = a3 a4

papers

T(Rest(papers,year=l981)) =

$1 papers

T(Join(employees.
enr=enr ,
Rest(papers,year=1981)) =

T(Rest(Join(employees.
enr=enr,
Rest(papers,year=l981),

status=professor)) =

T(Proj(Rest(Join(employees.
enr=enr.
Rest(papers,year=1961).

status=professor).
ename)) =

Figure 3. Stepwise construction of a tableau T representing the query of Example 2.1.

for representing general conjunctive quer-
ies. The specific value of tableaus with re-
spect to query optimization is discussed in
Section 3.2.

3. QUERY TRANSFORMATION

We have seen that queries can be expressed
in a number of different representation
forms. Additionally, a number of semanti-
cally equivalent expressions may exist for
each query, even within a given language.

The transformation of a given expression
into an equivalent one by means of well-
defined rules is the subject of this section.
The goals of query transformation are
threefold: (1) the construction of a stand-
ardized starting point for query optimiza-
tion (stundardization), (2) the elimination
of redundancy (simplification), and (3) the
construction of expressions that are im-
proved with respect to evaluation perform-
ance (amelioration).

Computing Surveys, Vol. 16, No. 2, June 1984

Query Optimization in Database Systems 121

3.1 Standardization

Several approaches to query optimization
define a standardized starting point
through a normalized version of the under-
lying query representation form [Jarke and
Schmidt 1981; Kim 1982; Palermo 1972;
Wong and Youssefi 19761. In the following,
we present two normal forms for the rela-
tional calculus together with the rules to be
obeyed by a normalization procedure.

A relational calculus representation of a
query is said to be in prenex normal form if
its selection expression is of the form

SOME/ALL rl IN rell - - -
SOME/ALL r, IN rel,(M),

where A4 is a quantifier-free predicate. M
is called the matrix and can also be stand-
ardized. A matrix consisting of a disjunc-
tion of conjunctions (of terms Ai;), such as

(A11 AND . . . AND Al,) OR . - -
OR (AmI AND . . . AND A,,),

is said to be in disjunctive normal form, and
a matrix consisting of a conjunction of dis-
junctions, such as

(Al, OR . . . OR AI,) AND . . .
AND (Am1 OR . . . OR A,,),

is in conjunctive normal form.
The prenex normal form combined with

the normal forms for the matrix yields two
normal forms for relational calculus expres-
sions: disjunctive prenex normal form
(DPNF) and conjunctive prenex normal
form (CPNF). The use of DPNF is moti-
vated by the goal to optimize and evaluate
independent query components separately
[Bernstein et al. 19811. The CPNF has
proved useful for the decomposition of
queries [Wong and Youssefi 19761 and for
data-dependent amelioration (e.g., testing
the most restrictive disjunction first).

Queries in CPNF can be transformed
further into a quantifier-free form popular
in artificial intelligence theorem-proving
applications, the so-called clausal form
[Nilsson 19821. Logic-based database lan-
guages such as Prolog [Kowalski 19811 are
based on clausal form. Since clausal form
has been rarely used in query optimization

(see Grant and Minker [1981], Jarke et al.
[1984], and Warren [1981] for exceptions),
a detailed description is omitted at this
point.

The transformation of an arbitrary rela-
tional calculus expression into prenex nor-
mal form is a matter of moving quantifiers
over terms (from right to left). Quantifier
movement is governed by the transforma-
tion rules of Table 1. Normalization of the
matrix is rather straightforward and can be
achieved by using DeMorgan’s rules, the
distributive rules, and the rule of double
negation (see Table 2).

The distinction between empty and non-
empty range relations in rules Q2 and Q3
of Table 1 results from the variability of
relations over time and the many sorted-
ness of the relational calculus [Jarke and
Schmidt 19821. A relational calculus
expression can be transformed into an
equivalent expression of a one-sorted cal-
culus by introducing a range definition such
as (r IN rel) as another type of atomic
predicate:

01: SOME r IN rel(pred)
w SOME r((r IN rel) AND pred),

02: ALL r IN rel(pred)
ti ALL r((r IN rel) + pred).

The application of rules Q2a and Q3a when
moving a quantifier over a term would
therefore yield a wrong result in the case of
an empty range relation. It follows that
normalization of an arbitrary relational cal-
culus expression at compile time must pre-
serve information about the original range
definition of variables so that run-time
modifications according to rules Q2b and
Q3b can be performed when necessary.

3.2 Simplification

We have already seen that there might be
several semantically equivalent expressions
representing one and the same query. One
source of differences between any two
equivalent expressions is their degree of
redundancy [Hall 1976; Stroet and Eng-
mann 19791. A straightforward evaluation
of a redundant expression would lead to

Computing Surveys, Vol. 16, No. 2, June 1984

122 l M. Jarke and J. Koch

Table 1. Transformation Rules for Quantified Expressions

Q1: A AND SOME r IN rel (B(r))
<==>

SOME r IN rel (A AND B(r))

Q2: A OR SOYE r IN rel (B(r))
<==>

;j ;OYE r IN rel (A OR B(r)) rel Z []
rel = []

43: A AND ALL r IN rsl (B(r))
<==>

;i ;LL r in rel (A AND B(r)) rel # []
rel = []

Q4: A OR ALL r IN rel (B(r))
<==>

ALL r IN rel (A OR B(r))

45: SOME rl IN rell SOME r2 IN rel2 (A(rl.r2))
<==>

SOME r2 IN re12 SOYE rl IN rell (A(rl.r2))

QS: ALL rl IN rell ALL r2 IN re12 (A(rl.rZ))
<==>

ALL r2 IN re12 ALL rl IN rell (A(rl.r2))

47: SOME r IN rel (A(r) OR B(rj)
<==>

SOME r IN rel (A(r)) OR SOME r IN rel (B(r))

QS: ALL r IN rel (A(r) AND B(r))
<==>

ALL r IN rel (A(r)) AND ALL r in rel (B(r))

QB: NOT ALL r IN rel (A(r))
<==>

SOME r IN rel (NOT(A(r)))

QlO:NOT SOME r IN rel (A(r))
<==>

ALL r IN rel (NOT(A(~)))

the execution of a set of operations, some
of which are superfluous. Therefore query
optimization aims at the elimination of re-
dundancy by means of transforming a re-
dundant expression into an equivalent non-
redundant one.

A redundant expression can be simplified
by applying the transformation rules M4a
to M4j, which consider idempotency (see
Table 2). The application of these rules is
complicated by the fact that idempotency
can occur at any level in the expression,
owing to the presence of common sub-
expressions, that is, subexpressions that
occur more than once in the expression
representing the query. Thus, in order to
simplify an expression such as

[EACH

to

e IN employees:
e.ename = ‘Smith’

OR
(e.status = assistant

OR e.status = professor)
AND

NOT(e.status = professor
OR e.status = assistant)]

[EACH e IN employees: e.ename = ‘Smith’]

by means of rules M4d and M4g, the sub-
expressions

(e.status = assistant OR e.status = professor)

and

(e.status = professor OR e.status = assistant)

Computing Surveys, Vol. 16, No. 2, June 1964

Query Optimization in Database Systems l 123

Table 2. Transformation Rules for General Expressions

kl : Comuutative rules

a) A OR B <==> B OR A

b) A AND B <==> B AND A

Y2: Associative rules

a) (A OR B) OR C <==> A OR (EJ OR C)

b) (A AND B) AND C <==> A AND (B AND C)

Y3: Distributive rules

a) A OR (B AND C) <==> (A OR B) AND (A OR C)

b) A AND (B OR C) <==> (A AND B) OR (A AND C)

Y4: Idempotency rules

a) A OR A <==> A

b) A AND A <==> A

c) A OR NOT(A) <==> TRUE

d) A AND NOT(A) <==> FALSE

e) A AND (A OR B) <==> A

I) A OR (A AND B) <==> A

2) A OR FALSE <==> A

h) A AND TRUE <==> A

i) A OR TRUE <==> TRUE

j) A AND FALSE <==> FALSE

Y5: De Morgan’s rules

a) NOT (A AND B) <==> NOT (A) OR NOT (B)

b) NOT (A OR B) <==> NOT (A) AND NOT (B)

MB: Double negation rule

NOT (NOT (A)) <==> A

must first be recognized as being equiva-
lent. Algorithms are given by Downey et al.
[1980] and Hall [1974, 19761. The recogni-
tion of common subexpressions and the
application of idempotency rules have to be
performed concurrently rather than se-
quentially, since the simplification of an
expression by means of idempotency rules
may yield further common subexpressions,
which, in turn, are subject to simplification.
Expressions that are bound to empty rela-
tions can also be simplified. Transforma-
tion rules for their simplification are given

in Table 3. (Note that these rules can be
applied only at run time.)

Terms as defined in Section 2.1 serve as
atomic predicates in the relational calculus.
However, these terms can be simplified or
removed if the semantics of the comparison
operators are explicitly taken into account.
An important application is the so-called
constant propagation, which uses transitiv-
ity laws, such as

r.A op s.B AND s.B = const
=a r.A op const,

Computing Surveys, Vol. 16, No. 2, June 1984

124 . M. Jarke and J. Koch

Table 3. Transformation Rules for Expressions with Empty Relations

El: [EACH r in [I: pred] <==> []

~2: [<r.~i....r.~n> OF EACH r IN [I: pred] <==> [I

E3: SOME r IN [] (pred) <==> FALSE

E4: ALL r IN [I (pred) <==> TRUE

to reduce the number of dyadic terms in a
query. Algorithms that minimize the num-
ber of rows in tableaus as introduced in
Section 2.4 systematically exploit such sim-
plification rules for conjunctive queries
[Aho et al. 1979a; Sagiv 1981, 19831. Since
the number of rows in a tableau is one more
than the number of joins (dyadic join
terms) in the expression, the minimization
of the number of rows corresponds to the
elimination of redundant joins.

Sagiv and Yannakakis [1980] exiend the
tableau techniques to cover the simplifica-
tion of expressions containing disjunctions.
The generalization to all expressions of a
relationally complete language, however, is
still an open problem.

Information about semantic integrity
constraints can be exploited for “semantic”
query simplification [Aho et al. 1979a,
1979b, 1979c; Jarke et al. 1984; Johnson
and Klug 1982; Ott and Horlaender 1982;
Rosenthal and Reiner 19841. As a simple
example, consider the case of key con-
straints. If r and r’ are (free or existentially
quantified) variables ranging over the same
relation “rel”, equijoin terms of the form
“r.key = r ‘.key” are superfluous in the
sense that the term and one of the varia-
bles, say r’, can be deleted, followed by the
substitution of r’ by r in any term referring
to r’. This type of simplification is most
relevant in the context of view processing,
in which the reduction of user queries ad-
dressing views to system queries addressing
stored relations may introduce substantial
redundancy. Its application range can be
extended by considering additional con-
straints implied by the query structure
[Klug 1980; Koch et al. 19813.

A final opportunity for simplification oc-

curs when one or more matrix conjunctions
of the standardized query can be shown to
be unsatisfiable [Eswaran et al. 1976; Klug
1983; Munz et al. 1979; Ozsoyoglu and Yu
19801. For example, consider the expression

r.A I s.B AND s.B > t.C AND t.C 2 r.A,

which implies the contradiction, r.a > r.a,
and can therefore be replaced by the
Boolean value, false. Satisfiability can be
efficiently decided at compile time for a
conjunction of terms with comparison op-
erators (=, <, I, >, 2) [Rosenkrantz and
Hunt 19801, but is computationally intract-
able when the nonequality comparison
operator is allowed.

3.3 Amelioration

Query simplification does not necessarily
produce a unique expression. Other nonre-
dundant expressions may exist that are se-
mantically equivalent to the one generated
by some simplification technique. The eval-
uation of expressions corresponding to one
and the same query may differ substantially
with respect to performance parameters,
for example, the size of intermediate results
and the number of relation elements ac-
cessed. Below, a number of query transfor-
mation heuristics are presented that, when
applied to expressions, yield ameliorated
expressions with respect to evaluation per-
formance.

The simplest transformations considered
in this section are the combination of a
sequence of projections into a single projec-
tion, and the combination of a sequence of
restrictions into a single restriction [Hall

Computing Surveys, Vol. 16, No. 2, June 1984

1976; Smith and Chang 19751. The corre-
sponding transformation rules are

Al: Proj(. . . Proj(Proj(re1, Al)
AZ), . . . , AnI

A2:

Query Optimization in Database Systems l 125

able is detached and forms an inner nesting.
Detachment is performed recursively at
any nesting level until the expression can-
not be reduced further. Experiments re-
ported by Youssefi and Wong [1979] have
shown this heuristic to be very strong. Ex-
ample 3.2 demonstrates the detachment of
a subexpression in a complex expression.

PrT(re1, A,),
Rest(. . . (Rest(Rest(re1, predi),

predd, . . . , pred,)

Rez(re1, predi AND predz AND . . .
AND pred,) .

The combination of intrarelational op-
erations results in two advantages: First,
repetitive reading of the same relation is
avoided, and second, existing access paths
may be used for the combined operation,
and not only for the first operation in the
sequence.

Minimization of the size of intermediate
results to be constructed, stored, and re-
trieved is the goal of a number of amelio-
rating transformations. An important heu-
ristic moves selective operations, such as
restriction and projection, over construc-
tive operations, such as join and Cartesian
product, in order to perform the selective
operations as early as possible [Smith and
Chang 19751. In the context of relational
calculus, the consideration of a certain
evaluation sequence can be represented by
a nested expression. The evaluation of a
nested expression starts with the evalua-
tion of the innermost nesting, followed by
its surrounding nesting, and so on until the
outermost nesting is reached. A nested
expression implying the early evaluation of
monadic terms (restrictions) is given in
Example 3.1.

Example 3.1. A nested expression
equivalent to the expression in Example
2.1.
[(e.ename) OF
EACH e IN [EACH e IN employees:

estatus = professor]:
SOME p IN [EACH p IN papers:

p.year = 19811
(e.enr = p.enr)]

The early evaluation of selective opera-
tions forms a special case of query detach-
ment as introduced by Wong and Youssefi
[19761. A subexpression that overlaps with
the rest of the expression on a single vari-

Example 3.2. Departments offering lec-
tures that are held by professors who live
in the same city where the department is
located and who have published some paper
in 1981.

The corresponding expression is

[EACH d IN departments:
SOME 1 IN lectures

SOME e IN employees
(estatus = professor

AND
ddname = ldname

AND l.enr = e.enr
AND e.city = dxity

AND
SOME p IN papers

(p.year = 1981
AND p.enr = e.enr))]

An equivalent expression produced by
query detachment is

[EACH d IN departments:
SOME 1 IN lectures

SOME e IN [EACH e IN
[EACH e IN employees:

e.status = professor]:
SOME p IN [EACH p IN

papers: p.year = 19811
(e.enr = p.enr)]

(d.dname = l.dname AND l.enr = e.enr
AND exity = d.city)]

An object graph representing the query is
shown in Figure 4.

Note that the resulting nested expres-
sion is irreducible [Goodman and Shmueli
19801; that is, it cannot be separated into
two subexpressions overlapping on a single
variable. In other words, the nested expres-
sion contains a cycle (see Figure 4).

The importance of the distinction be-
tween cyclic and acyclic (treelike) expres-
sions for query processing is discussed
further in Section 4.3. At this point, we
mention only that there are cycles that can
be transformed into equivalent acyclic

Computing Surveys, Vol. 16, No. 2, June 1964

126 l M. Jarke and J. Koch

EACH d IN
departments

l e.status=prof

I
l

p.year=l991

Figure 4. Object graph for Example 3.2.

query graphs. Such cycles include those
that (1) are introduced by transitivity
[Bernstein and Chiu 1981; Yu and Ozsoy-
oglu 19791, (2) contain certain combina-
tions of inequality join term edges [Bern-
stein and Goodman 1981b; Ozsoyoglu and
Yu 19801, (3) are “closed” by universally
quantified variables [Jarke and Koch
19831, and (4) contain variables that can be
decomposed by use of functional depend-
encies [Kambayashi and Yoshikawa 19831.

The concepts of extended range expres-
sions {Jarke and Schmidt 19821 and range
nesting [Jarke and Koch 19831 provide a
generalization of query detachment in that
they also consider expressions containing
universal quantification. Database rela-
tions defining the range of a relation vari-
able are replaced by calculus expressions
according to the following transformation
rules:

A3: [EACH r IN rel: predl AND predz]

[ETCH r IN [EACH r IN rel: predi]:
w&l,

A4: SOME r IN rel(predi AND pred2)

S&E r IN [EACH r IN rel: predi]
(w&h

A5: ALL r IN rel: (NOT(predi)
OR br&

AZ r IN [EACH r IN rel: predl]
(pred2) .

Note that transformation rule A5 for uni-
versally quantified variables is especially
profitable since, through the reduction of
the number of conjunctions in the outer
nesting, the intermediate results can be
expected to be considerably smaller in size.

The ameliorating transformations pre-
sented thus far use information from three
sources: general transformation rules and
heuristics guiding their usage, knowledge
about the relational data structures, and
the query itself. Two other knowledge bases
that have not yet been considered are the
integrity constraints that complement the
structural schema definition in many da-
tabase systems and the actual data stored
in the database.

Integrity constraints are predicates that
must be true for each element of a certain
relation, or for each combination of ele-
ments of a certain group of relations. They
therefore can be added to the selection
expression of any query without changing
its truth value. There are a few approaches
exploiting this observation for amelioration

Computing Surveys, Vol. 16, No. 2, June 1964

Query Optimization in Database Systems l 127

rather than simplification (which was men-
tioned in the previous subsection). They
have been called knowledge-based [Ham-
mer and Zdonik 19801 or semantic query
processing [King 1979, 19811.

Assume, for example, that an integrity
constraint says: “We only hire professors
who have published at least one paper per
year.” In this case, the evaluation of Ex-
ample 2.1 (asking for professors with pa-
pers published in 1981) becomes trivial, and
the evaluation of Example 3.2 is substan-
tially simplified.

Adding an integrity constraint to a selec-
tion expression can also change the struc-
ture of the query in order to make it more
tractable. Consider the constraint: “We
only hire local professors.” In this case, the
term “d.city = e.city” in Example 3.2 can
be omitted. The remaining query no longer
contains a cycle in its object graph.

The success of semantic query processing
depends largely on the development of ef-
ficient heuristics for choosing among the
many transformations made possible by the
addition of any combination of integrity
constraints to the query. In King [1981]
and Xu [19831, artificial intelligence type
rules are used to make this decision for a
special class of relational databases.

Yao [1979] points out that cases exist in
which the optimal transformation is data
dependent. The heuristics presented above
may not always be optimal, especially when
certain access paths are supported by phys-
ical data structures. One consequence of
such data dependence is that, in addition
to the query compiler, the run-time support
must also be equipped with query transfor-
mation facilities. Furthermore, if heuristics
do not yield satisfactory results, simulta-
neous optimization is required on the phys-
ical and the logical level. Before turning to
such integrated approaches, however, the
physical evaluation of query components
must be described.

4. QUERY EVALUATION

In this section we present methods for the
evaluation of query components of varying
complexity, such as one-variable expres-

sions, two-variable expressions, and multi-
variable expressions. The individual ap-
proaches can be viewed as the building
blocks of a general query evaluation system.
Their associated costs and ranges of appli-
cability constitute the input to the last
stage of the query optimization process,
which generates the optimal access plan.

4.1 One-Variable Expressions

One-variable expressions describe condi-
tions for the selection of elements from a
single relation. A naive approach to their
evaluation would be to read every element
of the relation, and to test whether it sat-
isfies each term of the expression. Since
this approach is very costly in the presence
of large relations and complex expressions,
various techniques have been used to re-
duce the number of element accesses and
the number of tests applied to an accessed
element.

The number of element accesses can be
reduced by employing data structures that
provide access paths other than those of
exhaustive sequential search. One possibil-
ity is to keep the relation sorted with re-
spect to one or more attributes so that it
can be accessed in ascending or descending
order, or binary search can be performed.
This has proved useful for the evaluation
of range queries (i.e., expressions that de-
fine an interval of attribute values [Bolour
1981; Davis and Winslow 19821). Another
alternative, hashing, provides fast direct
access without necessarily preserving order.

Direct and ordered access can be pro-
vided by indexes, possibly combined with
multilist structures [Welch and Graham
1976; Yang 19771. Conceptually speaking,
an index is a binary relation that associates
attribute values with references to relation
elements, usually called tuple identifiers
(TIDs). We distinguish one-dimensional in-
dexes, which support access via a single
relation attribute, from multidimensional
indexes, which support access via a combi-
nation of attributes. One-dimensional in-
dexes are usually implemented by ISAM
[IBM 19661 or B-tree [Bayer and Mc-
Creight 19721 structures. An overview of
multidimensional index structures is given

Computing Surveys, Vol. 16, No. 2, June 1964

128 l M. Jarke and J. Koch

by Bentley and Friedman [19791. Some ex-
amples include the work by Shneiderman
[1977] on combined indexes, Nievergelt et
al. [1984] on grid files, and Gardarin et al.
[1984] on predicate trees. Although access
paths are usually invisible to the user, ef-
forts have been reported to develop high-
level language representations directly
available to those database programmers
who insist on extreme efficiency. Such lan-
guage constructs range from TIDs [Jarke
and Schmidt 1981; van de Riet et al. 19811
to abstract representations of complete ac-
cess paths [Mall et al. 1984; Schmidt 1984;
Tsichritzis 19761.

The number of tests applied to an ac-
cessed relation element during expression
evaluation can be reduced by means of run-
time transformations of the expression.
The optimization of a special class of
expressions, Boolean expressions, has been
a research topic in compiler construction
for a long time [Gries 19711. Boolean
expressions (i.e., quantifier-free AND/OR
connected terms) are an integral part of a
number of control structures in high-level
programming languages. The purpose of
code optimization for Boolean expressions
is to generate code that skips over the eval-
uation of expression components no longer
relevant to the value of the expression as a
whole. For example, in the statement

IF A AND B THEN
statement-l

ELSE
statement-2

END

the evaluation of term B is superfluous, and
the ELSE-branch can be executed right
away in case term A has already been eval-
uated as “false”. If the same idea is applied
to the evaluation of one-variable expres-
sions in query languages [Gudes and Reiter
1973; Liu 19761, queries can be simplified
at run time.

Another approach designed to improve
evaluation efficiency is that of changing the
order in which individual expression com-
ponents are evaluated. Several algorithms
are known to lead to optimal evaluation
sequences in certain situations; some as-
sume a priori probabilities for attribute val-

ues [Hanani 19771, whereas others work
without such assumptions [Breitbart and
Reiter 19751. Warren [1981] applies a sim-
ilar technique for optimizing database pro-
grams expressed in logic.

4.2 Two-Variable Expressions

Two-variable expressions describe condi-
tions for the combination of elements from
two relations. In general, two-variable
expressions are composed of monadic
terms, which restrict single variables inde-
pendently of each other, and dyadic terms,
which establish the link between both var-
iables. In this section we first describe the
basic methods for the evaluation of a single
dyadic term, corresponding to the join op-
erator in Section 2.2, and then strategies
for the evaluation of arbitrary two-variable
expressions.

Approaches to the implementation of the
join operation can be classified into order-
dependent and order-independent strate-
gies [Todd 19741. A simple method that is
independent of the order of element access
is the so-called nested iteration method
[Pecherer 1975, 1976; Selinger et al. 19791
in which every pair of relation elements is
accessed, and concatenated if the join con-
dition is satisfied. A sketch of the algorithm
follows:

FORi:=lTONlDO
read zth element of r&;
FORj:= lTON*DO

read jth element of relZ;
form the join according to the join concli-
tion;

END;
END;

Let N1(N2) be the number of elements of
the relation read in the outer (inner) loop.
Ni + Ni * N2 secondary storage accesses
are required to evaluate the dyadic term,
assuming that each element access needs
one secondary storage access.

The nested iteration method can be aug-
mented by the use of an index on the join
attribute(s) of “re12.” Instead of scanning
“re12” sequentially for each element of
“re&,” the matching “re&” elements are
retrieved directly [Griffeth 1978; Klug

Computing Surveys, Vol. 16, No. 2, June 1964

Query Optimization in Database Systems . 129

1982b]. Thus only Ni + Ni * Nz * j,,
accesses are required, where j,, is a join
selectivity factor describing the reduction
of the Cartesian product of “reh” and “relz”
by the join condition.

The nested block method [Kim 19801
adapts the nested iteration method to a
paged-memory environment. It assumes
that a main memory buffer will hold one or
more pages of both relations, where each
page contains a set of records.

The algorithm itself is basically identical
to the one of the nested iteration method,
except that memory pages are read instead
of single relation elements. The number of
secondary storage accesses needed to form
the join is reduced bo P, + (Pi/&) * Pz,
where P1(P2) is the number of pages occu-
pied by the outer (inner) relation and B1 is
the number of pages of the outer relation
held in the main memory buffer. The for-
mula demonstrates that it is always pref-
erable to read the smaller relation in the
outer loop (i.e., make Pi < I’*). Note that
only PI -I- Pz accesses are necessary if one
of the relations can be kept entirely in the
main memory buffer.

The merge method [Blasgen and Eswaran
1977; Selinger et al. 19791 is based on the
order in which relation elements are ac-
cessed. Both relations are scanned in as-
cending or descending order of join attri-
bute values and merged according to the
join condition. Approximately N1 + Nz +
S1 + Sp secondary storage accesses are re-
quired, where S1 and Sa denote the number
of secondary storage accesses necessary to
sort the relations. If the two relations are
already sorted by the same criterion, the
merge method appears to be the most effi-
cient one for evaluating a dyadic term
[Merrett 1981; Merrett et al. 19811. Excep-
tions occur when one of the two relations
is small enough to fit in main memory (the
nested block method is preferable) or one
relation is much larger than the other and
indexes are available (nested iteration with
indexes is better).

Methods for the evaluation of arbitrary
two-variable expressions are created on the
basis of strategies for one-variable expres-
sions and algorithms for the computation

of dyadic terms. They differ in the way they
make use of or even create access paths,
such as indexes and sorting, and the order
in which the terms are processed. One such
method is illustrated in Figure 5. It makes
extensive use of indexes. Tuple identifiers
resulting from the processing of monadic
terms and those that satisfy the join con-
dition are intersected and then used to ac-
cess the relation elements. These elements
are projected onto attributes appearing in
the dyadic term and in the target list. The
projected elements are concatenated and
finally projected on the target attribute.

Blasgen and Eswaran [1976], Niebuhr
and Smith [1976], Yao and DeJong [1978],
and Yao [1979] present various other al-
gorithms and compare them systematically
with respect to their efficiency. Their re-
sults demonstrate that often no a priori
best algorithm exists. The optimizer must
either rely on heuristics or perform an ex-
pensive cost comparison of many alterna-
tives for each query.

An important case of two-variable ex-
pressions is a join in which one of the
participating variables (the “inner” one) is
existentially or universally quantified. The
result of such an expression contains only
elements of one relation. Furthermore, ac-
cess to the other relation needs to establish
only whether, for a given value of the
“outer” variable, the join condition is sat-
isfied with any (respectively all) elements
of the range relation of the “inner” variable.
These elements themselves are of no inter-
est. This means that for the evaluation of
quantified queries intermediate results can
be represented in a compressed fashion
[Dayal 1983a; Jarke and Schmidt 19811. If
the two-variable expression contains just
one join term with a comparison operator
of <, 5, >, or 2, only one attribute value
(the minimum or maximum attribute value
appearing in the inner relation) is required.
That is, the quantified two-variable expres-
sion can be converted into a monadic term
[Jarke and Koch 19831. Incidentally, a sim-
ilar use of aggregate functions (maximum
or minimum) has also been proposed in the
context of integrity maintenance [Bern-
stein et al. 19801.

Computing Surveys, Vol. 16, No. 2, June 1984

130 l M. Jarke and J. Koch

t

employees-enr-ind

papers-enr-ind

year = D . 1981

t
papers-year-ind

Figure 5. Operator graph illustrating the evaluation of the query of Example
2.1. The existence of various indexes is assumed.

4.3 Multivariable Expressions

Stategies for the evaluation of multivaria-
ble expressions are the largest building
blocks for a general query-processing sys-
tem. Two basic approaches exist, which are
referred to as parallel processing and step-
wise reduction.

The parallel processing of query compo-
nents serves to avoid repeated access to the
same data. Repeated access to the same

data can be avoided by simultaneous eval-
uation of multiple-query components. In
Palermo [19’72], all monadic terms associ-
ated with a variable are completely evalu-
ated and all dyadic terms in which the same
variable appears are partially processed
concurrently with scanning of the range
relation of the variable. Even AND-connec-
tions existing among the terms can be eval-
uated in parallel, which further reduces the
size of intermediate results [Jarke and

Computing Surveys, Vol. 16, No. 2, June 1964

Query Optimization in Database Systems 131

Schmidt 19821. A similar approach on a
higher level has been described by Klug
[1982b] in which aggregate functions and
complex subqueries are computed in par-
allel. Scheduling strategies for the parallel
processing of query components are dis-
cussed by Schmidt [19791.

Pipelining operations that can work on
the partial output of preceding operations
is another technique that exploits paral-
lel processing opportunities [Smith and
Chang 1975; Yao 19791. For example, re-
striction and projection can be pipelined so
that only a relatively small buffer for data
exchange is required rather than the crea-
tion and subsequent reading of a possibly
large temporary relation.

Aspects of simultaneous evaluation and
pipelining are combined in the so-called
“feedback” method [Clausen 1980; Rothnie
1974, 19751, which uses partial results of a
join operation in order to restrict its input.
The degree to which this can be done de-
pends on the quantification of variables
occurring in the join term. For example,
consider the expression

[EACH rl IN reli:
ALL r2 IN re12 (rI.A op r2.B)].

Assume that the join term is evaluated by
nested iteration. While testing some ele-
ment, rl, it is found that the term “q.A op
r2.B” evaluates to false for a certain r2 with
r2.B = cl. Because of the universal quanti-
fication of r2, rl is rejected, and an elimi-
nation filter can be added to the selection
expression

[EACH rl IN reli:
NOT (rI.A op ci)
AND ALL r2 IN re12 (rI.A op r2.B)]

because the same rz would cause the rejec-
tion of all elements rl of “reli” that do not
satisfy the first term. On the other hand, if
rl with rI.A = c2 passes the test, a true filter
can be added to the selection predicate:

[EACH rl IN reli:
rI.A op c2 OR

NOT (rl.A op cl) AND . . -1.

Both filters can be updated subsequently
to sharpen the constraints.

d.dname
0

EACH d IN
departments

.
e.statu8=prof

.
I . dayt ime>8pm

Figure 6. Object graph for Example 4.1.

The second basic approach to the evalu-
ation of multivariable expressions will be
motivated by means of the following ex-
ample.

Example 4.1. Figure 6 shows an object -
graph representing the expression

[(ddname) OF
EACH d IN departments:

SOME e IN employees(e.status = professor
AND
e.city = d.city)

AND
SOME 1 IN lectures (ldaytime > 8 pm

AND
l.dname = d.dname)]

Expressions like the one in Example 4.1
are called tree expressions [Goodman and
Shmueli 1982; Shmueli 19811, since their
associated query graph is a tree. The stand-
ard approach for evaluating such an expres-
sion would be to form the join of the three
relations, restrict the intermediate result
according to monadic terms, and finally
project it onto the attributes appearing in
the target list. As has been shown in the
introductory example (Section 1.2, Strat-
egy 2), this method performs rather poorly.
It is even more problematic in a distributed
environment where each relation resides on
a different site, as entire relations must be
transmitted from site to site. Moreover, the
relation at the target site is temporarily
expanded through the formation of the join,
although the final result is only a horizontal
and vertical subset of it.

Computing Surveys, Vol. 16, No. 2, June 1964

132 . M. Jarke and J. Koch

d.dname
0

Figure 7. Object graph for Example 4.2.
\

d _ dname
=

1 .dname

In Bernstein and Chiu [1981], Bernstein
et al. [1981], and Bernstein and Goodman
[1981a, 1981b, 1981c], the stepwise reduc-
tion of tree expressions (with free and ex-
istentially quantified variables) has been
introduced. This method often outperforms
the simple approach above in a decentral-
ized as well as in a centralized setting. It is
based on a modified join operation, and
uses the so-called semijoin operator.

The semijoin of a relation “reh” by a
relation “relp” equals the join of these re-
lations projected back onto the attributes
of relation “reli”:

semijoin(reh, A op B, relz)
= proj(join(re&, A op B, relz),

attributes(reh)).

The operation thus forms “half of a join.”
The main advantages of semijoin over join
are as follows: (1) its evaluation only re-
quires the transmission of value lists of the
joining attributes instead of that of an en-
tire relation, and (2) it has a “reductive”
effect since the result of semijoin (reh, A
op B, relz) is always a subset of re12, whereas
a join may produce a Cartesian product in
the worst case. In terms of relational cal-
culus, a semijoin corresponds to a two-
variable expression, where one variable is
existentially quantified, as discussed in
Section 4.2.

The simplest evaluation of a tree expres-
sion by means of stepwise reduction can be
described as follows. Starting from the
leaves of the query tree representing the

Computing Surveys, Vol. 16, No. 2, June 1964

expression, one semijoin per edge is exe-
cuted in breadth-first leaf-to-root order.
Thus a tree expression containing one free
and n - 1 existentially quantified variables
can be completely processed by n - 1 semi-
joins.

If all variables are free, an additional
semijoin sequence in reverse order must be
performed. In a centralized setting, this
kind of semijoin strategy is inferior to a
merge join operation combined with paral-
lel quantifier evaluation. Even in a distrib-
uted system, the simple bottom-up/top-
down sequence is often less efficient than
a middle-out sequence that begins with
semijoins that achieve very strong reduc-
tion [Chiu and Ho 1980; Chiu et al. 19811.

Strategies for the evaluation of tree
expressions containing both existential and
universal quantifiers must take into ac-
count the order in which these quantifiers
appear in the expression. Stepwise reduc-
tion is possible only when the processing of
the edges of the query tree (breadth-first
leaf-to-root) corresponds to the order of the
quantifiers in the expression (right to left).

Example 4.2. Consider the query tree of
Figure ‘7 representing the expression

[(ddname) OF
EACH d IN departments:

ALL p IN papers
SOME e IN employees

(p.enr = e.enr AND e.city = d.city)
AND

SOME 1 IN lectures (ldname = ddname)]

Query Optimization in Database Systems l 133

d.dname
0

EACH d IN
departments

Figure 8. A cyclic calculus expres-
sion and its corresponding object
graph.

SOME e IN e.enr=l .enr SOME 1 IN

.
e.status=prof

Figure 9. Some possible database
State.

l

1. dayt ime>Spm

departments dname city street address

employees 1 ei / en’i s~:~s ~=~~~,

lecturea 1 CII / eII / dam / da;;;me 1

Processing’the tree in breadth-first leaf-to-
root order would yield the value of the
expression

[(ddname) OF
EACH d IN departments:

SOME e IN employees
ALL p IN papers

(p.enr = e.enr AND e.city = deity)
AND

SOME 1 IN lectures (ldname = ddnarne)]

which is not equivalent to the original
expression.

The position of an existential and a uni-
versal quantifier cannot be interchanged
without changing the meaning of the
expression, except in cases where rules Ql
through Q4 of Table 1 apply. Expressions
containing only one type of quantifier allow
the sequence of variables to be inter-
changed arbitrarily, according to transfor-
mation rules Q5 and Q6. Jarke and Koch
[1983] describe a directed, so-called “quant
graph” that supports the application of
these rules.

Cyclic expressions are the complement of
tree expressions with respect to the entire
set of expressions. Although we quoted
some benign exceptions in Section 3.3,
cyclic expressions in general cannot be fully
reduced by means of semijoins [Bernstein
and Goodman 1981a, 1981b; Goodman and
Shmueli 19821.

Example 4.3. Consider the query:
“names of departments that offer lectures
after 8 pm given by professors who live in
the city where the department is located”.
The corresponding relational calculus ex-
pression and a query graph are shown in
Figure 8.

If the database is in the state shown in
Figure 9, no sequence of semijoins (corre-
sponding to edges of the query graph of
Figure 8) will produce the correct result
(the empty relation). The reason is that the
semijoin technique only considers one edge
at a time, and thus loses restrictive condi-
tions introduced through the feedback ef-
fect of the cycle:

Computing Surveys, Vol. 16, No. 2, June 1964

134 l M. Jarke and J. Koch

d.dname
0

Figure 10. Augmented object
graph for Example 4.3.

EACH d IN
departments

d.dname=l .dname
d.city=l.city

SOME e IN SOME 1 IN

e.city=l .city

l

e.status=prot

l

1. dayt ime>Epm

[(ddname) OF
EACH d IN departments:

SOME e IN employees
(e.status = professor

AND
SOME 1 IN lectures

(l&time > 8 pm
AND

ddname = l.dname AND l.enr = e.enr
AND e.city = d.city))]

In Kambayashi et al. [1982] a proposal
is made that is intended to generalize the
applicability of the semijoin technique to
cyclic expressions. The overall idea is to
transform the cyclic query graph into a tree
by adding appropriate terms to edges of the
graph. Figure 10 demonstrates the tech-
nique applied to the cyclic expression of
Example 4.3.

The additional terms “d.city = Lcity” and
“l.city = e.city” imply the condition “d.city
= e.city” by transitivity. Thus the resulting
graph is equivalent to a chain query, a
special form of tree query. Note that addi-
tion of the new terms corresponds basically
to addition of the city attribute to the
schema of the lectures relation (initialized
with null values).

The query tree then is processed by step-
wise reduction, executing a generalized
semijoin for each edge while taking into
account the newly introduced attributes.
The number of data transfers are reduced
by means of specialized compression tech-
niques.

Methods for the efficient implementa-
tion of operations, such as the ones pre-

Computing Surveys, Vol. 16, No. 2, June 1984

sented in this section, are candidates for
hardware components in specialized data-
base machines. However, such components
often allow parallelism and therefore re-
quire somewhat different join and semijoin
algorithms [Bitton et al. 1983; Maekawa
1982; Missikoff and Scholl 1983; Valduriez
1982; Valduriez and Gardarin 19841. A brief
survey of hardware approaches to query
optimization is presented in Section 6.3.

5. ACCESS PLANS

In the previous section we dealt with tech-
niques for the efficient evaluation of query
components that can be used as building
blocks of a general query evaluation algo-
rithm. The final step of our query evalua-
tion framework requires the combination
of these blocks into an efficient evaluation
procedure for an arbitrary standardized,
simplified, and ameliorated expression. Un-
fortunately, work in this area is still incom-
plete.

The inputs of such a procedure are a
logically preprocessed query (as described
in Section 3), the existing storage struc-
tures and access paths, and a cost model.
The output is an optimal (or at least heur-
istically “good”) access plan. The procedure
consists of the following steps.

(1) Generate all reasonable logical access
plans for evaluating the query. A logical
access plan describes a sequence of opera-
tions or of intermediate results leading
from existing relations to the final result of
a query.

Query Optimization in Database Systems l 135

(2) Augment the logical access plans by
details of the physical representation of
data (sort orders, existence of physical ac-
cess paths, statistical information).
(3) Choose the cheapest access plan by ap-
plying a model of access and processing
costs.

In this section we review the generation
of access plans, cost models for their eval-
uation, and the problem of selecting the
cheapest plan. The quality of the final so-
lution plan is strongly influenced by the
existing storage structures and access
paths, which usually cannot be optimized
for a single ad hoc query. In Section 5.4 we
therefore briefly consider the simultaneous
optimization of multiple queries.

5.1 Generation of Access Plans

Access plans describe sequences of opera-
tions (represented by operator graphs) or
intermediate results (object graphs) leading
from the existing data structures to a query
result. The query optimizer should generate
a set of plans rich enough to contain the
optimal plan but small enough to keep the
optimization effort acceptable.

Two extreme approaches are exemplified
by Smith and Chang [1975] and Yao
[1929]. Smith and Chang use a rigid set of
“automatic programming” query transfor-
mation rules similar to the ones discussed
in Section 3. Their procedure generates
exactly one access plan, which need not be
optimal. Yao’s method generates all non-
dominated access plans possible in a given
physical environment. While this may be
feasible in the context of two-variable quer-
ies, it becomes prohibitively costly for very
complex queries.

Other approaches seek a compromise be-
tween heuristic selection and detailed gen-
eration of alternative access plans. For ex-
ample, System R [Chamberlin et al. 1981;
Selinger et al. 19791 applies a hierarchical
procedure based on the nested block con-
cept of SQL. On the lower level, evaluation
plans for each query block are generated
and compared. On the upper level, the se-
quence in which the query blocks are eval-
uated is determined. Kim [19821 notes that

this concept places too much emphasis on
the user-specified block structure of the
query and therefore introduces query
standardization steps into SQL query pro-
cessing.

A similar compromise was chosen in
INGRES [Youssefi and Wong 19791. The
heuristic decomposition approach reduces
a query to a set of subqueries containing at
most two variables. For each of these
subqueries a more detailed analysis of its
optimal implementation is performed.

A comprehensive procedure for generat-
ing access plans to solve conjunctive quer-
ies without universal quantifiers and aggre-
gates has been proposed by Rosenthal and
Reiner [1982]. An expanded object graph
representation is used for modeling evalu-
ation strategies that exploit auxiliary direct
access structures. To avoid the generation
of an excessive number of strategies to be
generated, the generation of access plans is
interleaved with the selection step: Strate-
gies known to be infeasible or dominated
by other procedures are not created.

5.2 Cost Analysis of Access Plans

The selection of physical access plans is
determined by heuristic rules or is based on
a cost model of storage structures and ac-
cess operations [Merrett 19771. In this sec-
tion, cost models and their integration into
optimization procedures are reviewed.

Whereas a few researchers consider
working storage requirements [Kim 1982;
Lang et al. 1977; Sacco and Schkolnick
19821 or CPU costs [Gotlieb 1975; Selinger
et al. 19791, most cost models are based on
the number of secondary storage accesses.
For a given operation, this figure is influ-
enced by the size of its operands, the access
structures used, and the size of main mem-
ory buffers.

At the beginning of the evaluation, the
operands are existing data structures of
known size, such as relations or indexes. In
later stages, however, most operands are
results of preceding operations, and the
cost model must estimate their size by using
information about the original data struc-
tures and the selectivity of the operations
already performed on them. Although there

Computing Surveys, Vol. 16, No. 2, June 1964

136 l M. Jarke and J. Koch

is much ongoing work, no generally ac-
cepted formulas for estimating the size of
intermediate results have evolved thus far.
This results in part from the fact that the
trade-off between the amount of informa-
tion used and the accuracy of the result is
not very well understood.

In general, the more restrictive the as-
sumptions about the data, the fewer are the
parameters needed to compute the size of
the results of operations. For example, in
Demolombe [19801 a recursive procedure
for estimating the size of a quantifier-free
calculus expression is described, for which
five types of parameters must be known if
fairly detailed database statistics are avail-
able. Under more restrictive assumptions,
however, only three of them are needed.
The size estimates given by Selinger et al.
[1979] use only information already exist-
ing in the database but make many as-
sumptions about data and queries [Astra-
han et al. 19801. At the other extreme, Yao
[19791 assumes (implicitly) that detailed
selectivity data are known; no statement is
made as to how these data are obtained.
(See, however, Yao [1977b] for an access
cost model.)

More recently researchers recognized the
need to carefully state and critically review
all underlying assumptions about database
characteristics to generate formally valid
parameter systems that allow one to

(1) compute a size estimate for any feasible
operation, and

(2) compute parameter values for inter-
mediate results required for further op-
erations.

Such techniques view the database state at
run time as the result of a random process
that generates relation elements from the
Cartesian product of the attribute domains,
governed by some probability distribution
(usually assumed to be uniform) and by
general laws (e.g., functional dependencies)
of the database schema [Gelenbe and Gardy
1982; Richard 19811. From these assump-
tions, parameters are derived whose values
must be known in order to compute the size
of any intermediate result of complex op-
erations. For example, Richard [19811 dem-

Computing Surveys, Vol. 16, No. 2, June 1964

onstrates that it is sufficient to know the
size of all projections in the database if the
attribute value distributions are uniform
and independent both within an attribute
and between attributes of the same domain.

Christodoulakis [1981, 19831 and Mont-
gomery et al. 119831 have critically reviewed
such assumptions and have proved that
they lead to a bias against direct-access
structures in selection plans. However, no
practical formulas with more general as-
sumptions, but without excessive data re-
quirements, have yet been published.

The final cost measure is the number of
secondary storage accesses, not the sizes of
intermediate results. A large number of re-
searchers estimate the relationship be-
tween the two figures [Cardenas 1975;
Chan and Niamir 1982; Cheung 198213; Luk
1983; Whang et al. 1983; Yao 1977a; Yu et
al. 19781. In essence, it depends on the
physical storage structures involved and
the proportion of elements to be accessed.

Assume first that all elements of an op-
erand of size N have to be accessed. The
optimal number of secondary storage ac-
cesses would then be N/B, where B is the
blocking factor of the operand. This can be
achieved only if the elements are stored
densely and it is clear from the beginning
on which physical records the elements re-
side. As a counterexample, the so-called
“segment scan” of System R requires access
to a superset of the necessary pages to find
all elements of a relation [Selinger et al.
1979 1. If it is necessary to read the elements
in some predetermined sequence, they must
not only be stored densely but also sorted
by the given reading order.

If direct access to a subset of the elements
is used, the number of secondary storage
accesses required to retrieve n of the N
elements will depend on the clustering of
elements in physical blocks. Most of the
models cited above assume random place-
ment of records on pages, which in some
sense describes a worst case [Christodou-
lakis 19811. Optimal clustering can reduce
the number of pages to be accessed to n/B.

In conclusion, the traditional assump-
tions about value distributions and element
placements tend to overestimate costs and
thus to bias cost estimates against the use

,

Query Optimization in Database Systems 137

of direct-access structures. On the other
hand, more sophisticated techniques re-
quire more statistical information about
the database. The question of how to keep
such information up-to-date is not yet fully
resolved.

5.3 Selection of Access Plans

How are the cost estimates used in query
optimization? As mentioned in Section 5.2,
there are heuristic procedures that do not
use them at all. Other approaches combine
heuristic reduction of choices with enumer-
ative cost minimization in the “end game”
[Youssefi and Wong 19791. Experiments
indicate that combinatorial analysis can
improve database performance consider-
ably [Epstein and Stonebraker 19801.

There are two ways to utilize cost esti-
mates in the selection process. First, the
costs of each alternative access plan can be
determined completely [Blasgen and Es-
waran 1976; Yao 19791. This approach has
the advantage of covering techniques like
parallelism or feedback in a realistic way.
On the other hand, the optimization effort
is high.

Second, the cost of strategies can be com-
puted incrementally in parallel to their gen-
eration. This approach allows whole fami-
lies of strategies with common parts to be
evaluated in parallel, which considerably
reduces the optimization costs. For exam-
ple, the method proposed by Rosenthal and
Reiner [19821 retains only the cost minimal
way to obtain each intermediate result, and
discards any other method as soon as its
nonoptimality is detected.

An extension of this second approach is
a dynamic query optimization procedure,
which derives from the observation that, at
each moment, only the next operation to
be performed has to be decided. To guar-
antee overall optimality, only the conse-
quences of this decision for the remainder
of the evaluation must be evaluated. A dy-
namic procedure has actual information
about all its operands, including interme-
diate results. This information can also be
used to update the estimates of the remain-
ing steps. The dynamic method has two
drawbacks: its cost and the danger of get-

ting stuck in local optima if no look ahead
is applied. However, if used carefully, the
method can reduce the evaluation costs for
queries, in which the sizes of actual inter-
mediate results differ from the expected
sizes.

5.4 Support for Multiple Queries

All of the query evaluation procedures con-
sidered thus far concentrate on optimizing
the evaluation of a single query. Chesnais
et al. [19831 have also investigated the per-
formance effect of multiple users accessing
a database in parallel. However, query op-
timization strategies can even go beyond
simple parallelism by sharing the execution
costs of common operations among queries.
Additionally, a strategy that optimizes the
evaluation of multiple queries simultane-
ously can consider investments in addi-
tional access paths, the creation of which
would not be cost effective for a single
query. The few existing approaches to mul-
tiple-query optimization can be classified
in three groups, according to the time scope
for which decisions are made: (1) simulta-
neous optimization of batched queries, (2)
index selection, and (3) physical database
design.

A set of queries submitted by one or more
users at approximately the same time can
be batched for more efficient evaluation
[Shneiderman and Goodman 19761. The
techniques for batched evaluation are sim-
ilar to those described in Section 4.3 for
multivariable expressions. First, results of
common subexpressions can be shared
among queries [Grant and Minker 1981;
Jarke 19841, and subexpressions accessing
the same physical data page can do so with
one secondary storage access. Second, tem-
porary physical access ,paths such as sort-
ing, hashing, or indexes can be provided
whose costs pay off for the batch as a whole.
Finally, results of some queries can be re-
tained for processing subsequent queries
[Finkelstein 1982; Hevner and Yao 19811.
There seems to be no coherent theory in
this area yet. Kim [1981, 19841 and Jarke
[19841 present language constructs andpre-
liminary architectures, and a number of

Computing Surveys, Vol. 16, No. 2, June 1984

138 l M. Jarke and J. Koch

ongoing research projects are described in
IEEE [19821.

Many of the examples in this paper have
demonstrated the importance of using in-
dexes for the performance of query evalua-
tion algorithms. From this viewpoint, in-
dexes can hardly hurt anywhere but are
most profitable if they are very selective
and support access to attributes frequently
referred to in queries [Gilles and Schuster
19751. However, index selection must also
take into account altering transactions be-
cause they must change the index in addi-
tion to the base data. The index selection
problem has been described in several sur-
veys [Batory 19821 and tutorial papers
[March 1983; Putkonen 1979; Schkolnick
1975; Severance and Carlis 19771. Selection
and maintenance of more general indexes
that support user views have been investi-
gated by Roussopoulos [1982a, 1982b]. The
use of high-level language constructs for
extended view concepts has been discussed
by Jarke [1984] and Schmidt [1984].

Finally, query optimization influences
the physical database design. However,
long-term query optimization is only one of
many aspects of physical database design
(see, e.g., Carlis et al. [1981], Carlson and
Kaplan [1976], Schkolnick [1982], and
Teorey and Fry [1982]). Important design
strategies with an impact on query process-
ing efficiency include the horizontal clus-
tering of relation elements by attribute
values [Salton 19781 and the vertical par-
titioning of attributes by frequency of com-
bined access [Hammer and Niamir 19791.

6. NONSTANDARD QUERY OPTIMIZATION

We have described query optimization in
the framework of relational calculus queries
in centralized database systems. While this
approach covers much of the work done in
the area, some query-processing problems
exceed the framework either because of a
query complexity that goes beyond rela-
tional completeness or as a result of the
structure of the underlying physical data-
base. Without claiming completeness, in
the following sections we briefly survey
some important developments. The reader

is referred to the cited literature for further _
details.

6.1 Higher Level Queries

Queries expressed in a relationally com-
plete language retrieve such relation ele-
ments (or sets of elements) from a database
that can be described by a predicate of the
relational calculus. Whereas this method is
sufficient for most transaction-oriented
business applications, certain other appli-
cations may require more complex data ob-
jects or more powerful query predicates.
These requirements can be characterized
as language extensions that yield query lan-
guages more powerful than the relationally
complete ones. Optimization techniques for
such extensions are addressed in this sec-
tion.

Hierarchical and network database sys-
tems support data objects that are more
complex than flat records and thus contain
information-bearing access paths [Astra-
han and Ghosh 19741. Relational interfaces
to such systems therefore require efficient
translation of relational queries to naviga-
tional access programs. (The reverse prob-
lem-program conversion from network
code to relational queries-has also been
studied [Katz and Wong 19821.) Several
approaches have been described: interpre-
tative, translational, and view processing.

Interpretative models (e.g., Zaniolo
[1979]) directly interpret relational queries
as sequences of tuple-at-a-time operations
on a network database. Similarly, direct
translation methods (e.g., Vassiliou and Lo-
chovsky [1980]) frequently do not address
optimization; such methods may yield quite
inefficient code. Dayal and his co-workers
[Dayal et al. 1981; Dayal and Goodman
19821 and Gray [1981, 19841 have devel-
oped query optimization strategies for net-
work databases. Alternatively, one can rep-
resent network structures as relational
views with particular integrity constraints
[Rosenthal and Reiner 19841. In this way,
existing relational view optimization facil-
ities can be used for compiling an efficient
navigational program working on the net-
work database.

Computing Surveys, Vol. 16, No. 2, June 1964

Query Optimization in Database Systems 139

Applications in computer-aided design
and manufacture and text processing usu-
ally work on even more complex objects
composed of related elements from differ-
ent relations. On top of a traditional rela-
tional (or network) database, one can de-
fine structures that allow access to either
the whole object or to part of it, using
multiple views of the data [Johnston et al.
19831. Another approach is an extension of
the relational model by nonfirst normal
form relations [Lamersdorf 1984; Schek
and Pistor 19821. Such extensions support
access to substructures by specialized in-
dexing schemes or use pattern-searching
mechanisms similar to those used in infor-
mation retrieval [Davis and Kunii 19821.
Dayal [1983b] investigates the related
problem of answering queries in generali-
zation hierarchies, which has to take into
account the fact that data objects inherit
properties of more general objects.

A relational calculus query retrieves a set
of data as they come from the database, but
does not support grouping and abstracting
from the stored data to more complex data
objects within the query language. The
grouping of and summarizing over elements
of the same relation by certain so-called
category attributes lies in the domain of
statistical query processing. Some query
languages offer a limited set of built-in
aggregate functions to support such appli-
cations. Aggregate functions can be defined
as extensions to either the relational cal-
culus [Klug 1982a] or the relational algebra
[Ozsoyoglu and Ozsoyoglu 19831, and can
be evaluated by using nested iteration with
indexes as described in Section 4 [Klug
1982131. However, many statistical data-
bases are characterized by high redundancy
and a large percentage of null values.
Therefore the data must be compressed and
stored in ways that differ from standard
relational databases. An overview of these
issues can be found in Shoshani [1982].
Special software [Eggers and Shoshani
19801 and hardware [Bancilhon et al. 1982;
Hawthorn 19821 have been devised for
processing queries on such databases.
Walker [1980] discusses the use of small
abstracted databases in decision support
systems.

Database applications in artificial intel-
ligence, especially expert systems [Nau
19831 and natural language user interfaces
[Marburger and Nebel 1983; Sagalowicz
19771, require inferences to be performed
over the raw data coming from the database
[Buneman 1979; Chang 1979; Minker 1975,
19781. Whereas parts of such an inference
mechanism can be provided by traditional
view mechanisms with some additional op-
timization [Jarke et al. 1984; Ott 1977; Ott
and Horlaender 1982; Paige 19821, more
complex requests-use of recursion, for
example-must be treated in a different
way.

A number of alternative architectures for
coupling expert systems with DBMSs are
presented by Jarke and Vassiliou [19841. A
request to the expert system usually trans-
lates to a sequence of related database calls.
Optimization techniques include the com-
bination of multiple tuple-oriented data-
base calls into set-oriented operations [Ku-
nifuji and Yokota 1982; Vassiliou et al.
19841, the simplification of such retrieval
requests [Grishman 1978; Jarke et al. 1984;
Reiter 19781, the reordering of conditions
to be tested [Warren 1981], and the sharing
of intermediate results [Grant and Minker
19811, which is particularly useful in exe-
cuting recursive database calls [Chang
1978; Henschen and Naqvi 1984; Kellogg
1982; Minker and Nicolas 19831. A tool
often proposed in this context is the logic
programming language Prolog [Kowalski
1981 J. Parsaye [19831 proposes extensions
to Prolog specifically designed for database
and knowledge-base management.

The language extensions presented in
this section can be characterized theoreti-
cally by their expressive power and by
the difficulty of their evaluation. Chandra
and Hare1 [1982a, 1982b] analyze several
classes of higher level query languages, such
as (in order of increasing language power
and computational complexity) first-order
relational calculus queries, Horn clause
queries, fix-point queries, second-order
queries, and general computable queries.
The user of a traditional query language
has to achieve the power of such high-level
languages through the use of general pro-
gramming language constructs in a data-

Computing Surveys, Vol. 16, No. 2, June 1984

140 l M. Jarke and J. Koch

base programming language [Schmidt
19841. The disadvantage of this solution,
besides the increased programming effort,
is that the responsibility for efficient im-
plementation shifts from the database
management system to the user.

0.2 Distributed Databases

In a distributed database fragments of one
logical database (the database as seen by
the user) reside on several physical data-
bases, each accessed by a separate com-
puter. Databases can be distributed for
higher availability of data (through data
replication [Andler et al. 1982]), improved
accessibility by the most frequent users
(through local storage of data [Wong
1983]), and increased execution speed of
queries (through parallel processing of
fragments [Su and Mikkilineni 1982;
Wong and Katz 19831). Examples of dis-
tributed database systems include Distribu-
ted INGRES [Stonebraker and Neuhold
19771, POREL [Neuhold and Biller 19771,
SIRIUS [Esculier and Clorieux 19791,
VDN [Munz 19791, SDD-1 [Bernstein et al.
19811, and R* [Williams et al. 19821.

The fact that data are physically dis-
persed and may be replicated strongly in-
fluences database design [Chen and Akoka
19801, concurrency control [Bernstein and
Goodman 1981c], and query processing.
Rothnie and Goodman [19771 give an over-
view of the major research issues.

If data are distributed, the cost of data
transfer becomes a decision variable rather
than a constant in the query optimization
problem. Since communication costs tend
to dominate local processing costs, query
optimization requires a completely differ-
ent objective function: the minimization of
communication delay, often represented by
the amount of data transmitted from one
site to another.

The primary decision influencing data
transfer is the selection of the site(s) where
comput.ations are performed. The general
strategy is to distribute the evaluation of
the query rather than collect all the data
and execute the query at one site (e.g.,
where the query was issued). The benefits
of this approach have been impressively

demonstrated by Tanenbaum [1981] and
Gavish and Segev [1982]. Within this gen-
eral strategy, the most important tactical
objectives are the maximal reduction of
data to be transmitted by local preprocess-
ing [Forker 19821, and the selection of the
site(s) where the global operations are per-
formed (e.g., Bernstein et al. [1981] and
Ceri and Pelagatti [1982]). If data are rep-
licated, there is a choice of which copy to
use in order to minimize data transfer [Ull-
man 1982; Williams et al. 19821.

A large number of distributed query pro-
cessing strategies have been devised. The
choice among such strategies is influenced
by several factors.

6.2.1 Trade-Off between Communication
and Local Processing Costs

If the communication lines are relatively
slow, communication costs usually domi-
nate the costs of distributed evaluation to
the extent that all other costs become
negligible. Some of the more theoretical
models (e.g., Apers et al. [1983], Hevner
[1979], and Muthuswamy and Kerschberg
[1983]) ignore local processing costs alto-
gether. In practice [Bernstein et al. 1981;
Smith et al. 19811 there will be a two-level
optimization procedure that first plans the
global strategy and then develops an opti-
mal subquery evaluation plan for each local
site.

As the communication speed increases,
local processing costs have to be taken into
account [Chu and Hurley 1982; Gouda and
Dayal 19811: No longer can an arbitrary
amount of local preprocessing be justified
to reduce data transfer between sites.
Kerschberg et al. [1982] report experience
with a two-computer network that demon-
strates the relative importance of local
processing. Of course, simultaneous min-
imization of data transfer and local pro-
cessing increases the number of alterna-
tives to be compared considerably since the
problem no longer can be decomposed into
a hierarchy of independent subproblems.

6.2.2 Network Structure

The topology of the computer network on
which the distributed database is imple-

Computing Surveys, Vol. 16, No. 2, June 1964

Query Optimization in Database Systems l 141

mented has an impact on the complexity of
query optimization. In networks with arbi-
trary message routing, queuing delays at
intermediate nodes play an important role
[Muthuswamy and Kerschberg 1983; Tan-
enbaum 19811. However, they can be con-
sidered only within a global optimization of
all network traffic. To avoid this compli-
cation, many optimization algorithms (e.g.,
Hevner and Yao [19’79]) assume a fully
connected network with node-independent
communication delays. Another simple
structure is a star computer network
[Kerschberg et al. 19821, in which a major
central processor is connected to several
(usually smaller) local processors.

The network structure can be homoge-
neous (i.e., it can consist of processors of
the same type) or heterogeneous. For a
homogeneous network (equal processor
speed, processor-independent linear com-
munication costs), Chu and Hurley [1982]
have proved a number of theorems, the
application of which restricts the search
space for optimal solutions. For instance,
the local preprocessing of monadic opera-
tions (restriction, projection) is shown to
be globally optimal under these assump-
tions. Even within a homogeneous com-
puter network, a heterogeneous distributed
database may exist if the local databases
work on different data models or DBMS
[Chan et al. 1983; Smith et al. 19811.

6.2.3 Data Distribution Strategy

A relation can be physically partitioned
horizontally (the set of tuples is divided
into subsets according to the pattern of
local reference), vertically (the set of attri-
butes is partitioned according to different
applications at different locations), or into
arbitrary fragments, with or without over-
lap among them [Mahmoud et al. 19791.

Gavish and Segev [1983] describe an al-
gorithm for optimizing set operations in
horizontally partitioned relational data-
bases. The problem is proven to be com-
putationally untractable, and heuristics for
its solution are developed. Ullman [1982]
describes the use of “guard conditions” for
simplifying queries on horizontally distrib-
uted databases by identifying the relevant

fragments. Work on general nondisjoint
fragments has just begun [Maier and Ull-
man 19831.

The main focus of the existing literature
is on vertically distributed databases. In
this case, restriction and projection can be
performed locally; research has therefore
concentrated on the optimal implementa-
tion and scheduling of joins and other mul-
tirelation operations. The main tool used
in this context is the semijohn operation
described in Section 4.3. As discussed, tree
queries can be completely solved by using
semijoins. For the special case of chain
queries, an efficient algorithm exists that
computes the optimal semijoin schedule
when the reduction factors of each semijoin
are known [Chiu et al. 19811. Similar algo-
rithms for general tree queries are given by
Chiu and Ho [1980] and Gouda and Dayal
[19811. However, owing to the computa-
tional complexity of exact methods, heuris-
tic procedures are normally preferred
[Bernstein et al. 1981; Chang 1982; Cheung
1982a; Yu and Chang 19831.

Some early algorithms do not use semi-
joins. Wong [1977] employs a hill-climbing
procedure to improve incrementally on an
initial solution that processes the complete
query ‘at one site. Epstein et al. [1978]
present a model for minimizing processing
time or network traffic separately for each
operation in a query. No global optimality
is guaranteed. The optimization algorithm
for R* (a distributed extension of System
R [Williams et al. 19821) performs an ex-
haustive search over combinations of sev-
eral alternative join strategies in multijoin
queries. Within its search space and the
limits of data estimation, an optimal solu-
tion is found [Daniels 1982; Daniels et al.
1982; Ng 1982; Selinger and Adiba 19701.

As in the centralized case, many distrib-
uted query evaluation algorithms have been
criticized for either assuming too much sta-
tistical information to be practical or for
making unrealistic simplifications. Mu-
thuswamy and Kerschberg [1983] describe
a procedure for obtaining detailed database
statistics by observing database usage.

The computational complexity of the dis-
tributed query optimization problem has

Computing Surveys, Vol. 16, No. 2, June 1964

142 l M. Jarke and J. Koch

lead to the same phenomenon that we ob-
served for centralized queries: One group of
researchers is looking for optimal solutions
in special cases, while another employs gen-
eral heuristics in order to be able to answer
all queries. If one plans to implement a
distributed DBMS, the challenge is to com-
bine both approaches in a homogeneous
way. A good example of such a comprehen-
sive strategy, which includes the efficient
handling of fragments, data replication,
and dynamic access plans (avoiding some
of the aforementioned pitfalls of compli-
cated statistical estimates), is given by Yu
and Chang [19831.

0.3 Database Machines

The use of database machines is motivated
primarily by the goal of relieving a general-
purpose host computer from the burden of
database processing so that overall system
performance may be improved. Off-load-
ing DBMS functionality from the host
to a back-end database machine can be
achieved with a software-oriented or hard-
ware-oriented approach.

In the software backend approach (sur-
veyed, e.g., by Maryanski [1980]), the da-
tabase-together with DBMS software-is
transferred to a standby general-purpose
computer. The software back end com-
pletely processes each database request,
thus enabling the host to execute nonda-
tabase tasks in parallel. Another attractive
property of the approach is the reasonable
cost of conventional computers. For very
database-intensive applications, however,
the software back-end approach does not
seem to be appropriate. In these situations,
the back-end computer itself becomes the
system bottleneck since it has the same
limitations as a general-purpose host. Over-
all performance may be even worse than in
a host-only configuration because of the
additional interprocessor communication
requirements.

In such a case, a hardware backend ap-
proach (surveyed, e.g., by Hsiao [1979] and
Langdon [19791) could be chosen. From the
viewpoint of query optimization, hardware
back ends can be used to support important
optimization strategies, such as early eval-

uation of restrictive operations and parallel
processing, by placing on-board logic as
close as possible to the base data and divid-
ing labor among existing hardware compo-
nents.

In general, a hardware back end consists
of a set of cooperating special-purpose proc-
essors. A wide bandwidth of architectural
alternatives exists, ranging from the asso-
ciation of identical processors with disjoint
fragments of the database to the assign-
ment of specific processors to different
DBMS functions; these assignments can be
made either statically or dynamically.

The so-called “cellular logic” [Su 19791
is characterized by the fragmentation of the
database (e.g., residing on a disk) into
equal-sized cells (e.g., disk tracks), each of
which is associated with a special-purpose
processor. Usually, these processors have
an identical repertoire and are connected
with a master processor controlling the
concurrent operations of its slaves. Various
cellular logic prototypes, such as CASSM
[Su and Lipkovsky 19751, RAP [Ozkarahan
19821, and RARES [Lin et al. 19761, have
received wide attention.

Some designs of database machines have
also experimented with associative arrays
[Berra and Oliver 19791. However, owing
to their relatively high cost and limited
capacity, they do not constitute a realistic
solution for the permanent storage of entire
databases. Associative arrays therefore are
usually proposed to be used as staging de-
vices for relatively inexpensive mass stor-
age devices.

The specialization of processors to spe-
cific DBMS functions has been realized in
a number of database machine architec-
tures. Specific cost models [Bernadat 19831
and optimization algorithms [Valduriez
and Gardarin 19841 have been developed.
In the DBC [Banerjee and Hsiao 19791,
access control, directory maintenance, and
query processing are performed by different
computers. The dynamic assignment of sin-
gle processors to query-processing tasks,
such as the evaluation of distinct subquer-
ies, has been pursued in DIRECT [Dewitt
19791, as well as the search processor of the
Technical University of Braunschweig
[Leilich et al. 19781. More recently, LSI

Computing Surveys, Vol. 16, No. 2, June 1964

Query Optimization in Database Systems 143

and VLSI technology have been explored
for the purposes of close integration of data
storage and query-processing capabilities,
as well as hardware implementations of
language constructs usually available in
high-level query languages [Kim et al. 1981;
Menon and Hsiao 19811.

7. SUMMARY

An overview of logical transformation tech-
niques and physical evaluation methods for
database queries was given, using the
framework of the relational calculus. It was
shown that a large body of knowledge has
been developed to solve the problem of
processing queries efficiently in conven-
tional centralized and distributed database
systems.

Query optimization research is still an
active field. Promising directions include
the development of simple yet realistic cost
estimates, the optimization of queries on
databases with deductive or computational
capabilities, and the simultaneous optimi-
zation of multiple queries and update trans-
actions. Other interesting areas only briefly
addressed in this survey are query optimi-
zation in database systems that utilize more
advanced access paths, such as multiple-
attribute indexes or database machines,
and query optimization in systems that
work on the complex data structures re-
quired for artificial intelligence, office, sta-
tistical, decision support, or computer-
aided design and manufacture applications.

ACKNOWLEDGMENTS

The work of Matthias Jarke was supported in part by
a joint study with the IBM Corporation. The work of
Jiirgen Koch was supported in part by the Deutsche
Forschungsgemeinechaft under Grant SCHM450/2-1
(principal investigator: J. W. Schmidt). The authors
are grateful to Joachim Schmidt and Arnie Rosenthal
for many discussions and suggestions, and to the ref-
erees and editors for helpful comments on the pres-
entation of this material.

REFERENCES

AHO, A. V., BEERI, C., AND ULLMAN, J. D. 1979a.
The theory of joins in relational databases. ACM
Trans. Database Syst. 4, 3 (Sept.), 297-314.

AHO, A. V., SAGIV, Y., AND ULLMAN, J. D. 1979b.
Efficient optimization of a class of relational

expressions. ACM Trans. Database Syst. 4, 4
(Dec.), 435-454.

AHO, A. V., SAGIV, Y., AND ULLMAN, J. D. 1979c.
Equivalences among relational expressions.
SIAM J. Comput. 8, 2,218-246.

ANDLER, S., DING, I., ESWARAN, K., HAUSER, C.,
KIM, W., MEHL, J., AND WILLIAMS, R. 1982.
System D: A distributed system for availability.
In Proceedings of the 8th International Conference
on Very Large Data Bases (Mexico City). VLDB
Endowment, Saratoga, Calif., pp. 33-44.

APERS, P. M. G., HEVNER, A. R., AND YAO, S. B.
1983. Optimization algorithms for distributed
queries. IEEE Trans. Softw. Eng. SE-g, 1,5768.

ASTRAHAN, M. M., AND CHAMBERLIN, D. D. 1975.
Implementation of a structured English query
language. Commun. ACM 18, 10 (Oct.), 580-588.

ASTRAHAN, M. M., AND GHOSH, S. P. 1974. A search
path selection algorithm for the Data Independ-
ent Accessing Model (DIAM). In Proceedings of
the ACM-SZGMOD Workshop on Data Descrip-
tion, Access and Control (Ann Arbor, Mich., May
l-3). ACM, New York, pp. 367-388.

ASTRAHAN, M. M., SCHKOLNICK, M., AND KIM, W.
1980. Performance of the System R access path
selection algorithm. In Information Processing 80.
Elsevier North-Holland, New York, pp. 487-491.

BANCILHON, F., RICHARD, P., AND SCHOLL, M. 1982.
On line processing of compacted relations. In
Proceedings of the 8th International Conference
on Very Large Data Bases (Mexico City). VLDB
Endowment, Saratoga, Calif., pp. 263-269.

BANERJEE, J., AND HSIAO, D. K. 1979. DBC-A
database computer for very large databases.
IEEE Trans. Comput. C-28,6,414-429.

BATORY, D. S. 1982. Index selection. In Principles of
Database Design, S. B. Yao, Ed. Springer, New
York.

BAYER, R., AND MCCREIGHT, E. 1972. Organization
and maintenance of large ordered indexes. Acta
Znf. 1, 173-189.

BAYER, R., ELHARDT, K., KIESSLING, W., AND KIL-
LAR, D. 1984. Verteilte Datenbanksysteme. Znf.
Spektrum 7, 1, 1-19.

BENTLEY, J. L., AND FRIEDMAN, J. H. 1979. Data
structures for range searching. ACM Comput.
Sum. 11, 4 (Dec.), 397-409.

BERNADAT, P. 1983. Decomposition et evaluation de
questions dans une machine base de don&es
relationnelles. These IIIme cycle, Department
d’Informatique, Universite de Paris VI, Paris,
France.

BERNSTEIN, P. A., AND CHIU, D. M. W. 1981. Using
semi-joins to solve relational queries. J. ACM 28,
1 (Jan.), 25-40.

BERNSTEIN, P. A., AND GOODMAN, N. 1981a. The
power of natural semijoins. SIAM J. Comput. 10,
4,751-771.

BERNSTEIN, P. A., AND GOODMAN, N. 1981b. The
power of inequality semijoins. Znf. Syst. 6,4,255-
265.

Computing Surveys, Vol. 16, No. 2, June 1984

144 l M. Jarke and J. Koch

BERNSTEIN, P. A., AND GOODMAN, N. 1981c.
Concurrency control in distributed database sys-
tems. ACM Comput. Surv. 13, 2 (June), 185-221.

BERNSTEIN, P. A., BLAUSTEIN, B. T., AND CLARKE,
E. M. 1980. Fast maintenance of semantic in-
tegrity assertions using redundant aggregate data.
In Proceedings of the 6th International Conference
on Very Large Data Bases (Montreal, Oct. l-3).
IEEE, New York, pp. 126-136.

BERNSTEIN, P. A., GOODMAN, N., WONG, E., REEVE,
C. L., AND ROTHNIE, J. B., JR. 1981. Query
processing in a system for distributed databases
(SDD-1). ACM Trans. Database Syst. 6, 4 (Dec.),
602-625.

BERRA, B., AND OLIVER, E. 1979. The role of asso-
ciative array processors in database machine ar-
chitectures. IEEE Comput. 12, 3, 53-61.

BITTON, D., BORAL, H., DEWI~, D., AND WILKIN-
SON, W. K. 1983. Parallel algorithms for the
execution of relational database operations. ACM
Trans. Database Syst. 8, 3 (Sept.), 324-353.

BLASGEN, M. W., AND ESWARAN, K. P. 1976. On
the evaluation of queries in a relational data base
system. IBM Res. Rep. RJ 1745, IBM Research
Laboratories, San Jose, Calif.

BLASGEN, M. W., AND ESWARAN, K. P. 1977.
Storage and access in relational databases. IBM
Syst. J. 16, 363-377.

BOLOUR, A. 1981. Optimal retrieval for small range
queries. SIAM J. Comput. 10, 4, 721-741.

BREITBART, Y., AND REITER, A. 1975. Algorithms
for fast evaluation of Boolean expressions. Acta
Znf 4, 107-116.

BRODIE, M., MYLO~OULOS, J., AND SCHMIDT, J. W.,
Eds. 1984. On Conceptual ModelZing. Perspec-
tives from Artificial Intelligence, Databases, and
Programming Languages. Springer, New York.

BUNEMAN, P. 1979. The problem of multiple paths
in a database schema. In Proceedings of the 5th
International Conference on Very Large Data
Bases (Rio de Janeiro, Oct. 3-5). IEEE, New
York, pp. 368-372.

CARDENAS, A. F. 1975. Analysis end performance of
inverted data base structures. Commun. ACM 18,
5 (May), 253-263.

CARLIS, J. V., MARCH, S. T., AND DICKSON, G. W.
1981. Physical database design: A DSS ap-
proach. In Proceedings of the 2nd International
Conference on Information Systems (Boston,
Mass.). ACM, New York, pp. 153-172.

CARLSON, C. R., AND KAPLAN, R. S. 1976. A gener-
alized access path model and its application to a
relational data base system. In Proceedings of the
ACM-SZGMOD International Conference on
Management of Data (Washington, D.C., June 2-
4). ACM, New York, pp. 143-154.

CERI, S., AND PELAGA~I, G. 1982. Allocation of
operations in distributed database access. IEEE
Trans. Comput. C-31, 2,119-128.

CHAMBERLIN, D. D., ASTRAHAN, M. M., KING, W. F.,
LORIE, R. A., MEHL, J. W., PRICE, T. G.,

SCHKOLNICK, M., SELINGER, P. G., SLUTZ, D.
R.. WADE. B. W.. AND YOST, R. A. 1981.
Support for repetitive transactions and ad hoc
queries in System R. ACM Trans. Database Syst.
6, 1 (Mar.), 70-94.

CHAN, A., AND NIAMIR, B. 1982. On estimating cost
of accessing records in blocked database organi-
zations. Comput. J. 25, 3, 368-374.

CHAN, A., DAYAL, U., Fox, S., GOODMAN, N., RIES,
D. D., AND SKEEN, D. 1983. Overview of an Ada
compatible distributed database manager. In
SZGMOD 83, Proceedings of the Annual Meeting
(San Jose, Calif., May 23-26). ACM, New York,
pp. 228-237.

CHANDRA, A. K., AND HAREL, D. 1982a. Structure
and complexity of relational queries. J. Comput.
Syst. Sci. 25, 99-128.

CHANDRA, A. K., AND HAREL, D. 1982b. Horn
clauses and the fixpoint query hierarchy. In Pro-
ceedings of the ACM Symposium on Principles of
Database Systems (Los Angeles, Calif., Mar. 29-
31). ACM, New York, pp. 158-163.

CHANDRA, A. K., AND MERLIN, P. M. 1977. Optimal
implementation of conjunctive queries in rela-
tional data bases. In Proceedings of the 9th An-
nual ACM Symposium on Theory of Computation
(Boulder, Colo., May 24). ACM, New York, pp.
77-90.

CHANG, C. L. 1978. DEDUCE 2: Further investiga-
tions of deduction in relational databases. In
Logic and Databases, H. Gallaire and J. Minker,
Eds. Plenum, New York, pp. 210-236.

CHANG, C. L. 1979. On evaluation of queries con-
taining derived relations in a relational data base.
IBM Res. Rep. RJ2667, IBM Research Labora-
tories, San Jose, Calif.

CHANG, J.-M. 1982. A heuristic approach to distrib-
uted query processing. In Proceedings of the 8th
Znternational Conference on Very Large Data
Bases (Mexico City). VLDB Endowment, Sara-
toga, Calif., pp. 54-61.

CHEN, P. P. S., AND AKOKA, J. 1980. Optimal design
of distributed information systems. IEEE Trans.
Comput. C-29, 12,1068-1080.

CHESNAIS, A., GELENBE, E., AND MITRANI, I. 1983.
On the modeling of parallel access to shared data.
Commun. ACM 26.3 (Mar.), 196-202.

CHEUNG, T.-Y. 1982a. A method for equijoin queries
in distributed relational databases. IEEE Trans.
Comput. C-31,8, 746-751.

CHEUNG, T.-Y. 1982b. Estimating block accesses
and number of records in file management. Com-
mun. ACM 25, 7 (July), 484-487.

CHIU, D. M., AND Ho, Y. C. 1980. A methodology
for interpreting tree queries into optimal semi-
join expressions. In Proceedings of the ACM-
SZGMOD Znternational Conference on Manage-
ment of Data (Santa Monica, Calif., May 14-16).
ACM, New York, pp. 169-178.

CHIU, D. M., BERNSTEIN, P. A., AND Ho, Y. C.
1981. Optimizing chain queries in a distributed
database system. Tech. Rep. TR-01-81, Computer

Computing Surveys, Vol. 16, No. 2, June 1984

Query Optimization in Database Systems l 145

Science Dept., Harvard University, Cambridge,
Mass.

CHRISTODOULAKIS, S. 1981. Estimating selectivities
in data bases. Tech. Rep. CSRG-136, Computer
Science Dept., University of Toronto, Toronto,
Canada.

CHRISTODOULAKIS, S. 1983. Estimating block trans-

CCAdl-11, Computer Corporation of America,
Cambridge, Mass.

DEMOLOMBE, R. 1980. Estimation of the number of
tuples satisfying a query expressed in predicate

fers and join sizes. In SIGMOD 83, Proceedings
of the Annual Meeting (San Jose. Calif., Mav 23-
26). ACM, New York: pp. 40-54.’ -

CHU, W. W., AND HURLEY, P. 1982. Optimal query
processing for distributed database systems.
IEEE Trans. Comput. C-31,9,835-850.

CLAUSEN, S. E. 1980. Optimizing the evaluation of
calculus expressions in a relational database sys-
tem. Znf. Syst. 5, 1,41-54.

CODD, E. F. 1971. A database sublanguage founded
on the relational calculus. In Proceedings of the
ACM-SIGFIDET Workshop, Data Description,
Access, and Control (San Diego, Calif., Nov. ll-
12). ACM, New York, pp. 35-68.

CODD, E. F. 1972. Relational completeness of data
base sublanguages. In Courant Computer Science
Symposia No. 6: Data Base Systems. Prentice-
Hall, New York, pp. 67-101.

DANIELS, D. 1982. Query compilation in a distrib-
uted database system. IBM Res. Rep. RJ3423,
IBM Research Laborator+, San Jose, Calif.

DANIELS, D., SELINGER, S., HAAS, L., LINDSAY, B.,
MOHAN, C., WALKER, A., AND WILMS, P.
1982. An introduction to distributed query com-
Dilation in R*. In Proceedings of the 2nd Svmpos-
iurn on Distributed Databask iBerlin, FRG): El-
sevier North-Holland, New York.

DAVIS, H. W., AND WINSLOW, L. E. 1982.
Computational power in query languages. SIAM
J. Comput. 11, 3,547-554.

DAVIS, L. S., AND KUNII, T. L. 1982. Pattern data-
bases. In Data Base Design Technioues II, S. B.
Yao and T. L. Kunii, Ed;. Springer, New’ York,
pp. 357-399.

DAYAL, U. 1983a. Evaluating queries with quanti-
fiers: A horticultural approach. In Proceedings of
the ACM Symposium on Principles of Database
Systems (Atlanta, Ga.). ACM, -New. York, pp.
125-136.

DAYAL, U. 1983b. Processing queries over generali-
zation hierarchies in a multi-database system. In
Proceedings of the 9th International Conference
on Very Large Data Bases (Florence, Italy).
VLDB Endowment, Saratoga, Calif., pp. 342-353.

DAYAL, U., AND GOODMAN, N. 1982. Query optimi-
zation for CODASYL database systems. In Pro-
ceedings of the ACM-SZGMOD International
Conference on Management of Data (Orlando,
Fla., June 2-4). ACM, New York, pp. 138-150.

DAYAL, U., GOODMAN, N., LANDERS, T. A., OLSON,
K.. SMITH. J. M.. AND YEDWAB. L. 1981. Local
query optimization in Multibase-A system for
heterogeneous distributed databases. Tech. Rep.

calculus language. In Proceedings of thesth Con-
ference on Very Large Data Bases (Montreal, Oct.
i-3). IEEE, New York, pp. 55-63:

DEWITT, D. J. 1979. Query execution in DIRECT.
In Proceedings of the ACM-SZGMOD Znterna-
tional Conference on Management of Data (Bos-
ton, Mass., May 30June 1). ACM, New York,
pp. 13-22.

DOWNEY, P. J., SETHI, R., AND TARJAN, R. E.
1980. Variations on the common subexpression
problem. J. ACM 27, 4 (Oct.), 758-771.

ECGERS, S. J., AND SHOSHANI, A. 1980. Efficient
access of compressed data. In Proceedings of the
6th Zntemational Conference on Very Large Data
Bases (Montreal, Oct. l-3). IEEE, New York, pp.
205-211.

EPSTEIN, R., AND STONEBRAKER, M. 1980. Analysis
of distributed data base processing strategies. In
Proceedings of the 6th International Conference
on Very Large Data Bases (Montreal, Oct. l-3).
IEEE, New York, pp. 92-101.

EPSTEIN, R., STONEBRAKER, M., AND WONG, E.
1978. Distributed query processing in a rela-
tional data base system. In Proceedings of the
ACM-SZGMOD Znternational Conference on
Management of Data (Austin, Tex., May Bl-June
2). ACM, New York, pp. 169-180.

ESCULIER, C., AND CLORIEUX, A. M. 1979. The SIR-
IUS-DELTA distributed DBMS. In Proceedings
of the International Conference on Entity-Rela-
tiomhb Aonroach. P. Chen. Ed. Elsevier North-
Holland, New York, pp. 543-551.

ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND
TRAIGER, I. L. 1976. The notions of consistency
and predicate locks in a database system. Com-
mun. ACM 19, 11 (Nov.), 624-633.

FINKELSTEIN, S. 1982. Common expression analysis
in database applications. In Proceedings of the
ACM-SZGMOD International Conference on
Management of Data (Orlando, Fla., June 2-4).
ACM, New York, pp. 235-245.

FORKER, H. J. 1982. Algebraical and operational
methods for the optimization of query processing
in distributed relational database management
systems. In Proceedings of the 2nd International
Symposium on Distributed Databases (Berlin,
FRG). Elsevier North-Holland, New York, pp.
39-59.

GARDARIN, G., VALDURIEZ, P., AND VIEMONT, Y.
1984. Predicate trees: An approach to optimize
relational query operations. In Proceedings of the
IEEE COMPDEC Conference (Los Angeles,
Calif.). IEEE, New York.

GAVISH, B., AND SEGEV, A. 1982. Query optimization
in distributed computer systems. In Management
of Distributed Data Processing, J. Akoka, Ed.
Elsevier North-Holland, New York, pp. 233-252.

Computing Surveys, Vol. 16, No. 2, June 1984

146 . M. Jarke and J. Koch

GAVISH, B., AND SEGEV, A. 1983. Set query optimi-
zation in horizontally partitioned distributed da-
tabases. Working Paper QM8304, Graduate
School of Management, University of Rochester,
Rochester, N.Y.

GELENBE, E., AND GARDY, D. 1982. The size of
projections of relations satisfying a functional
dependency. In Proceedings of the 8th Intema-
tional Conference on Very Large Data Bases
(Mexico City). VLDB Endowment, Saratoga,
Cahf., pp. 325-333.

GILLES, J. H., AND SCHUSTER, S. A. 1975. Query
execution and index selection for relational data
bases. Tech. Rep. CSRG-53, Computer Science
Dept., University of Toronto, Toronto, Ontario.

GOODMAN, N., AND SHMUELI, 0. 1980. Nonreduc-
ible database states for cyclic queries. Tech. Rep.
TR-15-80, Computer Science Dept., Harvard
University, Cambridge, Mass.

GOODMAN, N., AND SHMUELI, 0.1982. Tree queries:
A simple class of relational queries. ACM Trans.
Database Syst. 7,4 (Dec.), 653-677.

GOTLIEB, L. R. 1975. Computing joins of relations.
In Proceedings of the ACM-SZGMOD Znterna-
tional Confer&& on Management of Data (San
Jose, Calif., May 14-16). ACM, New York, pp.
55-63.

GOUDA, M. G., AND DAYAL, U. 1981. Optimal semi-
join schedules for query processing in local dis-
tributed database systems. In Proceedings of the
ACM-SZGMOD International Conference on
Management of Data (Ann Arbor, M&h., Apr. 29-
May 1). ACM, New York, pp. 164-175.

GRANT, J., AND MINKER, J. 1981. Optimization in
deductive and conventional relational database
systems. In Advances in Database Theory, H.
Gallaire. J. Minker. and J.-M. Nicolas. Eds.
Plenum; New York, pp. 195-234. ’

GRAY, P. M.D. 1981. Use of automatic programming
and simulation to facilitate operations on CO-
DASYL databases. In Database, M. P. Atkinson,
Ed. Pergamon Infotech, London, pp. 315-369.

GRAY, P. M. D. 1984. Implementing the join opera-
tion on CODASYL DBMS. In Databases: Role
and Structure, P. M. Stocker, Ed. Cambridge
University Press, Cambridge, England.

GRIES, D. 1971. Compiler Construction for Digital
Computers. Wiley, New York.

GRIFFETH, N. D. 1978. Nonprocedural query proc-
essing for databases with access paths. In Pro-
ceedings of the ACM-SZGMOD International
Conference on Management of Data (Austin, Tex.,
May 31-June 2). ACM, New York, pp. 160-168.

GRIFFITHS, P. G., AND WADE, B. W. 1976. An au-
thorization mechanism for a relational database
system. ACM Trans. Database Syst. 1, 3 (Sept.),
242-255.

GRISHMAN, R. 1978. The simplification of retrieval
requests generated by question-answering sys-
tems. In Proceedings of the 4th International Con-
ference on Very Large Data Bases (West Berlin,

FRG, Sept. 13-15). IEEE, New York, pp. 400-
406.

GUDES, E., AND REITER, A. 1973. On evaluating
Boolean expressions. Softw. Pratt. Exper. 3, 345-
350.

HALL, P. A. V. 1974. Common subexpression iden-
tification in general algebraic systems. Tech. Rep.
UKSC 0060. IBM UK Scientific Center. Peterlee.
England.

HALL, P. A. V. 1976. Optimization of single expres-
sions in a relational data base system. IBM J.
Res. Devel. 20, 3, 244-257.

HAMMER, M., AND NIAMIR, B. 1979. A heuristic
approach to attribute partitioning. In Proceedings
of the ACM-SIGMOD International Conference
on Management of Data (Boston, Mass., May 30-
June 1). ACM, New York, pp. 93-101.

HAMMER, M., AND ZDONIK, S. B., JR. 1980.
Knowledge-based query processing. In Proceed-
ings of the 6th Znternational Conference on Very
Large Data Bases (Montreal, Oct. l-3). IEEE,
New York, pp. 137-147.

HANANI, M. Z. 1977. An optimal evaluation of Boo-
lean expressions in an online query system. Com-
mun. ACM 20, 5 (May), 344-347.

HAWTHORN, P. 1982. Microprocessor assisted tuple
access, decompression, and assembly for statisti-
cal database systems. In Proceedings of the 8th
International Conference on Very Large Data
Bases (Mexico Citv). VLDB Endowment. Sara-
toga, Calif., pp. 223-233.

HENSCHEN, L. J., AND NAQVI, S. A. 1984. On com-
piling queries in recursive first-order databases.
J. ACM 31, 1 (Jan.), 47-85.

HEVNER, A. R. 1979. The optimization of query
processing on distributed database systems.
Ph.D. dissertation. Comnuter Science Dent.. Pur-
due University, West Lafayette, Ind. - ’

HEVNER, A. R., AND YAO, S. B. 1979. Query proc-
essing on a distributed database. IEEE Trans.
Softw. Eng. SE-5, 3, 177-187.

HEVNER, A. R., AND YAO, S. B. 1981. Transaction
optimization on a distributed database system.
Tech. Rep. HR-81-257, Honeywell Corporate
Computer Center, Bloomington, Minn.

HSIAO, D. K. 1979. Database machines are coming,
database machines are coming. IEEE Comput.
12, 3, 7-9.

IBM CORPORATION 1966. Introduction to IBM di-
rect-access storage devices and organization
methods. Programming manual GC 20-1649-06,

IEEE 1982. Special issue on query optimization. IEEE
Database Eng. 5, 3 (Sept.).

JARKE, M. 1984. Common subexpression isolation in
multiple query optimization. In Query Processing
in Database Systems, W. Kim, D. Reiner, and D.
Batory, Eds. Springer, New York.

JARKE, M., AND KOCH, J. 1983. Range nesting: A
fast method to evaluate quantified queries. In
SIGMOD 83, Proceedings of Annual Meeting (San

Computing Surveys, Vol. 16, No. 2, June 1964

Query Optimization in Database Systems 147

Jose, Calif., May 23-26). ACM, New York, pp.
196-206.

JARKE, M., AND SCHMIDT, J. W. 1981. Evaluation
of first-order relational expressions. Tech. Rep.
78, Fachbereich Informatik, Universitaet Ham-
burg, Hamburg, FRG.

JARKE, M., AND SCHMIDT, J. W. 1982. Query proc-
essing strategies in the PASCAL/R relational
database management system. In Proceedings of
the ACM-SZGMOD International Conference on
Management of Data (Orlando, Fla., June 2-4).
ACM, New York, pp. 256-264.

JARKE, M., AND VASSILIOU, Y. 1984. Coupling ex-
pert systems with database management systems.
In Artificial Intelligence Applications for Business,
W. Reitman, Ed. Ablex, Norwood, N.J., pp. 6%
85.

JARKE, M., CLIFFORD, J., AND VASSILIOU, Y. 1984.
An optimizing Prolog front-end to a relational
query system. In SZGMOD 84, Proceedings of
Annual Meeting (Boston, Mass., June 18-21).
ACM, New York, pp. 296-306.

JOHNSON, D. S., AND KLUG, A. 1982. Testing con-
tainment of conjunctive queries under functional
and inclusion dependencies. In Proceedings of the
ACM Symposium on Principles of Database Sys-
tems (Los Angeles, Calif., Mar. 29-31). ACM,
New York, pp. 164-169.

JOHNSON, D. S., AND KLUG, A. 1983. Optimizing
conjunctive queries that contain untyped varia-
bles. SIAM J. Comput. 12, 4, 616640.

JOHNSTON, H. R., SCHWEITZER, J. E., AND WARKEN-
TINE, E. R. 1983. A DBMS facility for handling
structured engineering entities. In Proceedings of
the Database Week Engineering Design Applica-
tions Conference (San Jose, Calif.). ACM, New
York, pp. 3-12.

KAMBAYASHI, Y., AND YOSHIKAWA, M. 1983. Query
processing utilizing dependencies and horizontal
decompo&ion. In SZG%fOD 8.3 Proceedings of the
Annual Meetine (San Jose. Calif.. Mav 23-26).
ACM, New York,pp. 55-67. -

KAMBAYASHI, Y., YOSHIKAWA, M., AND YAJIMA, S.
1982. Query processing for distributed data-
bases using generalized semi-joins. In Proceedings
of the ACM-SZGMOD International Conference
on Management of Data (Orlando, Fla., June 2-
4). ACM, New York, pp. 151-160.

KATZ, R. H., AND WONG, E. 1982. Decompiling CO-
DASYL DML into relational queries. ACM
Trans. Database Syst. 7, 1 (Mar.), l-23.

KELLOGG, C. 1982. A practical amalgam of knowl-
edge and data base technology. InProceedings of
the National Conference on Artificial Intelligence
(Pittsburgh, Pa.): AAAI, Menlo Park, Calif,

KERSCHBERG, L., TING, P. D., AND YAO, S. B.
1982. Query optimization in star computer net-
works. ACM Trans. Database Syst. 7, 4 (Dec.),
678-711.

KIM, W. 1980. A new way to compute the product
and join of relations. In Proceedings of the ACM-
SZGMOD Znternatianal Conference on Manage-

ment of Data (Santa Monica, (Calif., May 14-16).
ACM, New York, pp. 179-187.

KIM, W. 1981. Query optimization for relational da-
tabase systems. IBM Res. Rep. RJ3081, IBM
Research Laboratories, San Jose, Calif.

KIM, W. 1982. On optimizing an SQL-like nested
query. ACM Trans. Database Syst. 7, 3 (Sept.),
pp. 443-469.

KIM, W. 1984. Global optimization of relational
queries: A first step. In Query Processing in Da-
tabase Systems, W. Kim, D. Reiner, and D. Ba-
tory, Eds. Springer, New York.

KIM, W., KUCK, D. J., AND GARSKI, D. 1981. A bit-
serial/tuple-parallel relational query processor.
IBM Res. Rep. RJ3194, IBM Research Labora-
tories, San Jose, Calif.

KING, J. J. 1979. Exploring the use of domain knowl-
edge for query processing efficiency. Tech. Rep.
STAN-CS-79-781, Computer Science Dept.,
Stanford University, Stanford, Calif.

KING, J. J. 1981. QUIST: A system for semantic
query optimization in relational databases. In
Proceedings of the 7th International Conference
on Very Large Data Bases (Cannes, Sept. 9-11).
IEEE, New York, pp. 510-517.

KLUG, A. 1980. Calculating constraints on relational
expressions. ACM Trans. Database Syst. 5, 3
(Sept.), 260-290.

KLUG, A. 1982a. Equivalence of relational algebra
and relational calculus query languages having
aggregate functions. J. ACM 29, 3 (July), 699-
717.

KLUG, A. 1982b. Access paths in the “ABE” statis-
tical query facility. In Proceedings of the ACM-
SZGMOD International Conference on Manage-
ment of Data (Orlando, Fla., June 2-4). ACM,
New York, pp. 161-173.

KLUG, A. 1983. Locking expressions for increased
database concurrency. J. ACM 30, 1 (Jan.), 36-
54.

KOCH, J., SCHMIDT, J. W., AND WUNDERLICH, V.
1981. Type derivation for first-order relational
expressions. Tech. Rep. no. 79, Fachbereich In-
formatik, Universitiit Hamburg, Hamburg, FRG.

KOWALSKI, R. 1981. Logic as a database language.
Unpublished manuscript, Computer Science
Dept., Imperial College, London.

KUNIFUJI, S., AND YOKOTA, H. 1982. Prolog and
relational databases for Fifth Generation Com-
puter Systems. In Proceedings of the Workshop
on Loeical Bases for Data Bases (Toulouse,
France?. ONERA-CERT, Toulouse, France.

LAMERSDORF, W. 1984. Recursive data models for
non-conventional database applications. In Pro-
ceedings of the IEEE COMPDEC Conference (Los
Angeles, Calif.). IEEE, New York.

LANG, T., WOOD, C., AND FERN~NDEZ, I. B. 1977.
Database buffer paging in virtual storage systems.
ACM Trans. Database Syst. 2, 4 (Dec.), 339-351.

LANGDON, G. G. 1979. Database machines: an intro-
duction. IEEE Trans. Comput. C-28,6,381-383.

Computing Surveys, Vol. 16, No. 2, June 1964

148 l M. Jarke and J. Koch

LEILICH, H.-O., STIEGE, G., AND ZEIDLER, H. C. MARYANSKI, F. J. 1980. Backend database systems.
1978. A search processor for data base manage- ACM Comput. Surv. 1.2, 1 (Mar.), 3-25.
ment systems. In Proceedings of the 4th Znterna-
ti0na.l Conference on Very Large Data Bases (West

MENON, M. J., AND HSIAO, D. K. 1981. Design and

Berlin, FRG, Sept. 13-15). IEEE, New York, pp.
analysis of a relational join operation for VLSI.

286-287.
In Proceedings of the 7th International Conference
on Very Large Data Bases (Cannes, Sept. 9-11).

LIN, C. S., SMITH, D. C. P., AND SMITH, J. M. IEEE, New York, pp. 44-55.
1976. The design of a rotating associative mem-
ory for relational database applications. ACM

MERRETT, T. H. 1977. Database cost analysis: Atop-

Trans. Database Syst. 1, 1 (Mar.), 53-65.
down approach. In Proceedings of the ACM-SZG-
MOD International Conference on Management

LIU, J. W. S. 1976. Algorithms for parsing search of Data (Toronto, Canada, Aug. 3-5). ACM, New
queries in systems with inverted file organiza- York, pp. 135-143.
tions. ACM Trans. Database Syst. 1, 4 (Dec.),
299-316.

MERRETP, T. H. 1981. Why sort-merge gives the
best implementation of the natural join. SZG-

LUK, W. S. 1983. On estimating block accesses in MOD Rec. 13, 2,39-51.
database organizations. Commun. ACM 26, 11 M
(Nov.), 945-947.

ERRETT, T. H., KAMBAYASHI, Y., AND YASUURA, H.
1981. Scheduling of page-fetches in join opera-

MAEKAWA, M. 1982. Parallel join and sorting algo- tions. In Proceedings of the 7th Znternatianal Con-
rithms. In Data Base Design Techniques ZZ, S. B. ference on Very Large Data Bases (Cannes, Sept.
Yao and T. L. Kunii, Eds. Springer, New York, 9-11). IEEE, New York, pp. 488-498.
pp. 266-296. MINKER, J. 1975. Performing inferences over rela-

MAHMOUD, S. A., RIORDON, J. S., AND TOTH, K. C. tion data bases. In Proceedings of the ACM-

1979. Database partitioning and query process- SZGMOD Zntematianal Conference on Manage-

ing. In Proceedings of the ZFZP Working Confer- ment of Data (San Jose, Calif., May 14-16). ACM,
ence on Database Architecture. Elsevier North- New York, pp. 79-91.
Holland, New York, pp. 3-21. MINKER, J. 1978. Search strategy and selection func-

MAIER, D. 1983. The Theory of Relational Databases. tion for an inferential relational system. ACM

Computer Science Press, Rockville, Md. Trans. Database Syst. 3, 1 (Mar.), 1-31.

MAIER, D., AND ULLMAN, J. D. 1983. Fragments of MINKER, J., AND NICOLAS, J.-M. 1983. On recursive

relations. In SZGMOD 33, Proceedings of the An-
axioms in deductive databases. Znf. Syst. 8, 1, l-

nual Meeting (San Jose, Calif., May 23-26). 13.

ACM, New York, pp. 15-22. MISSIKOFF, M., AND SCHOLL, M. 1983. Relational

MAIER, D., AND WARREN, D. S. 1981. Incorporating
queries in domain based DBMS. In SZGMOD 63,

computed relations in relational databases. In
Proceedings of Annual Meeting (San Jose, Calif.,

Proceedings of the ACM-SZGMOD International
May 23-26). ACM, New York, pp. 219-227.

Conference on Management of Data (Ann Arbor, MONTGOMERY, A. I., D’SOUZA, D. J., AND LEE, S. B.

Mich., Apr. 29-May 1). ACM, New York, pp. 1983. The cost of relational algebraic operations
176-187. in skewed data: Estimates and experiments. In

MAKINOUCHI, A., TEZUKA, M., KITAKAMI, H., AND Information Processing 83. Elsevier North-Hol-

ADACHI, S. 1981. The optimization strategy for
land, New York, pp. 235-241.

query evaluation in RDB/Vl. In Proceedings of MUNZ, R. R. 1979. Gross architecture of the distrib-
the 7th International Conference on Very Large uted database system. VDN. In Proceedings of the

Data Bases (Cannes, Sept. 9-11). IEEE, New ZFZP Working Conference on Database Architec-

York, pp. 518-529. ture. Elsevier North-Holland, New York, pp. 23-

MALL, M., REIMER, M., AND SCHMIDT, J. W.
34.

1984. Data selection, sharing and access control MUNZ, R. R., SCHNEIDER, H.-J., AND STEYER, F.
in a relational scenario. In On Conceptual Mod- 1979. Application of sub-predicate tests in da-
cling. Perspectives from Artificial Intelligence, Da- tabase systems. In Proceedings of the 5th Znter-

tabases, and Programming Languages, M. Brodie, national Conference on Very Large Data Bases

J. Mylopoulos, and J. W. Schmidt, Eds. Springer, (Rio de Janeiro, Oct. 3-5). IEEE, New York, pp.
New York, pp. 411-436. 426-435.

MARBURGER, H., AND NEBEL, B. 1983. Natuer- MUTHUSWAMY, B., AND KERSCHBERG, L. 1983.
lichsprachlicher Datenbankzugang mit HAM- Distributed query optimization using detailed da-
ANS: Syntaktische Korespondenz, natuerlich- tabase statistics. Unpublished manuscript, Com-
sprachliche Quantifizienmg und semantisches puter Science Dept., University of South Caro-
Model1 des Diskursbereichs. In Sprachen fuer lina.
Datenbanken, J. W. Schmidt, Ed. Springer-Ver- NAU, D. 1983. Expert computer systems. IEEE Com-
lag, Berlin, pp. 26-41. put. 16, 2 (Feb.), 63-85.

MARCH, S. T. 1983. A mathematical programming NEUHOLD, E. J., AND BILLER, H. 1977. POREL: A
approach to the selection of access paths for large distributed data base on an inhomogeneous com-
multiuser data bases. Decision Sci. 14,4,564-587. puter network. In Proceedings of the 3rd Znter-

Computing Surveys, Vol. 16, No. 2, June 1964

Query Optimization in Database Systems l 149

national Conference on Very Large Data Bases
(Tokyo, Oct. 6-8). IEEE, New York, pp. 380-395.

NG, P. 1982. Distributed compilation and recompi-
lation of distributed queries. IBM Res. Rep.
RJ3375, IBM Research Laboratories, San Jose,
Calif.

NIEBUHR, K. E., AND SMITH, S. E. 1976. N-ary joins
for processing Query by Example. IBM Tech.
Disclosure Bull. 19, 6,2377-2381.

NIEBUHR, K. E., SCHOLZ, K. W., AND SMITH, S. E.
1976. Algorithm for processing Query by Ex-
ample. IBM Tech. Disclosure Bull. 19,2,736-741.

NIEVERGELT, J., HINTERBERGER, H., AND SEVCIK, K.
C. 1984. The grid file: An adaptable, symmetric
multikey file structure. ACM Trans. Database
Syst. 9, 1 (Mar.), 38-71.

NILSSON, N. 1982. Principles of Artificial Zntelli-
gence. Springer, New York.

OTT, N. 1977. Interpretation of questions with quan-
‘tifiers and negation in the -USL system. IBM
Tech. RCTD. TR-77.10965. IBM Scientific Center.
Heidelberg, FRG. ’

OTT, N., AND HORLAENDER, K. 1982. Removing re-
dundant join operations in queries involving
views. IBM Tech. Rep. TR-82.03993, IBM Sci-
entific Center, Heidelberg, FRG.

OZKARAHAN, E. A. 1982. Database machine/com-
puter based distributed databases. In Proceedings
bf the 2nd Znternational Symposium on Distrib-
uted Databases (Berlin. FRG). Elsevier North-
Holland, New York, pp: 61-86.

OZSOYOGLU, M. Z., AND Ozso~o~~u, G. 1983. An
extension of relational algebra for summary ta-
bles. In Proceedings of the 2nd Statistical Data-
base Workshop (Berkeley, Calif.). University of
California, Berkeley.

Ozso~o~~u, M., AND Yu, C. T. 1980. On identifying
a class of database queries that can be processed
efficiently. In Proceedings of the IEEE COMP-
SAC Conference. IEEE, New York, pp. 453-461.

PAIGE, R. 1982. Applications of finite differencing
to database integrity control and query/transac-
tion optimization. In Proceedings of the Workshop
on Logical Bases for Data Bases (Toulouse,
France). ONERA-CERT, Toulouse, France.

PALERMO, F. P. 1972. A data base search problem.
In Proceedings of the 4th Symposium on Computer
and Information Science (Miami Beach, Fla.).
AFIPS Press, Reston, Va., pp. 67-101.

PARSAYE, K. 1983. Database management, knowl-
edge base management, and expert system devel-
onment in PROLOG. In Proceedings of the Da-
tabase Week Conference on Engineering Applica-
tions of Databases (San Jose. Calif.). ACM. New
York, pp. 159-178.‘ ’ ’ ’

PECHERER, R. M. 1975. Efficient evaluation of
expressions in a relational algebra. In Proceedings
of the ACM Pacific 75 Conference (San Francisco,
Calif., May 14-16). ACM, New York, pp. 44-49.

PECHERER, R. M. 1976. Efficient exploration of
product spaces. In Proceedings of tke ACM-SZG-
MOD International Conference on Management
of Data (Washington, D.C., June 2-4). ACM, New
York, pp. 169-177.

PIROTTE, A. 1979. Findamental and secondary issues
in the design of non-procedural relational lan-
guages. In Proceedings of the 5th International
Conference on Very Large Data Bases (Rio de
Janeiro, Oct. 3-5). IEEE, New York, pp. 239-250.

PUTKONEN, A. 1979. On the selection of the access
path in inverted database organizations. Znf. Syst.
4, 4, 219-225.

REIMER, M. 1983. Solving the phantom problem by
predicative optimistic concurrency control. In
Proceedings of the 9th International Conference
on Very Large Data Bases (Florence, Italy).
VLDB Endowment, Saratoga, Calif., pp. 81-88.

REITER, R. 1978. Deductive question-answering on
relational data bases. In Logic and Databases, H.
Gallaire and J. Minker, Eds. Plenum, New York,
pp. 149-178.

RICHARD, P. 1981. Evaluation of the size of a query
expressed in relational algebra. In Proceedings of
the ACM-SZGMOD International Conference on
Management of Data (Ann Arbor, Mich., Apr. 29-
May 1). ACM, New York, pp. 155-163.

ROSENKRANTZ, D. J., AND HUNT, H. B. III. 1989.
Processing conjunctive predicates and queries. In
Proceedings of the 6th Znternatianal Conference
on Very Large Data Bases (Montreal, Oct. l-3).
IEEE, New York, pp. 64-72.

ROSENTHAL, A., AND REINER, D. 1982. An architec-
ture for.query optimization. In Proceedings of the
ACM-SZGMOD International Conference on
Management of Data (Orlando, Fla.,’ June 2-4).
ACM, New York, pp. 246-255.

ROSENTHAL, A., AND REINER, D. 1984. Querying
relational views of networks. In Query P&es&
in Database Systems. W. Kim. D. Reiner. and D.
Batory, Eds. ipringer, New York.

ROTHNIE, J. B. 1974. An approach to implementing
a relational data management system. In Pro-
ceedings of the ACM-SZGMOD Workshop on Data
Description, Access, ana’ Contml (Ann Arbor,
Mich., May l-3). ACM, New York, pp. 277-294.

ROTHNIE, J. B., JR. 1975. Evaluating inter-entry
retrieval expressions in a relational data base
management system. In Proceedings of the Na-
tional Computer Conference (Anaheim, Calif.,
May lS-22), vol. 44. AFIPS Press, Reston, Va.,
pp. 417-423.

ROTHNIE, J. B., AND GOODMAN, N. 1977. A survey
of research and development in distributed data-
base management. In Proceedings of the 3rd Zn-
ternational Conference on Very Large Data Bases
(Tokyo, Oct. 6-8). IEEE, New York, pp. 48-62.

Rousso~ou~os, N. 1982a. View indexing in rela-
tional databases. ACM Trans. Database Syst. 7, 2
(June), 258-290.

Computing Surveys, Vol. 16, No. 2, June 1964

150 l M. Jarke ana! J. Koch

ROUSSOPOULOS, N. 1982b. The logical access path
schema of a database. IEEE Trans. Softw. Eng.
SE-8,6,563-573.

SACCO, G. M., AND SCHKOLNICK, M. 1982. A mech-
anism for managing the buffer pool in a relational
database system using the hot set model. In Pro-
ceedings of the 8th International Conference on
Very Large Data Bases (Mexico City). VLDB
Endowment, Saratoga, Calif., pp. 257-262.

SACCO, G. M., AND YAO, S. B. 1982. Query optimi-
zation in distributed database systems. In Ad-
vances in Computers, vol. 21. Academic Press,
New York, pp. 225-273.

SAGALOWICZ, D. 1977. IDA: An intelligent data ac-
cess program. In Proceedings of the 3rd Interna-
tional Conference on Very Large Data Bases (To-
kyo, Oct. 6-8). IEEE, New York, pp. 293-302.

SAGIV, Y. 1981. Optimization of Queries in Relational
Databases. UMI Research Press, Ann Arbor,
Michigan.

SAGIV, Y. 1983. Quadratic algorithms for minimizing
joins in restricted relational expressions. SIAM
J. Comput. 12, 2, 316328.

SAGIV, Y., AND YANNAKAKIS, M. 1980. Equivalences
among relational expressions with the union and
difference operators. J. ACM 27, 4 (Oct.) 633-
655.

SALTON, G., AND WONG, A. 1978. Generation and
search of clustered files. ACM Trans. Database
Syst. 3, 4 (Dec.) 321-346.

SCHEK, H.-J., AND PISTOR, P. 1982. Data structures
for an integrated database management and in-
formation retrieval system. In Proceedings of the
8th International Conference on Very Large Data
Bases (Mexico City). VLDB Endowment, Sara-
toga, Calif., pp. 197-207.

SCHENK, K. L., AND PINKERT, J. R. 1977. An algo-
rithm for servicing multi-relational queries. In
Proceedings of the ACM-SIGMOD International
Conference on Management of Data (Toronto,
Canada, Aug. 3-5). ACM, New York, pp. 10-20.

SCHKOLNICK, M. 1975. The optimal selection of in-
dexes for files. Znf. Syst. 1, 4, 141-146.

SCHKOLNICK, M. 1982. Physical database design
techniques. In Data Base Design Techniques 71,
S. B. Yao and T. L. Kunii. Eds. Snrineer. New

’ A y ’ York, pp. 229-252.
SCHMIDT, J. W. 1977. Some high level language con-

structs for data of type relation. ACM Trans.
Database Syst. 2, 3 (Sept.), 247-261.

SCHMIDT, J. W. 1979. Parallel processing of rela-
tions: A single-assignment approach. In Proceed-
ings of the 5th International Conference on Very
Large Data Bases (Rio de Janeiro, Oct. 3-5).
IEEE, New York, pp. 398-408.

SCHMIDT, J. W. 1984. Database programming: Lan-
guage constructs and execution models. In Pro-
grammiersprachen und Programmentwicklung, U.
Ammann, Ed. Springer-Verlag, Berlin, pp. l-26.

SELINGER, P. G., AND ADIBA, M. 1980. Access path
selection in distributed database systems. IBM

Res. Rep. RJ2283, IBM Research Laboratories,
San Jose, Calif.

SELINGER, P. G., ASTRAHAN, M. M., CHAMBERLIN,
D. D., LORIE. R. A.. AND PRICE. T. G.
1979. ‘Access path selection in a relational da-
tabase management system. In Proceedings of the
ACM-SZGMOD International Conference on
Management of Data (Boston, Mass., May
30-June 1). ACM, New York, pp. 23-34.

SEVERANCE, D. G., AND CARLIS, J. V. 1977. A prac-
tical approach to selecting record access paths.
ACM Comput. Surv. 9, 4 (Dec.) 259-272.

SHMUELI, 0. 1981. The fundamental role of tree
schemas in relational query processing. Ph.D.
thesis, Computer Science Dept., Harvard Univ.,
Cambridge, Mass.

SHNEIDERMAN, B. 1977. Reduced combined indexes
for efficient multiple attribute retrieval. Znf. Syst.
2, 4, 149-154.

SHNEIDERMAN, B., AND GOODMAN, V. 1976.
Batched searching of sequential and tree struc-
tured tiles. ACM Trans. Database Syst. 1, 3
(Sept.), 268-275,

SHOSHANI, A. 1982. Statistical database: Character-
istics, problems, and some solutions. In Proceed-
ings of the 8th International Conference on Very
Large Data Bases (Mexico City). VLDB Endow-
ment, Saratoga, Calif., pp. 208-222.

SHULTZ, R. K., AND ZINGG, R. J. 1984. Response
time analysis of multiprocessor computers for
database support. ACM Trans. Database Syst. 9,
1 (Mar.), 100-132.

SMITH, J. M., AND CHANG, P. Y. T. 1975. Optimizing
the performance of a relational algebra database
interface. Commtin. ACM 18, 10 (Oct.), 568-579.

SMITH, J. M., BERNSTEIN, P. A., DAYAL, U., GOOD-
MAN, N., LANDERS, T., LIN, K. W. T., AND
WONG, E. 1981. MULTIBASE-Integrating
heterogeneous distributed database systems. In
Proceedings of the AFZPS National Computer
Conference (Chicago, May 4-7), vol. 50. AFIPS
Press, Reston, Va., pp. 487-499.

SOCKUT, G. H., AND GOLDBERG, R. P. 1979.
Database reorganization-Principles and prac-
tice. ACM Comput. Surv. 11, 4 (Dec.) 371-395.

STONEBRAKER, M. 1975. Implementation of integ-
rity constraints and views by query modification.
In Proceedings of the ACM-SZGMOD Znterna-
tional Conference on Management of Data (San
Jose, Calif., May 14-16). ACM, New York, pp.
65-78.

STONEBRAKER, M., AND NEUHOLD, E. 1977. A dis-
tributed database version of INGRES. In Pro-
ceedings of the 2nd Berkeley Workshop on Dis-
tributed Data Management-and Computer Net-
works (Berkeley. Calif.). Universitv of California.
Berkeley. -

STONEBRAKER, M., WONG, E., KREPS, P., AND HELD,
G. 1976. The design and implementation of
INGRES. ACM Trans. Database Syst. 1,3 (Sept.),
189-222.

Computing Surveys, Vol. 16, No. 2, June 1984

Query Optimization in Database Systems l 151

STROET, J. W. M., AND ENGMANN, R. 1979.
Manipulation of expressions in a relational alge-
bra. Znf. Syst. 4, 4,195-203.

SU, S. Y. W. 1979. Cellular-logic devices: Concepts
and applications. IEEE Comput. 12, 3,11-25.

Su, S. Y. W., AND LIPKOVSKI, G. 1975. CASSM: A
cellular system for very large databases. In Pro-
ceedings of the 1st Znternational Conference on
Very Large Data Bases (Framingham, Mass.,
Sept. 22-24). ACM, New York, pp. 456-472.

Su, S. Y. W., AND MIKKILINENI, K. P. 1982. Parallel
algorithms and their implementation in MICRO-
NET. In Proceedings of the 8th International
Conference on Very Large Data Bases (Mexico
City). VLDB Endowment, Saratoga, Calif., pp.
310-324.

TANENBAUM, A. 1981. Computer Networks. Pren-
tice-Hall, New York.

TEOREY, T. J., AND FRY, J. P. 1982. Design of Da-
tabase Structures. Prentice-Hall, New York.

TODD, S. 1974. Implementing the join operator in
relational data bases. IBM Scientific Center
Tech. Note 15, IBM UK Scientific Center, Peter-
lee, England.

TSICHRITZIS, D. 1976. LSL: A link and selector lan-
guage. In Proceedings of the ACM-SZGMOD Zn-
ternational Conference on Management of Data
(Washington, D.C., June 2:4). ACM, New York,
pp. 123-133.

ULLMAN, J. D. 1982. Principles of Database Systems.
Computer Science Press, Rockville, Md.

VALDURIEZ, P. 1982. Semi-join algorithms for mul-
tinrocessor svstems. In Proceedings of the ACM-
SZGMOD Zn~ernational Conference on Mannge-
ment of Data (Orlando, Fla., June 2-4). ACM,
New York, pp. 225-233.

VALDURIEZ, P., AND GARDARIN, G. 1984. Join and
semijoin algorithms for a multiprocessor database
machine. ACM Trans. Database Syst. 9. 1 (Mar.),
133-161.

VAN DE RIET, R. P., WASSERMAN, A. I., KERSTEN, M.
L., AND DE JONGE, W. 1981. High-level pro-
gramming features for improving the efficiency
of a relational database system. ACM Trans. Da-
tabase Syst. 6, 3 (Sept.), 464-485.

VASSILIOU, Y., AND JARKE, M. 1984. Query lan-
guages-A taxonomy. In Human Factors and Zn-
teractioe Computer Systems, Y. Vassiliou, Ed.
Ablex, Norwood, N.J.

VASSILIOU, Y., AND LOCHOVSKY, F. 1980. DBMS
transaction translation. In Proceedings of the
IEEE COMPSAC Conference. IEEE, New York,
pp. 89-96.

VASSILIOU, Y., CLIFFORD, J., AND JARKE, M. 1984.
Access to specific declarative knowledge in expert
systems: The impact of logic programming. De-
cision SupZIort Syst. 1, 1.

VERHOFSTAD, J. S. M. 1978. Recovery techniques
for database systems. ACM Comput. Suru. 10, 2
(June), 167-195.

WALKER, A. 1980. On retrieval from a small version
of a large data base. In Proceedings of the 6th
International Conference on Very Large Data
Bases (Montreal, Oct. l-3). IEEE, New York, pp.
47-54.

WARREN, D. H. D. 1981. Efficient processing of in-
teractive relational database queries expressed in
logic. In Proceedings of the 7th International Con-
ference on Very Large Data Bases (Cannes, Sept.
‘9-11). IEEE, New York, pp. 272-281.

WELCH, J. W., AND GRAHAM, J. W. 1976. Retrieval
using ordered lists in inverted and multilist files.
In Proceedings of the ACM-SZGMOD Znterna-
tional Conference on Management of Data (Wash-
ington, D.C., June 2-4). ACM, New York, pp. 21-
29.

WHANG, K.-Y., WIEDERHOLD, G., AND SAGALOWICZ,
D. 1983. Estimating block accesses in database
organizations: A closed noniterative formula.
Commun. ACM 26, 11 (Nov.), 940-944.

WILLIAMS. R.. DANIELS, D., HAAS, L., LAPIS, G.,
LINDSAY, R., NG, P., OBERMARCK, R., SELINGER,
P.. WALKER. A.. WILMS, P., AND YOST, R.
i982. R*: An overview of the architecture. In
Proceedings of the International Conference on
Database Systems (Jerusalem, Israel).

WONG, E. 1977. Retrieving dispersed data from
SDD-1: A svstem for distributed databases. In
Proceedings of the Second Berkeley Workshop on
Distributed Data Management and Computer
Networks (Berkeley, Calif.), pp. 217-235.

WONG, E. 1983. Dynamic rematerialization: Proc-
essing distributed queries using redundant data.
IEEE Trans. Softw. Eng. SE-g, 3,228-232.

WONG, E., AND KATZ, R. H. 1983. Distributing a
database for parallelism. In SZGMOD 83, Pro-
ceedings of the Annual Meeting (San Jose, Calif.,
May 23-26). ACM, New York, pp. 23-29.

WONG, E., AND YOUSSEFI, K. 1976. Decomposi-
tion-A strategy for query processing. ACM
Trans. Database Syst. 1, 3 (Sept.), 223-241.

XV, G. D. 1983. Search control in semantic query
optimization. Tech. Rep. #83-09, Computer and
Information Science Dept., University of Massa-
chusetts, Amherst, Mass.

YANG, C.-S. 1977. Avoiding redundant accesses in
unsorted multilist file organizations. Znf. Syst. 2,
4,155-158.

YAO, S. B. 1977a. Approximating block accesses in
database organizations. Commun. ACM 20, 4
(Apr.), 260-261.

YAO, S. B. 1977b. An attribute based model for da-
tabase access cost analysis. ACM Trans. Database
Syst. 2. 1 (Mar.), 45-67.

YAO, S. B. 1979. Optimization of query evaluation
aleorithms. ACM Trans. Database Syst. 4, 2
(June), 133-155.

YAO, S. B., AND DFJONG, D. 1978. Evaluation of
database access paths. In Proceedings of the
ACM-SZGMOD Znternational Conference on

Computing Surveys, Vol. 16, No. 2, June 1964

152 l M. Jarke and J. Koch

Management of Data (Austin, Tex., May 31-June
2). ACM, New York, pp. 66-77.

YOIJSSEFI, K., AND WONG, E. 1979. Query process-
ing in a relational database management system.
In Proceedings of the 5th International Conference
on Very Large Data Bases (Rio de Janeiro, Oct.
3-5). IEEE, New York, pp. 409-417.

YU,

yu,

C. T., AND OZSOYOGLU, M. 1979, An algorithm
for tree query membership of a distributed query.
In Proceedings of the IEEE COMPSAC Confer-
ence. IEEE, New York, pp. 306-312.
C. T., LUK, W. S., AND SIU, M. K. 1976. On the
estimation of the number of desired records with
respect to a given query. ACM Trans. Database
Syst. 3, 1 (Mar.), 41-56.

Yu, C. T., AND CHANG, C. C. 1963. On the design of ZANIOLO, C. 1979. Design of relational views over
a query processing strategy in a distributed da- network schemas. In Proceedings of the ACM-
tabase environment. In SIGMOD 83, Proceedings SZGMOD International Conference on Manage-
of the Annual Meeting (San Jose, Cahf., May 23- ment of Data (Boston, Mass., May BO-June 1).
26). ACM, New York, pp. 30-39. ACM, New York, pp. 179-190.

Received October 1983; final revision accepted April 1984.

Computing Surveys, Vol. 16, No. 2, June 1964

