
Join Processing in Relational Databases

PRITI MISHRA and MARGARET H. EICH

Computer Sczence & Engineering Department, Southern Methoclmt Un z.erszty, Dallas, Texas 75275

The join operation is one of the fundamental relational database query operations. It

facilitates the retrieval of information from two different relations based on a CartesIan

product of the two relations. The Join is one of the most difficult operations to

implement efficiently, as no predefine links between relations are required to exist (as

they are with network and hierarchical systems), The jom is the only relational

algebra operation that allows the combining of related tuples from relations on

different attribute schemes. Since it is executed frequently and IS expensive, much

research effort has been applied to the optimization of join processing, In this paper,

the different kinds of joins and the various implementation techniques are surveyed,

These different methods are classified based on how they partition tuples from different

relations. Some require that all tuples from one be compared to all tuples from

another; other algorithms only compare some tuples from each. In addition, some

techniques perform an exphclt partitioning, whereas others are Implicit,

Caiegorles and Subject Descriptors: H 24 [Information Systems]: Systems— query

processing

Geueral Terms: Algorithms

Additional Key Words and Phrases: Database machines, distributed processing, join,

parallel processing, relational algebra

INTRODUCTION

The database join operation is used to
combine tuples from two different
relations based on some common infor-
mation. For example, a course-offering
relation could contain information con-
cerning all classes offered at a university
and a student-registration relation could
contain information for which courses a
student has registered. A join would typ-
ically be used to produce a student sched -

ule, which includes data about required
textbooks, time, and location of courses,
as well as general student identification
information. The join operation is one of
the operations defined in the relational
data model [Codd 1970, 19721. It is used
to combine tuples from two or more rela-
tions. Tuples are combined when they
satisfy a specified join condition. The
result tuples have the combined at-
tributes of the two input relations. In the
above example, the join condition could

Permission to copy without fee all or part of this material is granted provided that the copies are not made

or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission
@ 1992 ACM 0360-0300/92/0300-0063 $01.50

ACM Computmg Surveys, Vol !24, No 1, March 1992

64 . P. Mishra and M. H. Eich

CONTENTS Consider, for example, the relations R
and S shown below:

I

be

INTRODUCTION
1 JOIN OPERATION

1 1 Jom versus Cartesian Product

12 Types of Joins

2. IMPLEMENTATION OF JOINS
2 1 Nested-Loops Jom
22 Sort-Merge Jom

23 Hash Jom Methods
24 Summary

3 JOINS BASED ON SPECIAL DATA
STRUCTURES
3 1 Jom Indexes

32 Be-Trees

33 T-Trees
34 Kd-Trees

35 PreJOms
36 Summary

4 JOIN CLASSIFICATION
41 Partltlomng

42 Classification

5 JOIN PROCESSING IN A DISTRIBUTED
ENVIRONMENT

5 1 Factors m Dlstrlbuted Processing
52 Jom Algorithms

53 Summary

6 HARDWARE SUPPORT FOR JOINS
6 1 Hardware Approaches

62 Nested-Loops Jom
63 Sort-Merge Jom

64 Hash-Based Joins

65 Summary
7 OTHER JOIN ISSUES

7 1 Selectivity Factor
72 Optimal Nesting of Joins

73 Hash Joins

74 Indexing and Clustering

75 Partltlonmg of Relatlons

76 JoIn-Type Processing m Nonrelatlonal

Databases

8. CONCLUSIONS

APPENDIX

ACKNOWLEDGMENTS

REFERENCES

BIBLIOGRAPHY

to combine tu~les when thev have the
same course number and offering num-
ber values. The resulting tuples would
contain all the offering data, as well as
all the student data.

ACM Computmg Surveys, Vol 24, No 1, March 1992

Relation R

employee payscale

james 1
jones 2
johns 1
smith 2

Relation S

payscale pay

1 10000
2 20000
3 30000

A join of R and S with the join condi-
tion R(payscale) = S(payscale) results in
the following relation:

Relation @

employee payscale payscale pay

james 1 1 10000
jones 2 2 20000
johns 1 1 10000
smith 2 2 20000

Normalization of relations in rela-
tional databases results in related infor-
mation being stored in separate relations
[Dutka and Hanson 1989; Fagin 1979;
Kent 1983]. Hence, queries that require
data from several relations are very com-
mon. The join operation is used to satisfy
such queries.

The join operation has been studied
and discussed extensively in the litera-
ture because it is one of the most time-
consuming and data-intensive operations
in relational query processing. It is also
important that joins be performed effi-
ciently because they are executed fre-
quently. Many optimizations of the join
operation automatically include the opti-
mization of the other common relational
operations, namely, the select and project

Join Process ingin Relationa~ Databases “ 65

operations, because they are implicit in
the join operation.

Joins may be implemented in many
ways, and it has been found that certain
techniques are more efficient than others
in some computing environments. This
paper collates the information available
in the literature in order to study the
unique and common features of join algo-
rithms. With this information, it is pos-
sible to classify the algorithms into
categories. The categorization scheme
included in Section 4 provides a simple
pictorial technique to visualize the differ-
ent approaches to implement join
processing.

A join can be two-way or multiway. It
is said to be two-way when it is per-
formed on two relations and multiway
when more than two relations are joined.
A multiway join produces the same re-
sult as a series of two-way joins. A join
between n relations is usually executed
as a sequence of (n – 1) two-way joins
[Mackert and Lehman 1986].

Join processing has been studied from
many points of view:

Query optimization. Issues such as
selecting best available access paths, de-
termining optimal nesting of joins in
multiway joins, and devising strategies
for distributed join processing are dis-
cussed in a number of articles; for exam-
ple, Christodulakis [1985], Kim et al.

[19851, Perrizo et al. [19891; Segev [19861,
Swami and Gupta [1988], Yoo and Lafor-
tune [1989], and Yu et al. [1985, 1987].

Optimizing 1/0. Reducing the total
number of page accesses by means of
efficient indexing [Cheiney et al. 1986;
Desai 1989; Goyal et al. 1988; Lehman
and Carey 1986] and clustering has been
the subject of much discussion [Blasgen
and Eswaran 1977; Chang and Fu 1980;
Omiecinski 1989; Ozkarahan and
Bozsahin 1988].

Optimizing buffer usage. Buffer us-
age can be optimized by reducing the
number of times a page is accessed

[Omiecinski 1989; Pramanik and Fotouhi
1985]. Some algorithms have been modi-
fied to reduce the amount of buffer space

needed, whereas others have been tuned
to make the best use of the available
space [Fotouhi and Pramanik 1989; Goyal
et al. 1988; Hagmann 1986; Sacco and
Schkolnick 1986].

Reducing computation. The number
of comparisons between tuples can be re-
duced, such as by using partitioning or
by using the simple sort-merge algo-
rithm. This aspect, of the join operation
will be discussed at length later.

Hardware support. Processing has
been speeded up by means of direct hard-
ware support such as special join proces-
sors and indirect support in the form of
hardware hashing units and sorters, data
filters, and associative memories. All
database machines incorporate one or
more of these features. The number of
database machine designs is too numer-
ous to list individually here, but a com-
prehensive survey can be found in Su
[19881.

Parallel processing. Many join algo-
rithms have a high degree of inherent
parallelism [Bitten et al. 1983; Schneider
and DeWitt 1989]. Parallelization is seen
in two forms: in the shape of special-
ized database machines and of general-
purpose multiprocessors [Baru and
Frieder 1989; Baru et al. 1987; Menezes
et al. 1987; Valduriez and Gardarin 1982,
1984]. The latter appear to have an edge
over database machines for a number of
reasons such as cost, scalability, and
availability.

Physical database design. Relations
in a database must be such that any pair
can be joined without loss of data and
that the result relation contains only
valid data [Aho et al. 1979; Dutka and
Hanson 1989]. The literature on join de-
pendencies [Beeri and Vardi 1981;
Gyssens 1986], lossless join decomposi-
tion, and theory of separability [Whang
et al. 1985] that affect physical database
design is voluminous. An indication of
this is the extensive bibliography found
in Dutka and Hanson [1989].

Although all of the above topics are
not covered in detail in this paper, an

ACM Computmg Surveys, Vol 24, No. 1, March 1992

66 “ P. Mishra and M. H. Eich

extensive bibliography on all topics is
provided. For example, the relationship
between the join operation and query
processing is not discussed in detail. The
topic is mentioned briefly where appro-
priate, and several references are pro-
vided that treat the issue at lemzth.

The remainder of the paper “is orga-
nized as follows. Section 1 contains defi-
nitions and descriptions of the basic join
operation and its various derivatives.
Section 2 describes some of the numerous
implementations, Join algorithms based
on specific data structures are described
in Section 3. A classification scheme for
join algorithms is described in Section 4.
Distributed join processing and hardware
support for join processing are discussed
in Sections 5 and 6, respectively. Miscel-
laneous issues related to join perfor-
mance, such as the effect of data
distribution on parallel algorithms and
joinlike operations in nonrelational
database systems, are contained in Sec-
tion 7. Section 8 contains a brief
summary of the paper. Notations and
abbreviations used in the paper are
summarized in the appendix.

1. JOIN OPERATION

In this section, first the relationship be-
tween the join operation and the Carte-
sian product is explored. Next, the many
derivatives of the basic join operation are
reviewed.

1.1 Join versus Cartesian Product

The join operation is closely related to
the Cartesian product. The Cartesian

product of two relations concatenates
each tuple of the first relation with every
tuple of the second relation. The result of
this operation on relations R and S, with
n and m number of tuples, respectively,
consists of a relation with (n x rn) tuples
and the combined attributes of the input
relations. The Cartesian product of the
two example relations R and S is the

relation Q:

Relation Q = R x S

employee payscale payscale pay

iames 1 1 10000

james
jones
jones
jones
johns
johns
johns
smith
smith
smith

1
1
2
2
2
1
1
1
2
2
2

2
3
1
2
3
1
2
3
1
2
3

20000
30000
10000
20000
30000
10000
20000
30000
10000
20000
30000

The join operation is used to combine
related tuples from two relations into
single tuples that are stored in the result
relation. The desired relationship be-
tween tuples or some attributes in the
tuples is specified in terms of the join
condition. In its simplest form, the join of
R and S is written as

RCU r(a)~ s(b) s,

where r(a)6’ S(b) defines the join condi-
tion. The 0 operator defines the condition
that must hold true between the at-
tributes r(a) and s(b) of R and S, re-
spectively. This general join is called a
thetay”oin. The theta operator can be one
of the following: =, #, <, >, S, >.
The attributes used to define the join
condition must be comparable using the
theta operator.

In its most general form, the join con-
dition consists of multiple simple condi-
tions of the form described above,
connected with the logical connective
AND [Desai 1990; E1-Masri and Navathe
1989; Maier 1983]:

condition A condition A . A condition.

The presence of the join condition dis-
tinguishes the join operation from the
Cartesian product. In effect, the join op-
eration may be said to be equivalent to a
Cartesian product followed by a select
operation [E1-Masri and Navathe 1989],
where the select operation is implicit in

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ● 67

the join condition. Or,

RW r,a),s(b)~ = %)os(b,[R x ~1.
As such, the result of joining two rela-

tions is a subset, proper or otherwise, of
the Cartesian product of the two rela-
tions. The tuples of either relation that
do not participate in the join are called
dangling tuples [Unman 1988].

The result of joining relations R and S
with n and m attributes, respectively, is
a relation Q with (n + m) attributes.
The relation Q has one tuple for each
pair of tuples from R and S that satis-
fies the join condition. The result rela-
tion Q may then be defined as

Q={tlt= rs~re R~se SAt(a)Ot(b)}

For example, joining R and S’ with the
join condition R(payscale) < S(payscale)
results in a relation Q is as follows:

Relation Q = R M ,(P,Y,C,I,) < ,(P,Y~C,l,)S

employee payscale payscale pay

james 1 2 20000
james 1 3 30000
jones 2 3 30000
johns 1 2 20000
johns 1 3 30000
smith 2 3 30000

This relation is a proper subset of the
cross product of R and S.

Both Cartesian product and join are
time-consuming and data-intensive oper-
ations. In the most naive implementa-
tion, each tuple in one relation must be
compared to every tuple in the other re-
lation. Therefore, the complexity of the
operation for relations with n tuples each
is 0(n2). Further, the staging of tuples
for the comparison steps requires an
enormous number of 1/0 operations. The
large number of algorithms that has been
devised to execute joins is a result of
efforts to reduce the number of compar-
isons, reduce the amount of 1/0, or both.

1.2 Types of Joins

Several other types of joins have been
defined. Some are direct derivatives of

the theta-join; others are combinations of
the theta-join and other relational opera-
tions such as projection. Some have been
implemented as primitive operations in
database management systems, whereas
others are currently found only in the
database literature. Variations of the join
operation seen in database management
systems and in the literature are
discussed below.

1.2.1 fqu~oin

The most commonly used theta operator
is the equality operator; in these cases,
the join is called an equijoin. For all
other theta operators the join is called a
norzequijoin. The result relation Q is
defined as follows:

Q={t\t= rsAre~Ase SAt(a)

= t(b)}.

In other words, the result relation con-
tains tuples t made up of two parts, r
and s, where r must be a tuple in rela-
tion R and s must be a tuple in relation
S. In each tuple t,the values of the join
attributes t(a), belonging to r, are iden-
tical in all respects to the values of the
join attributes t(b), belonging to s.

The result of joining R and S such
that R(payscale) = S(payscale) is the re-
lation Q is as follows:

Relation Q = R w ,(P,Y~C,l,)~ ,(P~Y,CaI,)S

employee pays&de payscale pay

james 1 1 10000
jones 2 2 20000
johns 1 10000
smith : 2 20000

1.2.2 Natural Join

In the theta-join, the tuples from the in-
put relation are simply concatenated.
Therefore, the result tuple, in the case of
equijoins, contains two sets of the join
attributes that are identical in all re -
spects. Thus, one set of join attributes in
the result relation can be removed with-
out any loss of information. Certainly,

ACM Computing Surveys, Vol. 24, No. 1, March 1992

68 “ P. Mishra and M. H. Eich

the removal of ofie column from the re-
sult relation should reduce the amount of
storage space required. In most cases, it
is required that one of these sets be pro-
jected out to get the final result. This
gives rise to a derivative of the equijoin
—the natural join. The natural join can,
therefore, be defined as an equijoin on
attributes with the same name in both
relations, followed by projection to re-
move one set of the join attributes.

The natural join operation can be writ-
ten as

R*S = ‘(a, b,-s(a)) [RM,(G)=~#],

where a, and b, are the attributes in
relations R and S, respectively. The re-
sult relation Q is given by

Q={tlt= (rs-s(a))Are RAse S

Ar(a) = s(a)}.

The result of R* S on the payscale at-
tribute is the following relation:

Relation Q = R* S

employee payscale pay

james 1 10000
jones 2 20000
johns 1 10000
smith 2 20000

1.2.3 Semijoin

In the conventional execution of the join
operation, the resulting relation has all
the attributes of both input relations.
Sometimes it is required that only the
attributes of one of the relations be pre-
sent in the output relation. The semi~”oin

operation is designed to perform such a
join [Bernstein and Chiu 1981; Bernstein
and Goodman 1979a]. It has also been
defined as an operation that selects a set
of tuples from one relation that relate to
one or more tuples in another relation.
The relationship is defined by the join
condition. (Inequality semijoins are dis-
cussed in Bernstein and Goodman [1979b,
1980].) It is equivalent to the join of the

two relations followed by a project opera-
tion that results in the attributes of the
second relation being dropped from the
output relation. The initial join itself may
be performed by any of the join
techniques.

The semijoin operation is written as

RR r(a)tis(b)s = ‘a, [‘Wr(a)fls(b)
s],

and the result relation Q is given by

Q={tlt= rAt(a)@s(b) Are RAs~S}.

A list of payscales such that there is at
least one employee who gets paid accord-
ing to that scale is a semijoin between S
and R. That is,

Q=SM s@ayscale) = r(pay scale)) R.

The result relation Q is the following
relation:

payscale pay

1 10000
2 20000

Unlike most other join operations, the
semijoin operation is not commutative,
that is,

(RMS) # (SMR).

An alternative expression for the semi-
join operation is

No join condition has been specified in
this expression because it represents the
general case. Although the effect is
the same in both cases, this version of
the semijoin reduces the size of the sec-
ond relation participating in the join
operation. The initial projection on S
results in a smaller relation while
maintaining all data needed to get the
result of the semijoin. This feature is
especially useful when R and S are at
different sites and S must be transferred
to R’s site.

Semijoins can be used to reduce the
processing load of regular joins and to

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Processing in Relational Databases “ 69

avoid the creation of large intermediate
relations [Kambayashi 1985; Perrizo et

al. 1989; Yoo and Lafortune 19891. Semi-
joins have been found to be a useful tool
in the processing of certain kinds of
queries, particularly tree queries
[Bernstein and Chiu 19811. Efficient pro-
cedures for handling cyclic queries using
semijoins are discussed in Kambayashi

[19851 and Yoshikawa and Kambayashi
[1984].

1.2.4 Outeuom

Strictly speaking, the outerjoin is an ex-
tension of the join operation [Date 1983;
E1-Masri and Navathe 1989; Rosenthal
and Reiner 1984]. It is also called an
external J“oin [Gardarin and Valduriez
19891. The outerjoin operation was de-
fined to overcome the problem of dan-
gling tuples. In conventional joins, tuples
that do not participate in the join opera-
tion are absent from the result relation.
In certain situations it is desired that the
result relation contain all the tuples from
one or both relations even if they do not
participate in the join (they must be
padded with null values as needed).

Depending on whether the result rela-
tion must contain the nonparticipant
tuples from the first, second, or both
relations, three kinds of outer joins are
defined: the left-outerjoin, the right-
outerJ”oin, and the full-o uter-”oin, respec-
tively [E1-h!Uasri and Navathe 19891. The
corresponding join symbols are = Da,
M= , and = ~= . The left and right
outerjoins are collectively referred to as
one-sided or directional joins. It must be
noted that only the full-outerjoin is com-
mutative. Although the left and right
outer joins are not commutative, the y are
related as follows:

(1? =Das) = (SW= R)

The result relation for a full-outerjoin
will contain three types of tuples: tuple
pairs that satisfy the join condition, dan-
gling tuples from R with padded S-
attributes, and dangling tuples from S
with padded R-attributes. The result re-

lation Q can be written as

Q={tlt= rsArel? Ase SAr(a)6s(b)}

+{tlt=rn Are R}

+{tlt=ns Ase S},

where, n represents the padding of the
tuples with null values.

An example of a right outer join using
the relations R and S is

Q = R ~ = (r@ay,CaIe) = s(paysw))s~

The result relation Q is as follows:

Relation Q

employee payscale payscale pay

james 1 1 10000
jones 2 2 20000
johns 1 1 10000

smith 2 2 20000
L .1 3 30000

——

Here the symbol ~ represents the null
value.

This operation is particularly useful in
dealing with situations where there are
null values in the join attributes of ei-
ther relation. At this point, not many
DBMSS support outerjoins directly. The
processing of queries containing outer-
joins is discussed in Rosenthal and
Galindo-Legaria [1990] and Rosenthal
and Reiner [19841.

A scheme for query optimization in
heterogeneous, distributed database sys-
tems that uses outerjoins to help in
database integration is discussed in
Dayal [1985]. One-sided outer joins may
be used in aggregate function evaluation
in statistical databases [Ozsoyoglu et al.
19891. Semiouterjoins, which combine the
qualities of outerjoins and semijoins, have
been used in query processing in multi-
database systems [Dayal 19851.

1.2.5 Self-Join

The self-join may be considered a special
case of the theta-join [Hursch 19891. The
only difference is that the input relation

ACM Computmg Surveys, Vol. 24, No, 1, March 1992

70 “ P. Mishra and M. H. Eich

is joined with itself. The output relation
Q is given by

Q={tlre RAs~SAR=SAt

= rsAr(a)@s(b)}.

The operation of the self-join can be
illustrated using example relation R. To
get a list of pairs of employees such that
each pair of employees gets the same
pay, the relation R can be selfjoined with
itself. That is,

Q = R w ,bay,cale)=r(pay.tale) R.

Then, the result relation Q is as follows:

Relation Q = R M ,(P~Y~C~l,)~ ,(P~Y,C,l,)S

employee payscale payscale employee

james
james
jones
jones
johns
johns
smith
smith

1
1
2
2
1

;
2

1
1
2
2
1
1
2
2

james
johns
jones
smith
johns
james
smith
jones

1.2.6 Composition

Composition was first described as one of
the operations on relations in Codd
[1970]. Two relations are said to be
conaposable if they are joinable. The com-
position of two relations is equivalent to
joining the two relations, then projecting
out both sets of join attributes. Formally,
this is written as

where @ represents the composition op-
erator and M without the join condition
represents any join between the relations
R and S.

The natural composition of R and S is
defined as the composition based on the
natural join between R and S [Codd
1970]. It is written as

The result relation Q, of the natural
composition of R and S, is given by

Q= {t It= (rs-r(a)-s(a))Are R

Ase SAr(a) = s(a)}.

The natural composition of the exam-
ple relations R and S on the attribute
payscale is the relation Q:

Relation Q = R . S

employee pay

james 10000

jones 20000
johns 10000
smith 20000

This operation has been discussed
further in Agrawal et al. [1989] and
Ozkarahan [1986].

1.2.7 Division

Strictly speaking, the division operation
is not a member of the set of relational
algebra operations. However, it is in-
cluded in discussions on the relational
algebra because it is commonly used in
database applications [Desai 1990; El-
Masri and Navathe 1989; Maier 1983].
The divide operator allows a tuple to be
retrieved from one relation if it is related
to all tuples in another based on some
predefined condition. For example, we
might find each employee of one com-
pany who has a salary larger than that
of all employees of another company.

Let relations R and S have attributes
a, and b~ such that b~ G a,. Let Ch = a,
– b,. That is, c~ is the set of attributes
in relation R that is not in relation S.
Then, R divided by S is written as

R + S= mC,(R)

– ~ck((~c,(R) x s) – R)”

The result relation Q is the quotient of
R divided by S and is given by

Q={tl Vs~S~re Rsuchthattlls= r}.

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ● 71

In other words, the result relation Q is
the maximal subset of the relation mCJR)

such that the Cartesian product of rela-
tions Q and S is contained in R,

To illustrate the division operation, let
us redefine the relations.

Relation R

A B

Al B1
A2 B1
A3 B1
Al B2
A2 B2
A3 B2
Al B3
A2 B3

Relation S

A

Al
A2
A3

Then, the result relation Q is as follows:

Relation S = R + S

B

B1
B2

Several hash-based algorithms for per-
forming division are presented in Graefe

[19891. An implementation of the divi-
sion operation on a shuffle-exchange net-
work is described in Baba et al. [1987].

2. IMPLEMENTATIONS OF JOINS

The techniques and methods used to im-
plement joins are discussed in the follow-
ing sections. Unless otherwise noted, the
algorithms are used to implement the
theta-join. The description of a method
includes the basic algorithm, general
discussion of the method, special data
structures (if any), and applicability and
performance of the technique. General
problems that apply to a whole class of
join techniques, such as the effect of clus -

tering or the effect of collisions on the
hash join techniques, are discussed sepa-
rately in Section 7.

2.1 Nested-Loops Join

Nested-loops join is the simplest join
method. It follows from the definition of
the join operation. One of the relations
being joined is designated as the inner

relation, and the other is designated as
the outer relation. For each tuple of the
outer relation, all tuples of the inner re-
lation are read and compared with the
tuple from the outer relation. Whenever
the join condition is satisfied, the two
tuples are concatenated and placed in the
output buffer.

Algorithm

The algorithm for performing

Rb-d ?-(a)es(b) s

is as follows:

for each tuple s do
{ for each tuple r do

{ if r(a) Os(b) then
concatenate r and s
place in relation Q }}

Note that for efficiency, the relation with
higher cardinality (R in this case) is cho-
sen to be the inner relation.

Discussicm

In practice, a nested-loops join is imple-
mented as a nes~ed-block join; that is,
tuples are retrieved in units of blocks
rather than individually [E1-Masri and
Navathe 1989], This implementation can
be briefly described as follows. The inner
relation is read one block at a time. The
number of main memory blocks available
determines the number of blocks read
from the outer relation. Then all tmples
in the inner relation’s block are joined
with all the tuples in the outer relation’s
blocks. This process is repeated with all
blocks of the inner relation before the
next set of outer relation blocks is read

ACM Computing Surveys, Vol 24, No. 1, March 1992

72 ● P. Mishra and M. H. Eich

in. The amount of reduction in 1/0 activ-
ity (compared to a simple tuple-oriented
implementation) depends on the size of
the available main memory.

A further step toward efficiency con-
sists of “rocking” the inner relation [Kim
1980]. In other words, the inner relation
is read from top to bottom for one tuple of
the outer relation and bottom to top for
the next. This saves on some 1/0 over-
head since the last page of the inner
relation which is retrieved in one loop is
also used in the next loop.

Performance

In the above algorithm, it is seen that
each tuple of the inner relation is com-
pared with every tuple of the outer
relation. Therefore, the simplest imple-
mentation of this algorithm requires 0(n

x m) time for execution of joins.
The block-oriented implementation of

the nested-loops join optimizes on 1/0
overhead in the following way. Since the
inner relation is read once for each tuple
in the outer relation, the operation is
most efficient when the relation with the
lower cardinality is chosen as the outer
relation. This reduces the number of
times the inner loop is executed and, con-
sequently, the amount of 1/0 associated
with reading the inner relation, An anal-
ysis of buffer management for the
nested-loops method with rocking shows
that buffering an equal number of pages
for both relations is the best strategy
[Hagmann 1986].

If the join attributes can be accessed
via an index, the algorithm can be made
much more efficient, Such an implemen-
tation has been described in Blasgen and
Eswaran [1977].

Applicability

The exhaustive matching performed in
this method makes it unsuitable for join-
ing large relations unless the j’oin selec-

tivity factor, the ratio of the number of
tuples in the result of the join to the total
number of tuples in the Cartesian prod-
uct, is high. If the selectivity factor is

low, the effort of comparing every tuple
in one relation with every tuple in the
other is further unjustified.

The simplicity of this algorithm has
made it a popular choice for hardware
implementation in database machines
[Su 1988]. It has been found that this
algorithm can be parallelized with great
advantage. The parallel version of this
algorithm is found to be more efficient
than most other methods. Thus, we see
that for the nested-loops join, a parallel
implementation of an inefficient serial
algorithm looks good. More details con-
cerning the parallel approach can be
found in Section 6.

This algorithm is also chosen in a pro-
posed model for main memory databases
called the DBGraph storage model
[Pucheral et al. 1990]. The entire
database is represented in terms of a
graph-based data structure called the
DBGraph. A set of primitive operations
is defined to traverse the graph, and all
database operations can be performed us-
ing these primitive operations. Advan -
tages of this model are efficient process-
ing of all database operations and
complex queries, compact storage, and
uniform treatment of permanent and
transient data.

2.2 Sort-Merge Join

The sort-merge join is executed in two
stages. First, both relations are sorted on
the join attributes. Then, both relations
are scanned in the order of the join at-
tributes, and tuples satisfying the join
condition are merged to form a single
relation. Whenever a tuple from the first
relation matches a tuple from the second
relation, the tuples are concatenated and
placed in the output relation.

Algorithm

The exact algorithm for performing a
sort-merge join depends on whether or
not the join attributes are nonkey at-
tributes and on the theta operator. In all
cases, however, it is necessary that the
two relations be physically ordered on
their respective join attributes.

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ● 73

The algorithm for performing equijoins
is as follows:

Stage 1: Sort process
sort R on r(a);

sort S on s(b);

Stage 2: Merge process
read first tuple from R;
read first tuple from S’;
for each tuple r do

{ while s(b) < r(a)
read next tuple from S;
if r(a) = S(b) then

join r and s
place in output relation Q };

Discussion

The merge process varies slightly de-
pending on whether the join attributes
are primary key attributes, secondary
key attributes, or nonkey attributes. If
the join attributes are not the primary
key attributes, several tuples with the
same attribute values may exist. This
necessitates several passes over the same
set of tuples of the inner relation. The
process is described below.

Let there be two tuples, rl and r2, in
R that have a given value x of the join
attribute r(a) and three tuples, s1, s2,
and s3, in S that have the same value x
of the join attribute S(b). If the above
join algorithm is used then when r2 is
the current tuple in R, the current tuple
in S would be the tuple following s3.
Now the result relation must also in-
clude the join of r2 with s1, s2, and s3.
To achieve this, the above algorithm must
be modified to remember the last r(a)
value and the point in S where it started
the last inner loop. Whenever it encoun-
ters a duplicate r(a) value, it backtracks
to the previous starting point in S. This
backtracking can be especially expensive
in terms of the 1/0 if the set of tuples
does not fit into the available main mem-
ory and the tuples have to be retrieved
from secondary storage for each pass.

Performance

If the relations are presorted, this algo-
rithm has a major advantage over the

brute force approach of the nested-loops
method. The advantage is that each rela-
tion is scanned only once. Further, if the
join selectivities are low, the number of
tuples compared is considerably lower
than in the case of the nested-loops join.
It has been shown that this algorithm is
most efficient for processing on a unipro -
cessor system [Blasgen and Eswaran
1977].

The processing time depends on the
sorting and merging algorithms used. If
the files are already sorted on the join
attributes, the cost is simply the cost of
merging the two relations. In general,
the overall execution time is more depen-
dent on the sorting time, which is usu-
ally 0(n log n) for each relation, where
n is the cardinality of the relation.

Execution is further simplified if the
join attributes are indexed in both rela-
tions. The Simple TID algorithm starts
by scanning the join attribute indices and
making a list of tuple-id pairs corre-
sponding to the tuple pairs that partici-
pate in the join [Blasgen and Eswaran
1977]. In the next stage, the tuples them-
selves are fetched and physically joined.
This approach reduces the number of tu-
ples read into main memory and, as a
result, the amount of 1/0 needed. If the
index is not the primary index, however,
retrieval of the records may be rather
inefficient [E1-Masri and Navathe 1989].

Applicability

If no indexes exist on the join attributes,
if not much is known about the select ivi -
ties, and if there is no basis for choosing
a particular join algorithm, then this al-
gorithm is often found to be the best
choice [Blasgen and Eswaran 1977; Su
1988].

With the help of hardware sorters, this
algorithm makes a good candidate for
hardware implementation. Several
database machines, such as VERSO
[Bancilhon et al. 19831 use this as the
primary join method.

The sort-merge join algorithm can also
be used to implement the full-outerjoin.
The algorithm for performing the

ACM Computing Surveys, Vol 24, No 1, March 1992

74 “ P. Mishra and M.

full-outerjoin

R =M=,(~)=,(6)S

using the sort-merge
lows:

sort R on r(a);

sort S on s(b);

read first tuple from R;

read first tuule from S:
for each tu~~e r do

{ while’s(b) < r(a)

write s into Q

method

H Eich

is as fol -

pad R-attributes with null values

read next tuple from S;

if r(a) = s(b) then

join r and s

place in output relation Q };

2.3 Hash Join Methods

The success of the sort-merge join lies in
the fact that it reduces the number of
comparisons between tuples. A tuple from
the first relation is not compared with
those tuples in the second relation with
which it cannot possibly join. Hash join
methods achieve the same effect in an-
other way [Bratbergsengen 1984; Good-
man 1981]. They attempt to isolate the
tuples from the first relation that may
join with a given tuple from the second
relation. Then, tuples from the second
relation are compared with a limited set

of tuples from the first relation.
A large number of join methods using

hashing has been proposed and/or imple-
mented. Some are discussed in the

following sections.

2.3.1 Simple l-lash Join Method

With the simple hash join, the join at-
tribute(s) values in the first relation are
hashed using a hash function. These
hashed values point to a hash table in
which each entry may contain entire tu -
ples or only tuple-ids [DeWitt et al. 1984].
In the latter case, it may be useful to
store the key values as well. Depending
on the efficiency of the hash function,
one or more entries may hash to the
same bucket. Then for each tuple of the
other relation participating in the join,

the join attribute values are hashed us-
ing the same hashing function as before.
If the values hash to a nonempty bucket
of the previous hash table, the tuple(s) in
the hash table bucket are compared with
the tuple of the second relation. The tu-
ples are joined if the join condition is
satisfied.

Algorithm

The algorithm for performing

RM r(a)~ S(b) s

is as follows:

for each tuple s in S do
{ hash on join attributes s(b)

place tuples in hash table based on hash

values};

for each tuple r do

{ hash on join attributes r(a)
if r hashes to a nonempty bucket of hash

table for S

then { if r d-matches any s in bucket

concatenate r and s

place in relation Q }};

In the above algorithm, the same hash-
ing function must be used for both
relations.

Discussion

The hash table should ideally be created
for the relation with the fewest distinct
values of the join attributes. This would
require maintaining detailed statistics on
each attribute of the relation or deter-
mining the number of distinct values on
the fly. In order to avoid this overhead,
the hash table is usually created for the
smaller of the two input relations [Brat-
bergsengen 1984]. This optimizes on the
amount of mace needed to store the hash
table. This ‘property is particularly use-
ful in the case of main memory process-

ing, where the entire hash table can be

placed in memory.
Nonequijoins are difficult to imple-

ment since they require that the hashing
function used maintain the correct order-

ing of the tuples. Hash functions with

this property are not uncommon; how-

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process in.gin Relational Databases “ 75

ever, they have the problem that they do
not easily lead to uniform distribution.

Performance

As a class, hash-based joins have been

found to be some of the most efficient join

techniques [Gerber 19861. The complex-

ity of this method is 0(n + m) because
both relations are scanned once. The per-
formance of this method depends on the

performance of the hash function. If the
hash function were perfect, it would be

possible to join tuples whenever a tuple

from the second relation hashed to a

nonempty entry of the hash table. Hash

collisions decrease the efficiency greatly

because each tuple that hashes to a

nonempty entry must be checked to see if

it satisfies the join condition. A further

problem with hash-based join methods is

that elimination of duplicates might be

harder because of collisions [Agrawal et

al. 1989].

Applicability

Hardware hashing units have made

hardware implementations of this

method feasible. This is discussed in de-

tail in a later section.

The simple hash join method can also

be used to implement one-sided joins, that

is, left- and right-outerjoins. The algo-

rithm for performing the left-outerjoin,

using the simple hash join technique is

as follows:

for each tuple s in S do

{ hash on join attributes s(b)

place tuples in hash table based on hash

values; }

for each tuple r do
{ hash on join attributes r(a)
if r hashes to a nonempty entry of hash
table for S
and if suitable s found
then { concatenate r and s

place in relation Q }

else write r into Q

pad S-attributes with null values};

With a little modification, a similar

algorithm can be used to perform the

right-outerjoin.

2.3.2 Hash-Partitioned Joins

Hash-partitioned joins attempt to opti-
mize join execution by partitioning the

problem into parts. They use hashing to

decompose the join problem into several

subproblems that are much easier to

solve. The divide-and-conquer approach

has been found to have a number of ad-

vantages; not only is the overall effi-

ciency improved, but partitioning makes

the parallelization of the algorithm eas-

ier by allowing independent pairs to be

processed in parallel. This results in fur-

ther performance improvement. The gen-

eral process works as follows.

A hash function, referred to as the split

~unction, is usecll to partition the tuples
in each relation Into a fixed number of
disjoint sets. The sets are such that a
tuple hashes into a given set if the hashed

value of its join attributes falls in the

range of values for that set. Then the

tuples in the first set of one relation can

match only with the tuples in the first

set of the second relation. Thus, the

processing of different pairs of corre-

sponding partitions from the two sets are

independent of other sets, As a result,

these partition pairs can be processed in

parallel. Figure 1 shows the load reduc-

tion, The horizontal side represents tu-

ples in relation S, and the vertical is for

relation R. In both Figures la and lb
the shaded area represents the number
of tuples that must be actually compared

in the join process. It can be seen that

partitioning reduces the join load consid-

erably. Tuples in partition pairs from

both relations may be joined by a simple

hash join or any other join method.

Several implementations of hash-parti-

tioned joins have been described in the

literature; for example, GRACE hash

join, hybrid hash join, and the hashed

loops join [DeWitt and Gerber 19851.

Some of these are discussed in the follow-

ing sections.

ACM Computmg Surveys, Vol. 24, No 1, March 1992

76 ● P. Mishra and M. H. Eich

,., .,
,,, ,,, , ,,, , .,,,

Relatlon S
(a)

Figure 1. Reduction of Join load.
mg.

s,
--) ●

.,

.’

u J
c ,’ ,’ ,’
0 ,’,, RI
z
w
G 1’
E

,,, ,,

,,, ,,,

Relatlon S
(b)

Simple Hash-Partitioned Join. In the
simple hash-partitioned join [Gerber
19861, not all the partitions are created
at the beginning of the operation; in-

stead, each partition pair is created and
used up before the next is generated.

As in the description above, the num-

ber of partitions and the range of

attribute values in each partition are de-

termined. Before the relations are

scanned, the range of hash values for the

current partition is chosen. Ideally, the

ranges should be such that all partitions

are of equal size. Since this is hard to

accomplish, the ranges are determined

by dividing the total range of attribute

values into equal-sized subranges. The

number of subranges is equal to the

number of partitions desired. This, in

turn, depends on factors like the amount

of main memory available and the num-

ber of processors. Next, the outer rela-

tion is scanned, and the attribute values

are hashed. If the hash value falls in the

current range of hash values, the tuple is

insert ed into the hash table for the cur-

rent partition; otherwise, it is written

into a temporary file. The hash table for

the partition is complete when the whole

relation has been scanned.

Next, the inner relation is scanned.

The join attributes are hashed using the

same hash function. If the hashed value

falls in the current range, the join pro-

cess is initiated; otherwise, the tuple is

(a) No partitioning (b) with partition-

written into a temporary file. The pro-

cess is repeated using the temporary files

as input until all the tuples have been

used up in at least one of the relations.

Algorithm

The algorithm for performing

RM r(a)6s(b) s

is as follows:

repeat

choose hash range for current partition;

for every s do

{ hash attribute values;

if value falls in current range then

make entry in partition hash

table

else write tuple in temp-S };

for every r do

{ hash on join attributes;

if value falls in current range then

{ if match found in hash table

~hen

{ concatenate tuples r and s

place in output relation Q}

else discard tuple}

else write tuple in temp-R };

S:= temp-t3;

R:= temp-R;

until (I S \ = null);

Temp-R and temp-S are temporary rela-

tions used to avoid processing of all tu-

ples at each step in the algorithm. The

smaller relation S is partitioned first to

reduce the execution time.

ACM Computmg Surveys, Vol. 24, No 1, March 1992

Join Processing in Relational Databases ● 77

Discussion

This is a naive implementation of a par-

tition-based join. An obvious source of

inefficiency lies in the fact that a tuple

may be read and written into the tempo-

rary relation several times before it actu-

ally participates in a join.

A variation of this algorithm, called

the simple toss hash join [Gerber 1986],
is found to be similar in performance.

This algorithm is exactly the same as the

foregoing simple hash-partitioned algo-

rithm except that the temporary rela-

tions are not generated. Instead, the two

input relations are scanned in their

entirety each time a new partition is pro-

cessed. This method has the disadvan-

tage that all tuples will be read as many

times as the number of partitions being

generated. It has been found that the

overhead associated with multiple scans

of the relation is comparable to the over-

head of creating temporary relations in

each iteration of the algorithm.

Performance

According to the results of a performance
evaluation study reported in Gerber

[19861, the amount of memory available

has a significant effect on the perfor-

mance of this algorithm. Unless the

memory is about 1.2 times the size of the

smaller relation, the algorithm is found

to perform worse than other join

algorithms.

Applicability

The 1/0 overhead associated with this
process is so high as to preclude its use
for any but the smallest relations. How-

ever, partitioning may not be necessary

for small relations, and the simple hash

join method may be found to be more

useful [Nakayama et al. 1988]. Simple

hash-partitioned joins may be good to

support pipelined processing.

GRACE Hash Join Method. The
GRACE hash join method relies on the
fact that the dynamic clustering feature
of hashing allows joins to be performed

efficiently [Kitsuregawa et al. 1983]. It

can be used on both single processor and
multiprocessor machines and is divided
into a partitioning and a matching phase.

During the partitioning phase, the two

relations are split into an equal number

of sets. The sets are disjoint within a

relation. For eaclh set of tuples from one
relation there is a corresponding set of
tuples in the other relation. These sets

reside on different machines or different

disk files. The matching operation is per-

formed separately for each partition. A

tuple in one partition need not be com-

pared with a tuple in any other partition.

This reduces the join load considerably.
Results from all matching steps are
merged together to form the output
relation.

Algorithm

In the algorithm presented here, the tu-
ples in related buckets are joined by a
simple hash join. The algorithm for per-
forming R CXI,(~jO~c~)S is as follows:

for each tuple r do

{ hash the join attributes r(a)

place tuple in appropriate output buffer

Ri};
flush all output buffers to disk;

for each tuple s do
{ hash the join attributes s(b)
place tuple in appropriate output buffer
Si};

flush all output buffers to disk;

fori=l,2,Ndo
{ for Ri do

{ build a hash table for tuples
read hash table for Ri into memory};

for Si do

{ for each tuple in Si do
hash the join attributes S(b)

if match found in Ri then
concatenate the two tuples
place in output relation Q});

Discussion

In this algorithm the partitioning and
joining phases are completely disjoint.
There are N partitions created for each
relation. Flushing of buffers to disk is
shown to be performed only at the end of

ACM Computmg Surveys, Vol. 24, No. 1, March 1992

78 “ P. Mishra and M. H. Eich

the partitioning phase. As a buffer for a
partition is filled, however, it is actually
written to the corresponding disk file for
that partition. At the end of the parti-
tioning phase, if any additional memory
is available, some of the partitions may
be split into smaller partitions. The ad-
vantage of this is discussed in the section
on handling partition overflow.

Performance

The GRACE hash join method takes
0((n + nz)/~) time to perform joins
where the relations R and S are stored
in K memory banks and (2 x K) proces-
sors are used [Kitsuregawa 19831. A mul-
tiprocessor system is not essential, even
though it is desirable, for this algorithm
to be applicable. The performance of the
GRACE hash join method is not affected
much by the amount of memory avail-
able [Gerber 19861. Also, memory use is
optimal during the join phase as com-
pared to the partitioning phase.

The overall gain in performance de-
pends on the collision factor of the hash
function, on how effectively the hash
function randomizes the attribute values,
and on the size of individual buckets with
respect to the available main memory.

Applicability

The load reduction feature (tuples in one
bucket do not have to be compared to
tuples in other buckets) makes it useful
in the case of large databases. Disjoint
partitioning makes it ideal for imple-
mentation on multiprocessors.

Hybrid Hash Join Method. The hybrid
hash join has been described in DeWitt
and Gerber [1984] and Shapiro [1986].
During the partitioning phase, the hy-
brid hash algorithm creates a number of
partitions such that the hash table for
any partition would fit into the available
main memory. Instead of writing out each
partition as it is created, however, the
hybrid hash join creates and keeps one
partition in memory while writing out
all others. Thus, at the end of the parti -

tioning phase, the hash table for one of
the partitions is in main memory and the
remaining partitions reside on the disk.

Algorithm

The algorithm for performing

RD4 r(a) fls(b) s

is as follows:

for each tuple r do

{ hash the join attributes r(a);
if hash value lies range for partition RI

then

insert entry in hash table

else place tuple in appropriate buffer

Ri };
flush all buffers except RI to disk;

for each tuple s do

{ hash the join attributes s(b);

if hash value lies in range for partition S1

then

initiate join process with tuples in

R1
else place tuple in appropriate buffer Si};

flush all buffers to disk;

fori=2,ndo

{ read tuples in Ri into memory

build a hash table for Ri};
for each Sc do

{ for each tuple in Si do

hash the join attributes S(b);

if match found in Ri then

concatenate the two tuples

place in output relation Q};

Discussion

This algorithm is similar to the GRACE
hash join in that the partitioning and
joining phases are, for the most part,
disjoint. The difference lies in the fact
that the hybrid hash algorithm does not
write out all partitions to the disk. It
starts the join process on the first pair of
partitions while the second relation is
being partitioned. This minimizes the 1/0
activity to the extent of not having to
write the first partition to the disk and
then read it back into main memory once
the partitioning phase is complete. This
is particularly advantageous in the case

ACM Computing Surveys, Vol. 24, No. 1, March 1992

Join Process ingin Relational Databases w 79

of systems with large main memories
where partitions may be quite large.

Performance

This algorithm has been found to per-
form at least as well as the GRACE hash
join method that it resembles [Gerber
1986]. It optimizes the use of main mem-
ory even during the partitioning phases
by initiating the join process if additional
memory is available. Thus, if additional
memory is available, it outperforms the
GRACE algorithm. In situations where
the amount of main memory available
changes dynamically, an adaptive hash-
join algorithm is more efficient [Zeller
and Gray 1990]. This has been imple-
mented as a prototype in Tandem’s Non-
Stop SQL. It is limited to the case of
equijoins since nonequijoins require the
correct ordering of tuples.

Applicability

The performance characteristics indicate
that this algorithm may be chosen over
other hash-partitioned algorithms if sig-
nificant amounts of main memory are
available.

Hashed Loops Join. The hashed loop
join is a variation of the nested-loops join
technique [Gerber 1986]. In the first
phase, the outer relation is divided into a
fixed number of parts. Next, each parti-
tion is read into memory one at a time. A
hash table is constructed for each parti-
tion when it is read into main memory.
Next, the tuples in the inner relation are
read. The join attributes are hashed, and
the hash values are used to probe the
hash table for the current partition for
matching tuples, Thus, the inner rela-
tion is read once for each partition, and
the hash table is used to speed up the
process of finding a match.

Algorithm

The algorithm for performing

RW r(a)ds(b) s

is as follows:

partition R using a hash split function;

for each partition Ri do
{ read partition into memory;
create hash table for partition;

for each tuple s do

{ hash attribute value;

if s hashes to nonempty entry of hash

table for Ri then

initiate join of s and r;
place result in Q}};

Discussion

A simpler version of the above algorithm
avoids the overhead of partitioning by
staging the outer relation R in phases

[Nakayama et al. 19881. In each phase,
as much of R is staged as the size of the
available main memory allows.

Performance

Even though this algorithm is based on
the slow nested-loops join method, it is
found to perform better than other algo-
rithms for a large range of available
memory [Gerber 1986]. The reason for
this is that the presence of a hash table
makes probing for matches fast. Since
this method does not involve writing out
and reading in of partitions, it incurs less
1/0 overhead than even the hybrid hash
join method [Gerber 1986]. Furthermore,
the inner relation is read once for each
partition of the outer relation rather than
once for each tuple or each block of the
outer relation as is the case in the tuple-
and block-oriented implementations of
the nested-loops join method.

Applicability

This method is found to be especially
useful when partition overflow is a prob-
lem [Gerber 1986].

2.4 Summary

Various join techniques have been de-
scribed in this section. Although there
may be other methods, this is a represen-
tative selection. Most of these methods
have been studied in detail, and the

ACM Computmg Surveys, Vol 24, No 1, March 1992

80 ● P. Mishra and M. H. Eich

relative performance in various kinds of
computing environments has been com-
pared [Bitten et al. 1983; Gerber 1986;
Schneider and DeWitt 19891.

3. JOINS BASED ON SPECIAL DATA

STRUCTURES

It has been found that some inefficiencies
in the join operation can be overcome by
means of specially tailored data struc-
tures. Some of these have been in the
form of efficient index structures; others
have been designed specifically to sup-
port the join operation. The former speed
up joins by facilitating fast access to rela-
tions; for example, T-trees [Lehman and
Carey 19861, data space partitioning
[Ozkarahan and Bozsahin 1988], kd-trees
[Kitsuregawa et al. 1989bl, Be-trees
[Goyal et al. 1988]. The latter reduce the
response time of queries involving joins
by maintaining lists of matching tuples
for commonly joined relations. This in-
formation may be stored explicitly as in
the case of join indexes [Valduriez 19871
or implicitly as in the case of the data-
partitioning scheme in Ozkarahan and
Bozsahin [19881. Some such data struc-
tures are discussed below.

3.1 Join Indexes

Data structure

A join index is a relation with arity two

[Valduriez 19871. It identifies each result
tuple of a join by pointing to the partici-
pating tuples from each input relation.
Each pointer may be in the form of a key
value, physical address, or any other Iog-
ical value, surrogate, which uniquely
identifies a tuple in a relation. It is a
prejoined relation created by joining the
relations R and S and projecting the
result on the surrogates of the joined
tuples. Thus, each tuple in the relations
being joined must have a unique surro-
gate. Then a join index for two relations
is a binary relation that contains pairs of
surrogates. An example of a join index
for the two example relations R and S is
shown in Figure 2. Here we have added

tuple-ids as the surrogates for each rela-
tion. The relation may be clustered on
the surrogates for tuples of either or
both relations for fast access. The ioin
algorithm uses
locate matching
input relations.

the join index to
tuples from the two

Algorithm

using the ioin indexExecuting a join - .
consists of the following steps [Valduriez
1987]:

Scan join index to find matching tuples x;

Retrieve matching tuples x;

Concatenate tuples and place them in result

relation Q x;

Discussion

Since a join index is itself a relation, it
will incur all the overheads associated
with the creation and maintenance of a
relation. In Valduriez [1987] it is shown
that the maintenance cost of join indexes
is marginal in the case of foreign key
joins (most joins) because it is included in
referential integrity checking included in
the process. Furthermore, the join index
must be consistent with any changes
made in the participant relations. If join
indexes are maintained for several rela-
tion pairs in the database, the amount of
storage and housekeeping overhead can
be considerable [Desai 1989]. If the selec-
tivity factor is high, the number of en-
tries in the join index could approach the
size of the product of the cardinality of
the input relations. This expense must
be justified by frequent joins of the
relations involved.

Performance

The major cost in this method is the cost
of retrieving matching tuples. (The other
cost component, that of comparing tuples
to find matching pairs, is incurred only
at the time the join index is created.)
Therefore, the overall performance of the
algorithm is affected by the clustering
properties of the two relations. The best
results are obtained when both relations

ACM Computmg Surveys, Vol. 24, No. 1, March 1992

Join Process ingin Relational Databases w

Relatlon R

R-id employee pagscale

1 james I

2 jones 2

3 johns 1

4 smith 2

Relatlon S

S-Id payscale pay

1 I I 0000

2 2 10000

3 3 10000

Figure2. Join index.

are clustered on the join attributes. Join
indexes also give good results in the con-
text of complex queries involving many
joins and selects.

Applicability

Since surrogates are stored, selects and
projects may also be performed using the
join indexes [Valduriez 1987]. Join in-
dexes also provide an easy means of im-
plementing semijoins, With the help of a
join index, the semijoin operation R M S
simply consists of retrieving the tuples of
R listed in the join index. Query-
processing techniques based on join in-
dexes are presented in Valduriez [19861.
Processing of recursive queries using join
indexes is discussed in Valduriez and Bo -
ral [1986]. A natural extension of join
indexes is for complex object support
through hierarchical join indexes

[Valduriez et al. 19861.

3.2 Be-Trees

Data Structure

The Be-tree (composite B-tree) is a spe-
cial index structure which facilitates se-
lect and join processing [Desai 1989;
Goyal 1988]. The Be-tree is similar to a
B ‘-tree except that it indexes a given
attribute in more than one relation. That
is, it points to tuples with a given at-

Join index

R

R-]d S-Id

1 1

2 2

3 1

~i 2

tribute value in several relations. Figure
3 shows the basic format of a Be-tree
node assuming rrL relations are indexed.
It contains the key value and a list of
surrogates identifying the tuples from
each of the m relations with the associ-
ated key value. Here relation 1 is shown
to have n such tuples, and relation m is

shown to have k. This node list contains
all the information needed to perform a
natural join. An example of a Be-tree for
the example relations R and S is shown
in Figure 4, The index is created on the
payscale attribute, and the tuple-ids
shown in Figure 2 are used as the surro-
gates. A X is used to indicate a null
pointer or surrogate value.

Algorithm

The algorithm for performing the equi -

join R ~,(.)=.(~) S is as follows:

for every tuple s in S do
{ find node in B.-tree for key value S(b);
if a tuple r in R is found in the node list

then { concatenate r and s

place result tuple in Q }};

Discussion

The join process is expedited because the
tuple-ids of the tuples participating in
the join are isolated in the Be-tree nodes.
The page numbers of the pages partici-
pating in the join are determined from

ACM Computmg Surveys, Vol. 24, No. 1, March 1992

82 e P. Mishra and M. H. Eich

parent pointer

I A I
relatlon-1 relatlon-m

key tl ,,, tl

value t2 t2
. .

. .

tn tk

o 0

left-child rlgh{-child

pointer pointer

Figure 3. Be-tree node

A null value

zke Relatlon R Relatlon S

1
1 1

3

A A

Figure 4

L
3 A

A

Be-tree on payscale for relatlon R and S,

2
Relatlon S

3

A

the tuple-id. Information on page pairs the tuples and join them. The major ad-
participating in the join is stored in a vantages that have been projected are
matrix, which is used to decide the order that the number of 1/0s can be mini-
in which the pages are retrieved from the mized and that buffer use can be opti -
disk. Once a pair of pages has been re- mized by knowing which page pairs
trieved, the tuple-id lists are used to read participate in the join in advance.

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Processing in Relational Databases

Performance

. 83

parent pointer

The major cost in this algorithm is that
of searching the Be-tree. The number of
searches is least when the index struc-
ture is searched for the values of the join
attributes in the smaller relation.

Applicability

This method can only be used when an
index on the join attributes exists in the
form of a Be-tree. Although the equijoin
is the simplest to implement using this
index structure, the basic algorithm can
be extended to cover nonequijoins. This
can be done by means of appropriate Bc-
tree traversal and search of all nodes
along the path for matching tuples.

3.3 T-Trees

Data Structure

The T-trees index structure was proposed
in Lehman and Carey [1986]. It has been
found to have special use in the context
of main memory processing. A T-tree is a
binary tree with several elements per
node. It can be described as a combina-
tion of the AVL-tree and the B-tree data
structures. Its search method is similar
to that of AVL-trees, and its nodes are
similar in structure to B-tree nodes. Thus,
it has the fast search characteristic of
AVL-trees and the good storage proper-
ties of the B-tree. T-trees can have three
types of nodes: internal nodes, half-leaf
nodes, and leaf nodes. The structure of
an internal node is shown in Figure 5.
This node contains n key values and
would also have surrogates indicating the
tuples from the relation with each of
those values. Unlike the Be-tree, the T-
tree is constructed for only one relation.
Each interior node of the tree, called the
T-node, can have at most two children.
The left subtree is searched for key val-
ues less than keyl, and the right subtree
is searched for key values greater than
key..

EEkey, keyz

*

keys 000

right-child ~_ -1 1-+ left-’h’ld
pointer ‘ ‘ pointer

Figure 5. T-tree internal node

Algorithm

The underlying algorithm for performing
joins using T-tree index is the nested-
100PS join method [Lehman and Carey
1986]. The relation with the T-tree index
is chosen to be the inner relation. For
each attribute value in the outer rela-
tion, the T-tree is searched to find the
corresponding values in the tree. The
surrogates are then used to find the ap-
propriate tuples from the inner relation.
The gain in efficiency is due to the fact
that the T-tree index permits fast loca-
tion of matching tuples from the inner
relation.

Discussion

A T-tree can be made to accommodate
duplicates easily [Lehman and Carey
1986]. This property makes it useful for
processing nonkey and secondary key
attributes.

Applicability

This algorithm is useful only if a T-tree
index exists on one of the input relations.
If an index were to be constructed at the
time of the join, the construction time
would mitigate any gains resulting from
the fast search of the tree.

ACM Computmg Surveys, Vol. 24, No 1, March 1992

84 ● P. Mishra and M. H. Eich

3.4 Kd-Trees

Data Structure

The kd-trees data structure was first pro-
posed and discussed in Bentley [1975].
Application of this data structure to the
case of searching in databases is dis-
cussed in Bentley [19791 and Bentley and
Kung [1979]. Many derivatives have
since appeared in the literature; for ex-
ample, extended kd-tree [Chang and Fu
1980], kdb-tree [Robinson 1981], and
gkd-tree [Fushimi et al. 1985].

A kd-tree is a multidimensional binary
search tree, where k is the dimensional-
ity of the search space. It can be used to
index a relation that has k distinct keys
al, a2, , ak. Each node in the tree con-
sists of a record, a left pointer, and a
right pointer. The index tree is created
as follows. The relation is first divided
into two equal-sized parts based on the
first key al. Both parts have the same
number of tuples. The values of attribute
al in the tuples in the first part are less
than values in the tuples in the second
part. Leaf nodes in the left subtree of the
root point to the first part, whereas those
in the right point to the second part. At
the root level, the attribute al is known
as the discriminator. At the next level,
the discriminator attribute is a2. Each of
the two parts above is divided into two
parts, each based on the values of a2.
This process is performed recursively,
with the appropriate discriminator at
each step, until the partitions are small
enough to fit on one page, Leaf nodes
point to pages that satisfy all of the dis-
criminator values above it.

All nodes at the same level in the tree
have the same discriminator. For a k-
dimensional index, the first k levels have
the discriminators al, a2, ak, re-

spectively. At lower levels in the tree,
the cycle repeats with discriminator at
the (k + l)th level being al.

This data structure has been found to
be an effective way of achieving multidi-
mensional clustering. It is particularly
useful in systems that allow queries to
specify search conditions in terms of sev -

eral keys. In this respect, a kd-tree may
be considered as a replacement for fea-
tures like inverted files and superim-
posed coding systems. The advantages
that kd-trees claim over previous at-
tempts to address the same problem are
logarithmic insertion, search and dele-
tion times, and the ability to handle
many different types of queries, such as

range, partial match, nearest neighbor,

and intersection queries.

An algorithm based on the use of the

kd-tree is a partition-based algorithm,

where the range of attribute values in

and the size of partitions is not fixed or

predefine. The partitioning of relations

is based on the number of tuples, not on

the ranges of attribute values. It is highly

unlikely that both relations would have

the same overall range of attribute val-

ues and also the same distribution of

attribute for each discriminator. As a

result, partitions of two relations do not

have a unique mapping. In most cases,

partition pairs will have overlapping

ranges of attribute values. ln order to

distinguish these partitions from the

fixed-range partitions discussed before,

the partitions in this case are called

waves.

A wave is a set of pages from each

relation participating in any given stage

of the join operation. Each join step is

characterized by a join range. The tuples

in the pages making up a wave must

include attribute values in this range.

Each page in a wave is characterized by

the upper and lower limits of the join

attribute values contained in a page.

Since the range of join attribute values

contained in a page depends on the dis-

tribution of the attribute values, upper

and lower limits of the join attribute val-

ues of all pages in a wave are usually not

the same. This leads to the fact that a

wave does not have a well-defined range

of attribute values. The attribute range

in each page in a wave will fall within

the join range or overlap it partially. For

example, the wave shown in Figure 6a

consists of three pages, each with a dif-

ferent range of join attribute values. It

must be remembered that each page con-

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases 8 85

5 8

s

RI

R2

R3 15

1 10

(a)

5 8

t+2.

10 15

(b)

1 S1

S2 10

S3

S4

S5

[
S6

201 E!=L
5 25 5 25

(c) [d)

Figure6. Kd-tree join.

tains the same number of tuples, and the

range of attribute values is different as a

result of the nonuniform distribution of

attribute values in relations.

Algorithm

Any algorithm based on the concept of

waves must define how waves are deter-

mined. Consider the relations R and S,

with six pages each, shown in Figure 6.

The basic steps in one wave-based algo-

rithm are

repeat

load wave from 1?;

determine join range Jr;
load corresponding wave from S;

join the two waves;

until R has been exhausted;

Then, the relations in Figure 6 could

be joined in the following steps:

load R-wave = [RI, R2, R3];
let join range = 1 – 15;

load S-wave = [S1, S2, S3, S4, S5, S61;

join R-wave and S-wave;

load R-wave = [R4, R5, R61;
let join range = 10 – 25;

load S-wave = [S4, S5, S61;

join R-wave and S-wave;

In terms of Figure 6, the first wave

from relation R (shown in Figure 6a)

joins with the first wave in relation S

(shown in Figure 6c). The second wave in

relation R (shown in Figure 6b) joins

with the second wave in relation S

(shown in Figure 6d). The join range is

determined according to the Jrout defini-

tion (detailed below). This example is

meant only to illustrate the general

working of the ~d-’tree join method; it is

not the most optimal way of joining R
and S.

Discussion

Factors tlhat determine the exact form of

the algorithm are as follows:

(1) Wave size can vary from a minimum

of one page to a maximum of (M – 1)
pages, where M is the size of main

memory available [Kitsuregawa et al.

1989bl.

(2) The join range is defined in terms of

the maximum and minimum values

of the join attributes contained in the

pages of a wave. Two possible defini-

tions are as follows [lKitsuregawa et

al. 1989b]:

(a) Jrin. The lower limit of the range
is the largest of the lower limits of all

the pages in the wave. The upper

ACM Computing Surveys, Vol 24, No. 1, March 1992

86 “ P. Mishra and M. H. Eich

limit of the join range is the smallest
of the upper limits of the pages in the
wave. A consequence of this defini-
tion is that many tuples in the wave
have join attribute values that fall
outside the join range.

(b) Jrout. The lower limit of the join
range is the smallest of the lower
limits of the individual pages. The
upper limit the join range is the
largest of the upper limits of the pages
in the wave. As a result, many tuples
in the relation that would fall in the
join range are not part of the wave.

In the former case, waves of consecu-
tive join steps may have some pages in
common. In the latter case, there is no
overlap in the pages of waves of consecu-
tive join steps. A number of algorithms
based on different combinations of the
above factors are described in
Kitsuregawa et al. [1989bl.

Performance

An algorithm between kd-tree indexed
relations that does not take advantage of
the wave concept will have all the over-
head of the nested-loops method

[Kitsuregawa et al. 1989bl. The wave
concept offers the benefits of partitioning
to a limited extent. Instead of comparing
every tuple in one relation to every tuple
in the other relation, tuples in wave pairs
are compared. This is not as efficient as
comparing tuples in disjoint partition-
pairs, such as in the GRACE hash join
method, but it is still better than the

exhaustive comparisons of the nested-
loops method.

Factors that affect the performance of
the wave-based join operation on kd-tree
indexed relations are as follows:

(1) Wave size.

(2) Join range, which may be determined
from the point of view of either one or
both relations.

(3) Wave propagation speed, defined as
the inverse of the number of join
steps. The number of join steps is
determined by the wave size and how

the boundaries of a wave are
determined.

Other join algorithms based on this
data structure are presented and evalu-
ated in Harada et al. [19901.

Applicability

This method provides an efficient way of
joining two relations if both have a kd-
tree index on the join attributes. Its real
significance, however, lies in the fact that
it is general enough to be applied to any
pair of relations that have clustered in-
dexes on the join attributes.

3.5 Prejoins

Data Structure

The data structure on which this join
method is based is the predicate tree

[Valduriez and Viemont 19841, which is a
multidimensional access method, The use
of predicate trees for performing joins
and selects is discussed in Cheiney et al.
[1986]. A predicate tree is a balanced
tree index structure associated with a
relation. The tuples in the relation are
divided into classes based on the predi-
cates defined for the tree. At each level
in the tree, the predicate pertaining to
one specific attribute is used; for exam-
ple, refer to Figure 7. This figure shows a
predicate tree with two levels. The first
level has predicates based on name; the
second has predicates based on payscale,
The number of levels in the tree is equal
to the number of attributes on which the
predicates are defined, The tuples in any
subtree satisfy the predicates defined at
each node on the path from the root of
the predicate tree to the root of the sub-
tree. The leaf nodes of a predicate tree
contain pointers to the actual database
where the tuples with the corresponding
predicate values exist. In Figure 7, the
database is, in effect, partitioned into four
parts based on the predicate values indi-
cated by the four leaf nodes.

Algorithm

The join space for each relation is divided
into disjoint partitions based on the pred-

ACM Computing Surveys, Vol 24, No. 1, March 1992

Join Processing in Relational Databases “ 87

predicates:

name starts with a -m

name starts with n - z

payscale <2

payscale >2

@ pointer to page

names starting

with a-m

A

names starting

with n - z

A

Payscale <2 Payscale >2 pagscale <2 payscale >2

0
Figure 7. Predicate tree. Predicates: Name starts with a-m, name starts with n-z,

payscale <2, payscale z 2. @, pointer to page.

icates specified for the relation. As a re-
sult, the total join consists of the union of
the joins of the individual partition pairs.
The above holds true if it is assumed that
both input relations have the same predi-
cates, If not, the join may have to be
performed in a manner similar to the
kd-tree join.

Discussion

This algorithm takes advantage of multi-
attribute clustering. Queries containing
the predicates on which the tree is based
execute faster and generate fewer 1/0
requests. A query-processing method that
considers multiattribute clustering is
discussed in Harada et al. [19901.

Performance

The performance of joins on relations in-
dexed by predicate trees depends on two
factors: (1) the join method used to join
partition pairs and (2) whether the same
predicates are used to create the predi-
cate trees for both relations. If the same
predicates are used, the efficiency is as
high as any other partition-based join
method. If not, the efficiency is the same
as the kd-tree join method described
earlier.

Applicability

This method is limited to the cases where
the join attributes are used to define the
predicates associated with a relation’s
predicate tree. Although equijoins are the
simplest to perform, with appropriate tree
traversal, the predicate tree can also be
used for nonequijoins.

3.6 Summary

Join methods in this section have been
described in the context of specific data
structures. Some of them facilitate join
execution by providing fast access to re-
lations. Others, such as the Kd-tree join
method, are general enough to apply to
cases where overlapping partitioning of
relations exists. The join index method
and the Be-tree method are examples of
precomputed joins that are most useful
in situations where the relations are
joined often and rarely updated.

4. JOIN CLASSIFICATION

Each join algorithm performs the follow-
ing three major functions:

(1) Partition

(2) Match

(3) Merge

ACM Computing Surveys, Vol. 24, No 1, March 1992

88 “ P. Mishra and M. H. Eich

For discussion purposes, suppose we
wish to perform R MS, where R and S
have n and m number of tuples, respec-
tively. As we have seen, in algorithms
with no partitioning, such as, nested
loops, all (n x m) tuple pairs must be
examined to calculate the resulting set.
This is the worst-case scenario. The pur-
pose of the partition step is to reduce the
number of pairs of tuples to be examined;
for example, the hash-partitioning ap-
proaches use a hashing step, and the
sort-merge method uses sorting. Parti-
tioning may, however, increase the over-
head associated with the execution of a
join. Partitioning is usually done on each
input relation separately. The match step
is where tuples in each of the partitions
are matched. Finally, in the merge phase,
the matched tuples are combined to-
gether to create the result relation. The
merge step may simply consist of con-
catenation of tuples as in the sort-merge
method. Or it may involve staging of
tuples, for example, in hash joins where
the tuples themselves are not stored in
the hash tables.

In this section we concentrate on the
partitioning phase and describe a classi-
fication scheme based on it. The type of
partitioning is used to differentiate be-
tween the various join methods, In the
following sections, we further investigate
the partitioning phase of join processing
and then introduce the final categoriza-
tion scheme.

4.1 Partitioning

The various kinds of partitioning seen in
join algorithms are as follows:

(1)

(2)

(3)

None. No partitioning is performed,
and the input relations must be ex-
haustively compared in order to find
the tuple pairs that participate in the
join.

Pre. Partitioning is not performed as
part of the actual join algorithm.
These techniques assume that some
partitioning exists.

Implicit. Although the join algorithm
does not have a step aimed specifi-

ACM Computmg Surveys, Vol. 24, No 1, March 1992

tally at performing the partitioning,
it does do some dividing or ordering
of the data so fewer tuples need to be
compared in the match step.

(4) Explicit. The join algorithm contains
an explicit partitioning phase as part
of its execution.

In all cases of explicit partitioning,
each tuple is uniquely assigned to only
one partition. That is, partitions within a
relation are disjoint. In addition to the
kind of partitioning phase, another im-
portant factor is the mapping between
the partitions of the two input relations.
The mapping can be best described in
terms of the join attribute range of parti-
tions, which is the range of join attribute
values that can be assumed by the tuples
falling in the partition.

Suppose that R and S have been par-

titioned in such a way that tuples in a

given partition R, can join tuples in ex-
actly one partition S,. In other words, R,
and S, have the same join attribute
range. In this case, there is a one-to-one
mapping between partitions of R and S.
Such a situation is usually a result of
explicit partitioning. However, it is more
usual to have relations partitioned such
that the join ranges do not coincide; in-
stead, they overlap to a greater or lesser
extent. This is called the degree of over-
lap between partitions R, and S,.

Join algorithms can also be differenti-
ated on the basis of the degree of overlap
between the partitions of the two input
relations. Some possible degrees of over-
lap are described below and shown picto-
rially in Figure 8.

Complete. If no partitioning is per-
formed, there is no question of join
ranges. There is a complete overlap, and
all tuples must be compared. These cases
have the highest join load in that all
tuple pairs must be compared. In Figure
8a all tuples of R are shown to be com-
pared to all tuples from S. For example,
in performing a nested-loops join, the
james employee tuple in relation R would
be compared to each of the three tuples
in relation S. Likewise, each of the other

Join Process ingin Relational Databases 0 89

R:l I 2 3 _.L_.-l

S: I I 2 3 l---=--l

R:\ I I 2 3 -

—
R: I 1 2 3 I ____5_J

Figure 8. Degrees of overlap. (a) None: only one partition in each

relation; (b) variable overlap; (c) minimum overlap; (d) disjoint; (e)
complete,

tuples in R would be compared to all
three tuplesin S.

Variable overlap. There may be a
considerable amou~t of overlap between
different partitions. However, the
amount of overlap varies between differ-
ent partitions. In Figure 8b tuples in the
first partition of R are compared to tu-
ples in the first and second partitions of
S. Tuples from the second partition of R
are compared to tuples in the second and
third partitions of S. Tuples in the third
partition of R are compared only to tu -
ples in the third partition of S. Tuples in
the fourth partition of R are compared to
tuples in the third and fourth partitions
of S. The amount of overlap between join
ranges may be anywhere from no overlap
to complete overlap. Since the amount of

overlap cannot be predicted, it is not pos-
sible to predict the reduction in join load
accurately. The join process involves fix-
ing the join range at each step and find-
ing the partitions from both relations that
include all tudes that fall in the ioin
range. Due t; the variable natur~ of
waves when using Kd-tree indexes, the
wave-based algorithms have variable
overlapping partitions.

Minimum overlap. With these tech-
niques the join ranges may overlap, The
degree of overlap is, however, minimum.
There may be at most one attribute value
in common between two partitions (see
Figure 8c). Such partitioning results in a
high degree of reduction in the join load.
The sort-merge algorithm has a
minimum overlap.

ACM Computing Surveys, Vol. 24, No. 1, March 1992

90 “ P. Mishra and M. H. Eich

Table 1. Partltlonmg Descr!ptlon

Algorithm Partitioning Type Degree of Overlap

Sort-merge Implicit Minimum overlap
Nested loops None Complete
GRACE hash join Explicit Disjoint
Hybrid hash join Explicit Disjoint
Simple hash partitioning Explicit Disjoint
Hash loops None Complete
Kd-tree index Pre Variable overlap
Join index Pre None
Simple Hash Impliclt Variable overlap
Be-tree Index Pre None
Prejom Pre Variable overlap

Disioint. Both relations have the same
join r&ges for all partition pairs. These
join ranges are fixed before partitioning
the relations explicitly. Thus, tuples in a
given partition R, can join only with
tuples in the corresponding S, (see Fig-
ure 8d). That is, each partition of R maps
to one and onlv one ~artition of S, Parti -
tion pair joins-can b: carried out in isola-
tion and be independent of each other.
The result of joining the two relations is
the union of the results of joining the

partition pairs. Disjoint partitioning

therefore provides a high and predictable

amount of reduction of the join load.

Hash-partitioning algorithms are disjoint

since the partitions are disjoint and tu -

ples from only one partition of each rela-

tion are compared.

None. Each tuple of one relation in
the partition joins with each tuple of the
other relation in the partition. In other
words, each join range consists of exactly
one attribute value (Figure 8e). There is
no overlap between partitions of the two
relations. Partitions that do not overlap
are seen in precomputed joins using the
join index and Be-tree index. Join meth-
ods relying on no overlap have the small-
est join load. Note that this saving is
achieved at the expense of creating the
index beforehand and storing the pre -
computed join.

In the above classification, it may ap-
pear that some classes are merely special
cases of others. For instance, the mini-

mum overlap class appears to be a spe-

cial case of the variable overlap class. It

is, however, necessary to make the dis-

tinction between the two classes because

there are situations when the ~artition -
ing is consistently of the minimum
overlap variety. On the other hand, the
variable overla~ class encom~asses all.
algorithms whe~e it is never possible to
predict the degree of overlap.

In Table 1 the basic join algorithms
are described using these partitioning
descriptions. The nested-loop algorithms
perform no partitioning but have com-
plete overlap. Thus all (n x m) tuple

pairs must be examined for any such

join. Techniques that rely upon special

index data structures have no partition-
ing within the algorithms, These algo-
rithms simply do the matching by appro -
priate examination of the partitions
created by the index. The relations must
be indexed on the ioin attribute. and the.
index must be clustered. Most algo-
rithms, however, perform partitioning
within the join algorithm itself. Thus,
whenever a join is performed, the over.

head of partitioning is incurred. we can

differentiate between these algorithms

based on whether the partitioning is im-

plicit or explicit. Implicit algorithms, al-

though reducing the number of tuple

pairs to be examined, do not explicitly

perform a partition. For example, the

sort-merge algorithm reduces the num-

ber of tuples to be examined but does not

put tuples into partitions. The partition-

ACM Computmg Surveys, Vol. 24, No 1, March 1992

Join Process ingin Relational Databases - 91

overlap; (c) minimum overlap; (d)

ACM Computing Surveys, Vol. 24, No. l, March 1992

92 “ P. Mishra and M. H. Eich

ing is implicit based on the relative order
of tuples after the relation has been
sorted.

In Figure 9,1 we pictorially show the
five different types of join loads or over-
lap. As in Figure 1, the horizontal and
vertical axes represent the tuples in the
two relations. Each small box, then, rep-
resents a tuple pair to be examined. (In
this figure we assume that both R and S
have six tuples each.) The shaded boxes
in each figure indicate tuples to be com-
pared; the unshaded portions show tuple
pairs that do not need to be examined.
Figure 9a shows unpartitioned relations
where a complete overlap exists. Thus,
the entire 6 x 6 square is shaded. In this
case there is no partitioning and no sav-
ings, The algorithms with complete over-
lap are the loop types (nested and hash).
The other partitioning extreme is shown
in Figure 9e. Here a complete partition-
ing is performed with no overlap. The
maximum cost saving results because the
matching of tuples has been done before-
hand, and there is no need for a match
step in the join algorithm. As seen in
Table 1, the algorithms falling into this
class are the predefine join index and
the Be-tree index. Figure 9d shows a dis-
joint partitioning. Here each tuple of each
relation is placed into only one partition
(as with the three hashing algorithms),
Figures 9b and 9C show the two versions
of overlap partitioning, namely, the vari-
able overlap and the minimum overlap.
In Figure 9b, the type of overlap pro-
vided by using a Kd-tree index is shown.
Notice that partitions are generated with
no regular structure. The structure
shown in Figure 9C is much more precise.
Here the overlap between two successive
partitions is at most one tuple from one
relation. This is thus a minimum over-
lap. The sort-merge algorithm displays
this kind of partitioning. It is possible
with the sort-merge algorithm that two
successive partitions do not overlap at

1 This pictorial representation was inspired by sim-
ilar figures used to explain GRACE hash joins

EKitsuregawa et al. 19831.

all. Although these figures are not pre-
cise in that each algorithm of that type
always partitions precisely as shown,
they do accurately reflect the overlap-
ping between the partitions and the sav-
ings the partitioning provides.

4.2 Classification

Figure 10 shows our classification of join
algorithms based on this partitioning de-
scription. The first level in the tree indi-
cates the type of partitioning; the second
shows the degree of overlap. We have
indicated the class in which each of the
algorithms surveyed earlier fall. The
classification is fairly general, and it is
expected that any and every join algo-
rithm will have a definite place in the
classification.

5. JOIN PROCESSING IN A DISTRIBUTED

ENVIRONMENT

5.1 Factors in Distributed Processing

NIost of the algorithms discussed so far
have been for centralized computing en-
vironments in which the database re -
sides at one site and is accessed by users
at that site alone. With simple modifica-
tions, many of these algorithms can be
extended to the distributed case. In eval-
uating a join method for application to
the distributed environment extra fac-
tors must be considered, such as the
following:

Data transmission cost versus local
transmission cost. The cost of transmit-
ting data between sites depends on the
kind of network [Epstein 1982; Mackert
and Lehman 1986; Perrizo et al. 1989;
Yu et al. 1987]. In wide area networks
(WAN), the cost of data transmission
overshadows the local processing costs.
Query optimizers in databases dis-
tributed across such networks try to opti-
mize transmission costs even if it is done
at the expense of increased local process-
ing. In fast local area networks, trans-
mission costs are low, and processing
costs at the sites can no longer be ig-
nored [Wang and Luk 19881.

ACM Computing Surveys, Vol 24, No 1, March 1992

.Join Process ingin Relational Databases ● 93

JOINS

I
NONE

I

PRE IMPLICIT

1
MINIMUM VARIABLE

OVERLAP OVERLAP

I I
Sort-Merge Slrnple Hash

DISJOINT VARIABLE
OVERLAP

I
EXPLICIT

I
OISJOINT

1Primary
1

Secondary
Index Index

IrKd-tree Index

IJoin

Index
L

Prejoln

L-
Bc-tree

Index

Figure 108 Join classification.

Partitioning. Large relations are of-
ten partitioned and distributed across
sites. This is usually done to accOmnm-
.date eases where parts of a relation are
accessed most frequently by a single site

[Ceri et al. 1986; Chen and Lu 1989; Yu
et al. 1985]. ‘FEw type of partitioning,
whether horizontal, vertical, or both, de-
pends on the usage patterns. Horizontal
partitioning has a clirect effect on the

join operation and must be taken into
account.

Join site. Choosing sites at which the
join is to be executed depends on many
factors [Bandyopadhyay and Sengupta
1988; Cornell and Yu. 1988]; for example,
the site at which the result relation is

- GRACE

Hgbr-ld

‘Slmljle Hash

Partltlonlng

NONE

COMPLETE

[

Nested
Loops

Hash

Loops

desired, site of the largest relation or
relation fragment resides, and replica-
tion. The choice of site is also affected by
the data transmission costs. Depending
on the partitioning of relations, it may be
feasible to perform joins of fragments at
different sites. TIm partial results may
then be transmitted to a single site where
they can be concatenated to get the final
result.

Type of query processing. Opera-
tions in query processing may be per-
formed in strict sequence or be pipelined
[Lu and Carey :[985; Mikkilineni and
Su 1988; Richardson et al. 1987’].

Replication. ‘Whether relations or
fragments of relations are replicated is

ACM Computmg Surveys, Vol 24, No. 1, March 1992

94 “ P. Mishra and M. H. Eich

important in that the query optimizer
must be aware of the existence of all the
replications and whether they are consis-
tent with each other. It must then choose
between the copies based on the choice of
join site.

In the following section, the techniques
used for distributed join execution are
discussed in the context of the above-
mentioned criteria. The main steps in
the algorithms are also given.

5.2 Join Algorithms

In distributed databases, most join al-
gorithms used are built using the
algorithms devised for centralized
databases. For instance, since a semijoin
can be used to identify and transmit tu-
ples from one relation participating in a
join to another network node where the
other join relation resides, it is often a
common starting point for join algo-
rithms in distributed databases.

5.2.1 Semfioin

This implementation, consisting of one
semijoin operation followed by a join op-
eration, is particularly suited to the dis-
tributed environment since it helps
reduce the quantity of data transferred
between sites.

Algorithm

If the two relations R and S reside at
different sites and the result of a ~-join
between them must be made available at
the site of relation R, then they may be
joined in the following steps:

RI := T,(a)[R];

transfer R1 to site of S;

S1 := RIM
r(a)~s(b)s;

Transfer S1 to site of R;

Q:= slMr(a)o.(b)R

Discussion

The first three steps in the above algo-
rithm constitute the semijoin SM R. The
result relation Q in the last step is the

same as the result of RW S. However, to
perform RM S in a single step, one of
the two relations would have to be trans-
ferred to the other site in its entirety. In
the above method, the set of distinct val-
ues of the join attributes of R and
matching tuples from S are transmitted
between sites in the form of the interme-
diate relation RI. This volume of data is
not likely to exceed the data in either
one of the two relations, This is espe-
cially true if the join attributes are not
the primary key.

Applicability

Semijoins have been used to great advan-
tage in distributed systems despite the
fact that they necessitate multiple scans
of relations [Kang and Roussopoulos
198’7a, 1987b; Valduriez 1982]. This is
especially true in wide area networks
where the cost of data transmission is
usually higher than local processing
costs

In high-speed, local area networks,
however, the data transfer rate between
sites approaches the speed of data trans-
fer between main memory and disk [Lu
and Carey 1985]. In such cases, local pro-
cessing costs may overshadow data
transfer costs [Mackert and Lehman
1986], and the number of semijoins exe-
cuted may be more important than the
reduction of transmitted data [Masuyama
et al. 1987].

In queries that are solved using a se-
ries of semijoins, the sequence in which
the semijoins are executed can be impor-
tant [Gouda and Dayal 1981; Masuyama
et al. 1987; Yoo and Lafortune 1989].

A semijoin-based technique called
composite semiJ”oining has been devel-

oped for use in cases where multiple join

attributes are involved [Perrizo et al.

1989]. If the majority of the attributes in

a relation make up the join condition,

however, the overhead of transmitting

the entire relation may actually be less

than that of projecting out the join at-

tributes before transmission. Such a re-
lation-transmission technique has been
described in Sacco [1984].

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Processing in Relational Databases * 95

5.2.2 Two-Way Semijoins

The two-way semijoin operator is an ex-
tended version of the semijoin operation

[Kang and Roussopoulos 1987al. Like the
semijoin operation, its usefulness lies in
its ability to reduce relations. The result
of a two-way semijoin between two rela-
tions is a set of two relations. Formally,
it can be described as

R+ [r(a) Os(b)] +S= {R1, S1},

where

RI = R!xT[~lO~(~)S,

SI = SK T(a,os@,R

Algorithm

Let relations R and S reside at sites 1
and 2, respectively. Then the steps in the
computation of

R+ [r(a) ~s(b)] +S

are as follows:

RI = 7r,(a)[R];
send RI to site 2;
S’1 = Sk m;
RI. = Rlk S;
R1.. = RI – Rl_;
if

,.,,. r,.

R1.., < R1. _ then,,. ,,,,,
send R1 ~ to site 1;
Rll = RW Rl~;
else send Rlnm to site 1;

Rll = Rk Rlnm;
send S’1 to site 1;

RMS = R1lWS1;

Note the following:

(1) The intermediate relations RI ~ and
Rl~~ are created along with S1; the tu-
ples of R1 that participate in the semi-
join are placed in RI ~, whereas those
with no match in S are placed in RI ~m.

(2) The semijoin conditions in the cre-
ation of Rll using RI ~~ is the opposite
of the condition on all other semijoin and
join operations in the algorithm. The join
condition on all other semijoins and joins
is r(a)ds(b).

(3) The relation Rll is created to reduce
the size of R1 to the minimum needed to
perform the join.

Performance

The performance of a two-way semijoin is
evaluated on the basis of the amount of
reduction in the relations on which it
operates. Simulation results indicate that
it is more powerful than ordinary semi-
joins [Kang and Roussopoulos 1987a]. The
cost of executing two-way semijoins is
comparable to executing two back-to-back
semijoins. It will, however, always be
less since the relation fragment sent back
to the first site is the smallest possible.

Applicability

Most query-processing algorithms based
on semijoins can be modified to use two-
way semijoins instead. Simulation exper-
iments indicate that the response time
improves significantly [Kang and
Roussopoulos 198’7a].

5.2.3 Bloomjoin

A bloomjoin uses bloom filters to filter
out tuples that do not participate in a
join [Mackert and. Lehman 1986]. We
consider it a special implementation ap-
proach for a semijoin rather than a new
join algorithm. A bloom filter is a large
vector of bits that are initially set to O

[Bloom 19701. For a given relation, a
bloom filter is created in the following
steps:

(1) Apply a hash function to the join at-
tributes. The resulting hash value
points to a bit in the bit array.

(2) Set the bit pointed to by the hash
value to 1.

Once the bloom filter has been created
for a relation, it can be used to determine
whether a given attribute value is pre-
sent in the relation. In the case of the
join operation, a bloom filter is created
for one of the relations. Next, the join
attributes from the second relation are
hashed. If the hash value points to a bit
set to 1 in the bloom filter, the corre-
sponding tuple is likely to have a match
in the first relation.

ACM Computmg Surveys, Vol 24, No. 1, March 1992

96 “ P. Mishra and M. H. Eich

Algorithm ter on S and joining the two reduced

Assume that relations R and S reside at relations. This double reduction is simi -

sites 1 and 2, respectively. The major lar to the operating principle of two-way

steps in the process of joining R and S
semijoins described earlier.

are

generate bloom filter for S;

send filter to site 1;

for each r do

hash join attributes;

if hash value addresses a bit set to 1

then put r in R1
else discard s;

send RI to site 2;

join R1 and S;

Note that the same hash function must
be used on both relations.

Discussion

Bloomjoins have also been called hashed
semijoins [Mackert and Lehman 1986].
Although the principle behind bloomjoins
and semijoins is similar, bloomjoins have
certain advantages over regular semi-
joins. Bloomjoins consist of one join oper-
ation and one bloom filter creation,
whereas regular semijoins involve one
join step and one semijoin. Local process-
ing costs of bloomjoins are less because
the creation of a bloom filter is cheaper
than that of a semijoin. Less data are
transmitted between sites because bloom
filters are smaller than the set of join
attributes transmitted in semijoin
operations.

An attendant disadvantage is that
some tuples survive filtration due to the
collision feature of hashing. Therefore,
the cardinality of a relation reduced by
filtration is likely to be higher than that
reduced by a semijoin.

Performance

The bloom filter can be created on the
relation with the fewest distinct values
of the join attributes or on the smaller
relation. The former strategy results in a
more selective filter, but the latter is
more practical since the former requires
that the DBMS maintain a detailed and
accurate statistical database profile.

The final join load can be reduced even
further by reducing R with a bloom fil-

Applicability

Bloomjoins can be used in distributed
systems with a high-speed underlying
network, where local processing costs ap
preach data distribution costs. In such
situations, semijoins are more expensive
since they attempt to reduce the amount
of data transmitted at the expense of
increased local processing. A bloom fil-
ter-based semijoin algorithm with very
low communication costs has been pro-
posed in Mullin [1990]. Its only limita-
tion is that, at present, because of its
hash technique it is only used to support
natural joins.

5.3 Summary

In the above discussion it is seen that
reducing communication data volume
achieved by reducing the join load is the
primary objective. The algorithms are
largely based on semijoin-like principles.
This is true of most distributed query-
processing strategies. The exact algo-
rithms depend on the factors introduced
in Section 5.1. In many cases, generation
of optimal solutions is prohibitively ex-
pensive. As a result, heuristic procedures
are fairly widespread.

6. HARDWARE SUPPORT FOR JOINS

The growing popularity of database sys-
tems has highlighted the need for fast
query response. The large sizes of
database files has made the task diffi-
cult. Processing large data files is a
time-consuming activity that involves
large amounts of 1/0. This problem is
magnified in the case of joins because at
least two relations must be processed. In
many cases, much of the 1/0 effort does
not serve a purpose and should be
avoided. The aim is to reduce 1/0
whether it is done by reducing the num-
ber of file scans, by partitioning, or by
other means.

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases o 97

The idea that implementation of func-
tions in hardware results in substantial
gains in speed leads to the design and
development of database machines. Nu-
merous database machines using varied
hardware technologies, ranging from
general multiprocessors, to specially de-
signed processors, to achieve response
time reduction, have been proposed, and
some have been prototype [Ozkarahan
1986; Su 1988]. Some commercially
available machines are Britton Lee’s IDM

[Britton Lee, Inc. 19811, Intel’s2 iDBl?
[Intel Corporation 1982], and Teradata’s
DBC [Ehrensberger 1984], which runs as
a backend on some IBM 3 mainframes.
Special-purpose database machines are
expensive to design and build. Therefore,
recent research has been aimed at the
implementation of database operations on
general-purpose multiprocessors [Dale et
al. 1989; Su 1988; Walton 19891.
Database machine architectures have
been surveyed extensively in Ozkarahan
[1986] and Su [1988].

6.1 Hardware Approaches

Several approaches that have been found
to be helpful in solving the problems as-
sociated with joining large data files are
discussed in this section.

6.1.7. Reduction of Data

A common feature of all database activi-
ties is the vast amount of data that must
be accessed, The size of the search space
can be reduced by means of the cellular
logic approach, of the data filter ap-
proach [Pramanik and Fotouhi 1985], or
by using a large staging memory [Raschid
et al. 19861.

In the data filter approach, a database
filter can be used to ease the 1/0 bottle-
neck by reducing the quantity of data
transferred from the disk to the main
memory [Pramanik 1986; Su 1988]. It is

2 Intel is a registered trademark of Intel Corpora-
tion.

3 IBM is a registered trademark of International
Business Machines Corporation,

located between the secondarv storage
devices and the main memor~. It pe~”-
forms all the conventional secondary de-
vice control functions, as well as two data
management functions, namely, data re -
duction and data transformation. Data
reduction refers to the operations like
select, which can be done by scanning a
file once. Data transformation functions
that some proposed filters can perform
are sorting of an input file and merging,
joining, and taking the difference of two
irmut files. Transformation is more diffi -.
cult than reduction; it may also involve
several scans of the input data.

6. 1.2 Fast Search

Searching through large data files has
been speeded up by using associative
memories, such as STARAN [Rudolph
1972] and ASLM IHurson 1981].

Associative memories have certain
properties that make them suitable for
database management systems [Su 1988].
The most important feature is that they
allow content-addressing and context-
addressing capabilities. Each memory
element has an associated processing
element. This increases the parallel pro-
cessing capability of the system. For in-
stance, the select operation becomes very
fast because a Iarge number of tuples can
be searched in parallel. This feature has
been used to speed up the execution of
the nested-loops join method.

6. 1,3 Fast Processing

Fast processing has been achieved by
means of architectural features such as
general multiprocessing [Baru and
Frieder 1986], pipelining [Richardson et
al. 1987; Tong and Yao 1982], and sys-
tolic arrays [Kung and Lehman 1980].
The efficiency of -join algorithms is in-
creased by parallel execution and, in
many cases, by parallel 1/0 as well. The
HyperKYKLOS architecture, for exam-
ple, consists of a multiple-tree topology
network built on top of a hypercube. It
allows the processing of joins using the
nested-loops join, sort-merge join, a

ACM Computmg Surveys, Vol 24, No 1, March 1992

98 ● P. Mishra and M. H. Eich

hash-based join method, or a semijoin-
based algorithm [Menezes et al. 1987].

6. 1.4 Others

(1)

(2)

(3)

6.2

Hardware sorters have speeded up the
sort-merge algorithm considerably,
such as in DELTA [Sakai et al. 1984].

Hardware implementations of hash-
ing units support joins indirectly.
Some architectures that use hashing
units are CAFS [Babb 1979], DBC
[Hsiao 19801, and GRACE
[Kitsuregawa et al. 1983].

Hardware for multiple search condi-
tions as in CAFS [Babb 1979].

Nested-Loops Join

In this section, the impact of hardware
support on the nested-loops join is
discussed.

6.2.1 Associative Memory

STARAN implements the nested-loops
algorithm using associative memories

[Rudolph 19721. The join operation is car-
ried out as a sequence of select opera-
tions as described below. One tuple from
the smaller relation is joined with all
appropriate tuples from the larger rela-
tion. These tuples are identified by per-
forming a select operation on the larger
relation. The join attributes and their
values for the tuple in the smaller rela-
tion are used as the search m-edicates.
The join attribute values are ~oaded into
the comparand register, while the larger
relation is loaded into the associative ar-
rays. In each step, the matching tuples
from the longer relation are concate-
nated with the tuple with which they are
currently being compared. This is fol -
lowed by a project operation on the result
relation to remove duplicate attributes.
Any duplicate tuples are automatically
deleted from the result as part of the
project operation. This method of per-
forming the join operation is expensive
(in terms of hardware costs) for joins with
low selectivities. This method. however.
has the main advantage of speed over
any software implementation.

Another system that executes an asso-
ciative version of the nested-loops method
is the associative parallel join module

[Hurson 19891. The steps in this algo-
rithm are as follows:

load R and S into associative modules;

presearch R and S to mark off nonrelevant

tuples;

for each r do

{ route r to concatenation unit;

compare r with all s in S module:

route matching s to concatenation unit;

concatenate tuples;

route concatenated tuples to result mod-

ule;

send acknowledge signal to R module};

If relation S’ is too large to fit in its
module, it must be split into several sub-
relations, each small enough to fit in the
module. The above steps are then per-
formed for each subrelation.

6.2.2 Special-Purpose Join Processor

The DBM (database machine) designed
at the University of Maryland uses a
specially designed join processor called
the join filter (JF) [Yao et al. 1981]. The
join filter is used to execute join opera-
tions. Its operation is controlled by a
timing and control logic unit. It is a two-
dimensional array of comparators that
receives data from two sources, namely,
the two relations being joined. It con-
tains a number of buffers for storing the
join values and a buffer for storing the
result. The R and S buffers are one-
dimensional buffers used to store the join
values of the two relations. Their con-
tents are simultaneously broadcast to the
corresponding rows and columns of com-
parators C. A bit matrix B is used to
record if values in a pair of R and S
buffers match. The B values are used to
generate the join result. The join result
is stored in an output buffer F in the

form of addresses of matched tuples. The

database filter (DF) consisting of a two-
dimensional array of parallel compara-
tors is central to the processing of joins.
This component is used to perform the
select and project operations.

The join operation is performed in the
join processor array in the following

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ● 99

manner:

partition R into x subrelations;

project out join attributes in DF;

store join attributes of each subrelation in

R(X);

partition S into y subrelations;
project out join attributes in DF;
store join attributes of each subrelation in
S(y);
for each set of x-valuesdo

{ broadcast x-values along rows in com-
parator array;
broadcast addresses of tuples into F
buffers;
for each set of y-values do

{ broadcast y-values along columns in
comparator array;
broadcast addresses of tuples into F
buffers;
perform comparisons in all compara-
tors;
store results in B matrix;
for each bit in B matrix which is set

do

output tuple addresses from F

buffers} };

The efficiency of this system is tied to
the ratio between the size of the relations
being joined and the size of the join pro-
cessor array. It exploits the inherent
parallelism of the nested-loops join. A
potential drawback of the system lies in
the fact that duplicate tuples in the re-
sult relation are not removed as part of
the join process.

6.3 Sort-Merge Join

Examples of hardware implementations
of the sort-merge are given in this
section.

6.3.1 Hardware Sorters

The database machine DELTA sorts the
input relations in parallel and uses a
single merger to perform the merge phase

[Sakai et al. 19841.

6.3.2 Filtering

The sort-merge algorithm is used in the
database machine VERSO [Bancilhon et
al. 1983]. The relations are sorted on the
join attributes and loaded into 233the
filter buffers SBI and SB2. Tuple pairs

being tested for the join condition are
loaded into the registers Q1 and Q2. The
movement of the relations within the fil-

ter is controlled by an automaton pro-
gram, which is the compiled code of a
relational query. The filter control de-
tides when a tuple needs to be read in
from the filter buffers into the registers.
Tuples are read from the buffer into the
registers Q1 andl Q2 only if they will
actually be present in the result of the
join. The comparison steps in the algo-
rithm described below decide which tuple
to read in next and from which relation.
Tuples that do not have a match, or would
result in a duplicate in the result rela-
tion, are filtered out. The equijoin opera-
tion is performed as follows:

repeat
load a block frc,m R into SB1;

load a block from S into SY?2;

repeat

load r into Ql;

load s into Q2;

if r(a) = S(b) then join r and s;

r(a) < S(b) then load next r from

Ql;

r(a) > S(b) then load next s from

Q2;

until end-of-block is reached;

until either R or S is exhausted.

Note that the relations are sorted before

being fed into the filter.

6.4 Hash-Based Joins

Some hardware implementations of
hash-based joins tare described briefly in
this section.

6.4.1 Data Filtering

Data filtering is a form of implicit parti-
tioning. It consists of elimination of non-
matching tuples using Babb arrays as in
the database machine CAFS [Babb 19791.
A Babb array is a single bit-wide random
access memory (R,AM). There is a one-to-
one mapping between all distinct join
attribute values in a relation and the
addresses of the bits in the array. In the
simplest case, th,e attribute value itself
can be used as an address pointing to a
bit. For relations with a wide range of

ACM Computing Surveys, Vol. 24, No. 1, March 1992

100 “ P. Mishra and M. H. Eich

attribute values, however, a very large
store would be needed. Furthermore,
large parts of this array may not be used
at all if the number of distinct attribute
values in the relation is small. The map-
ping is usually obtained by hashing at-
tribute values and using the hash value
as the address. This method is used in
the algorithm described below.

The equijoin procedure using hashed
bit arrays is as follows [Su 1988]:

for each tuple r do

{hash join attribute

store attribute value in list PI

set corresponding bit in Babb array};

for each tuple s do

{hash join attribute

if corresponding bit is set in Babb array

then

store attribute value in list P2 };

for each attribute value in list P2 do

{if attribute value not in list PI then

delete from P2

else concatenate corresponding r and

~lace result in Q};

The above algorithm is based on the con-
cept of filtering. The lists PI and P2
must be matched in the merge step be-
cause of possibility of collisions.

6.4.2 Multyxocessmg

Most multiprocessor hash algorithms are
based on explicit partitioning, for exam-
ple, GRACE hash join. The hashing units
are used to partition the relations and
also to join the tuples in each partition
pair using the simple hash join. Most of
these algorithms have already been cie-
scribed in Section 2.

Teradata’s D13C/1012 is a commer-
cially available backend processor with
special access module processors (AMP)
for the execution of database operations.
The join strategy depends on whether
either of the relations has a primary in-
dex on the join attributes. If there are no
indexes, the larger relation is distributed
over the AMPs. The smaller relation is
broadcast to all sites, where it is joined
with the fragment of the larger relation
at that site using the simple nested-loop

or sort-merge join method. If one of the
relations has a primary index on the join
attribute, it is distributed across the
AMPs based on the hash values of the
index. The same hash function is then
applied to the other relation. The tuples
of this relation are then broadcast only to
the AMP, where they are likely to find a
match. Each AMP then performs its part
of the join operation. Other data place-
ment and processing details are dis-
cussed at length in Su [1988].

6.4.3 Pipelining

The hash loops join with pipelining and
multiprocessing has been implemented in
DBC [Hsiao 1980]. It uses multiple pro-
cessors by partitioning one of the input
relations across the processors. Each tu-
ple of the other input relation is succes-

sively sent to all the processors. Thus, at
any given time, all processors are pro-
cessing different tuples of the second
relation.

6.5 Summary

It is seen that most join algorithms im-
plemented in hardware perform simple
actions repetitively. Software implemen-
tations of the same algorithms would
generally be considered inefficient. Pre-
requisites that an algorithm must have
before it becomes a viable candidate for
hardware implementation are communi-
cation simplicity, space efficiency, scope
for parallelism, and regularity [Hurson
1986]. The speed of hardware compen-
sates for the brute force approach.

Simple implementations of the nested-
Ioops join, the parallel nested-loops join,
the sort-merge join, and the hash join are
found to be the underlying paradigm in
most cases. Algorithms based on semi-
joins have been used with great success.

7. OTHER JOIN ISSUES

The previous sections of this paper have
examined types of join operations and
techniques for implementation. In this
section we discuss various topics related
to the efficiency of join operations. These

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Processing in Relational Databases “ 101

issues are related to multiple types of
algorithms and have merited research on
their own. Thus, we include a separate
discussion of them.

7.? Selectivity Factor

The selectivity factor [Piatetsky-Shapiro
and Connell 1984] or the ~“oin selection
factor [E1-Masri and Navathe 1989] is
defined as the ratio of the number of
tuples participating in the join to the
total number of tuples in the Cartesian
product of the relations. It is an impor-
tant factor in the cost of performing joins.
A high selectivity factor requires a larger
number of tuple comparisons, produces a
larger result relation, and requires more
1/0 than does a low selectivity factor.
Thus, a high selectivity factor implies a
more expensive join. In this section, join
algorithms are evaluated based on the
effect of selectivity on the performance.

Based on the actual execution cost,
some algorithms may be preferred over
others for different levels of selectivity.
The nested-loops method is considered the
most inefficient method to use in the case
of low join selectivities. This is because
most of the comparisons do not result in
a match, and the effort is wasted. The
hash join methods are significantly bet-
ter when the selectivity is low. The ad-
vantage that hash joins have over the
nested-loops method diminishes as the
selectivity factor increases. In this case,
exhaustive comparison is useful because
of the large number of tuples participant-
ing in the join. Furthermore, the nested-
loops method does not have the overhead
of doing hashing. In partition-based joins,
the selectivity of the join between tuples
in a partition should be higher than that
of the join between the two relations

when. treated as a whole.

The problem of estimation of selective -

ties to an acceptable ile~ee of accuracy

remains open even though it has been

studied in some detail in the past. The

general approach has been to study the

distribution of attribute values and to

find a useful way of storing such infor-

mation. The uniform assumption method

[Selinger 19791, the worst-case assump-
tion method [Epstein and Stonebraker
1980], and the perfect knowledge method

[Christodulakis 19851 are some ap-
proaches that hme been advocated. The
first method assumes that the values of
attributes are uniformly distributed
within the domain of the attribute. Such
an assumption simplifies processing but
is considered solmewhat unrealistic. The
worst-case assumption method assumes a
selectivity of one, that is, a Cartesian
product. This, too, is unrealistic. The
perfect knowledge method does not make
any assumptions about the distributions.
Instead, it relies on the calculation of
exact relation sizes at the time of pro-
cessing. This approach gives good re-
sults. The cost of calculating the storage
overhead and the cost of maintaining
such information are, however, consid-
ered prohibitive. The piecewise uniform
method [Bell et al. 1989] represents a
compromise between the above methods.
Another class of methods, called sam-

pling methods, does not require storing
and maintaining large amounts of statis-
tical data about relations [Lipton et al.
1990]. An adaptl~ve, random sampling al-
gorithm for estimating selectivities of
queries involving joins and selects is dis-
cussed in Lipton et al. [19901. It also
considers skewed data and very low
selectivities.

7.2 Optimal Nestiilg of Joins

When performing a join over several re-
lations, the order in which the joins is
performed may make a difference to the
overall efficien.c~. This problem of opti-
mal nesting of Jo,ms is usually considered
in the context of the overall problem of
query processing. The usual objective is
to reduce the size of intermediate rela-
tions the most. The optimal order is the
one that produces the fewest total num-
ber of intermediate tuples; thus the effect
of the selectivity factor is extremely
significant in the case of multiway
joins [Bell et al. 1989; Kumar and
Stonebraker 1987; Piatetsky-Shapiro and
Connell 1984]. An optimal ordering for

ACM Computing Surveys, Vol 24, No. 1, March 1992

102 “ P. Mishra and M. H. Eich

such joins is achieved by processing the
relations in the order of increasing selec-
tivities. The joins with the lowest selec-
tivities should be performed first. This
logic also applies to the case ofjoin pro-
cessing in distributed environments
where semijoins are used to reduce the
size of the relations participating in the
join [Masuyama et al. 1987; Segev 1986].

The accuracy with which the size of
intermediate relations can be estimated
depends on the accuracy of the selectivity
factor. It has been found that inaccurate
estimates of the selectivity factor are
more likely to lead to the generation of
suboptimal query execution plans in the
case of distributed database systems
[Epstein and Stonebraker 1980] than in
the case of centralized databases [Kumar
and Stonebraker 1987].

In this context, it must be mentioned
that the problem of large intermediate
result relations can be avoided by
pipelining the process of joining several
relations [Bitten 1987]. If the results
generated by one join are directly fed to
the next join stage, there is no need to
store intermediate relations.

7.3 Hash Joins

In most situations, hash joins have gen-
erally been found to be the most efficient
method. The efficiency of hash joins is
reduced by partition overflow in the case
of hash-partitioned joins. Hash table
collisions are a problem in all hash
joins. The problems are discussed in the
following sections.

7.3.1 Partition Overflow

Partition overflow is said to occur when a
partition becomes too large to fit into the
available main memory. The number of
partitions, and therefore the size of the
partitions, into which a relation must be
split is determined by the amount of main
memory available and the size of the
input relation. There is, however, no easy
way of guaranteeing that each of the
partitions will be small enough to fit into
the staging memory. This is because the
number of tuples that will hash to a

given range of values cannot be accu-
rately estimated in advance. In most
cases, the number of partitions is stati-
cally determined before the partitioning
process even begins.

It has been suggested [Gerber 19861
that most cases of partition overflow can
be avoided by creating more partitions
than appears to be necessary. In other
words, it may be possible to avoid parti-
tion overflow by creating a large number
of small partitions. A small partition is
more likely to fit into the available mem-
ory in its entirety. If the exact amount of
available memory is known, the parti-
tion size should be created so the largest
partition possible without overflow is
used.

Another suggested solution proposes
that a family of hash split functions be
maintained [Gerber 19861. The efficiency
with which a given hash function can
randomize tuples across partitions for
specific attributes can be precomputed
and stored. This information can be used
at the time of partitioning. It must be
remembered that this information is sub-
ject to change depending on the modifica-
tions to the database. These strategies
are examples of static partitioning. If all
attempts at preventing partition over-
flow fail, the only solution may be to
detect overflow and be prepared to resplit
the relation using another hash function.
Based on this principle, redistribution of
tuples is sometimes done at runtime to
balance the processing load for each
partition. This is known as dynamic

partitioning [Su 1988]. The subject of
partitioning is detailed in Section 7.5.

The GRACE hash join avoids partition
overflow by means of a strategy called
partition or bucket tuning. It is based on
the fact that, inspite of the best attempts,
not all partitions are of a size such that
they will fit exactly into the amount of
main memory available. The main idea
behind this approach is that partitions
that are too large can be divided into
smaller divisions as and when needed.
Recall that the GRACE hash join first
divides each of the relations into parti-
tions. Then tuples within each of the

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ● 103

partitions are joined. These two separate
parts of the algorithm are referred to as
stages. When the second stage is per-
formed, the partitions chosen for staging
are based on the best-fit criterion. This

method of staging partitions avoids the

problem of partition overflow. It has been

called the dynamic destaging strategy

[~akayama. et al. 1988]. The effect of

tuple distribution within buckets and

bucket size tuning on this algorithm has

been reported in ~itsuregawa [1989cI.

7.3.2 Hash Table Collisions

In hash-based join methods, collisions
must be kept at a minimum to reduce the

cost of the probing operation during the

join stage [Gerber 19861. It is well known

that there is no way of avoiding colli-

sions altogether. As a result, standard

methods of dealing with hash collisions

have been developed. Most methods in-

volve the overhead of maintaining lists

of values that hash to the same entry in
the hash table.

A unique method of handling collision
has been implemented in the CAFS ar-
chitecture [Babb 19791. It has been found
to be very useful inspite of the fact that
there is a small possibility of error. Each
attribute value is hashed by three differ-
ent hash functions. The hash value is
used to mark the appropriate bit in the
corresponding bit array store. The output
of the 3-bit array is logically ANDed.
The bit array is considered to have been
marked for a particular attribute value
only if the output of the AND operation
is 1.

7.3.3 likmequ~oins

Nonequijoins can be performed using
hash join techniques only if the hash
function maintains ordering of tuples.
Since such hash functions are rare, hash
joins are usually not associated with

equijoins, This, however, does not really
detract from the use of hash joins since
nonequijoins are uncommon; hash join
techniques remain among the most effi-
cient methods available.

7.4 Indexing and Clustering

The performance of some join methods is
affected by the presence of indexes on the
join attributes and whether or not the
index is clustered. For instance, it has
been shown that the performance of even
the nested-loops join method can be im-
proved substantially if the inner relation
is indexed on the join attributes [Blasgen
and Eswaran 1977]. In some cases, it
may even be advantageous to create in-
dexes dynamically [Omiecinski 1989].

Join methods using specialized data
structures, such as Be-trees or T-trees,
must necessarily have an index using the
data structure in question to be viable.

If both relaticms are clustered on the
join attributes, then the sort-merge
method is the best and requires the least
amount of 1/0 activity [Omiecinski 19891.
If the indexes are uncluttered, heuristics
can be used to devise efficient procedures
for implementing joins [Omiecinski 1989;
Omiecinski and Shonkwiler 19901.

7.5 Partitioning of Relations

In Section 2, it was observed that algo-
rithms based on partitioning of relations
are suitable for use on parallel systems.
Significant gains in performance, how-
ever, can be achieved only when the par-
titions are of approximately equal size.
Most performance results reported as-
sume equal-sized partitions. In practice
it is very difficult to create equal-sized
partitions. The reasons for this and the
resulting effect on the performance of
joins are discussed below.

7.5.1 Sources of Skewness

In most multiprocessor systems, rela -
tions are horizontally partitioned and
distributed across all storage units. In
response to queries, these partitioned
data are processed in parallel by a num-
ber of processors. Query response time is
determined by the time taken by individ-
ual processors. If all processors handle
equal amounts of data, the maximum
performance improvement is achieved;
otherwise, the time is determined by the
processor that handles the largest

ACM Computmg Surveys, VOI 24, No 1, March 1992

104 “ P. Mishra and M. H. Eich

volume of data. In practice the volume of
data handled by individual processors
varies. There are several reasons for this
[Lakshmi and Yu 1988, 1989; Walton
19891:

Skewed distribution of attribute
values. Horizontal partitioning, and
therefore distribution of data, is usually
done based on the values of some at-
tribute in the relation, For instance, the
attribute domain is divided into fixed-size
ranges, and tuples falling in a given
range are sent to a particular storage
location. If the values of the attribute in
question are present with uniform fre-
quency, the subrelations will be of equal
size. Such a uniform distribution is, how-
ever, rarely encountered in practice. As a
result, any distribution method based on
attribute values is bound to result in
unequal subrelations.

Result of select. Database queries
consist of various operations being per-
formed on a set of relations. A general
rule of query optimization is that the join
operation is performed after all select
operations. The selectivity of these oper-
ations may be different for different par-
titions. Thus, even if the partitions at all
locations were equal to begin with, the
subrelations that are input to the join
operation are likely to vary substantially
in size.

Result of hash function. Hash func-
tions are often used to distribute tuples
of a relation over several storage loca-
tions. This is an alternative that may be
chosen over the fixed-range distribution
discussed earlier. In the ideal case, the
hash function produces hash values that
are uniformly distributed. In such a situ-
ation, the relation being distributed is
divided into equal parts. This, however,
is usually not the case. Hash functions
usually contribute to the uneven distri-
bution of tuples.

7.5. Z Effect of Ske w on Jom Performance

It has been found that each of the factors
that can result in unequal-sized parti-
tions has an effect on join performance

and that different factors have different

effects [Walton 1989].

Speed up. The speed up of an algo-
rithm as result of parallelization is the
ratio of the execution times of the se-
quential and parallel versions of the al-
gorithm. Maximum speed up can be
achieved when the ioin mocessin~ load is. .
evenly distributed among all processing
sites. Otherwise, the site with the largest
load becomes the bottleneck. Partition-
ing has been the primary method of dis-
tributing the join load. In most cases, it
is assumed that the attribute values are
uniformly distributed in a relation. This
is usuallv not true. As a result. some
partition; are significantly larger than
others. This nonuniformity y in the sizes of
partitions limits the speed up [Lakshmi
and Yu 1988, 1989, 1990].

Scalability y. An algorithm is said to be
scalable if its performance increases ap-
proximately in proportion to the number
of processors; that is, the speed up of the
parallel version of an algorithm is ap-
proximately proportional to the number
of processors [Dale et al. 1989; Walton
1989]. In Lakshmi and Yu [1988], experi-
ments suggest that scalability is ad-
versely affected if the data are skewed.
Increasing the number of processors did
not result in a corresponding increase in
speed up. Initial results [Walton 1989]

indicate that although all types of skew

increase the execution time of ioins. the. .
amount of increase depends on the source
of skew. Further, it is possible to antici-
pate this problem and take steps to
resolve it; for example, by dynamic
redistribution of tuples before joining.

75.3 Cure for Skew

Ideally, each processor participating in a
join would have subrelations approxi-
mately equal to the subrelations at other
processors. Many database systems have
recomized the fact that this cannot be
take: for granted and have implemented

schemes that attempt to create equal-

ized partitions at all processors. A large

number of static partitioning options is

used for database partitioning [Ozkara -

ACM Computing Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ~ 105

han 1986], for example, sorting, hash-
based data clustering, and dynamic
order-preserving partitioning [Ozkara -
han and Bozsahin 19881.

Most systems have static schemes that
distribute relations evenly across all
storage locations. An improvement can
be made on this by balancing the load at
the time of join execution. Balancing the
size of partitions at the time of execution
is also known as dynamic data distribu-
tion [Su 1988]. Experiments show that
arbitrary distribution of data followed by
dynamic redistribution at the time of
processing is a viable alternative to static
partitioning based on hashing [Wang and
Luk 1988] as long as the communication
network does not become a bottleneck.
Some static load distribution strategies
are as follows:

Round robin. Tuples are distributed
in a round-robin fashion based on the
value of some attribute.

Hashed. Tuples are stored at a partic-
ular location based on the result of
applying a hash function to a given
attribute. Obviously, the success of
this scheme depends on the efficiency
of the hash function.

Range partitioned. The domain of a
given attribute is split into ranges speci-
fied by the user. Each range maps to a
particular storage location, ?’uples whose
attribute values fall into a given range
are stored at the storage location deter-
mined by the mapping.

Uniform distribution. A relation is
divided into equal-sized parts based on
some attribute value. The relation seg-
ments are then distributed to the avail-
able disk drives.

Dynamic data redistribution during
execution is advantageous but can be
time consuming unless the degree of cor~-
nectivity between processors is high.
Thus far, only cube-connected systems
appear to have the degree of connectivity
needed to support dynamic redistribution

[SU 19881. A scheme for tuple balancing
at execution time in a cube-connected
database multicomputer is described in

Baru and Frieder [1989]. A parallel hash
join algorithm, called bucket-spreading
hash join, has been implemented in a
high-performance database server called
super database computer (SDC)
[Kitsuregawa and Ogawa 1990]. Buckets
are dynamically allocated to processors
based on their size. Again, SDC relies on
a highly functional network to perform
redistribution of data buckets without
burdening the processors. Other dynamic
load distribution schemes are discussed
in Hua and Lee [1990] and Ghande -
harizadeh and DeWitt [1990]. In Hua and
Lee [1990], the partitioning scheme is
based on the grid file structure. The hy-
brid-range scheme of Ghandeharizadeh
and DeWitt [1990] is a compromise be-
tween simple range partitioning and
hashed partition ing.

The idea of dynamic data partitioning
has been implemented by Tandem in its
NonStop SQL systems [Tandem Database
Group 1987]. Here, relations are horizon-
tally partitioned among processors with
a split table defining partitioning pred-
icates. Special separator and merge
operators are then used to parallelize
processing and scanning of the relation
partitions based on the join predicates
dynamically [DeWitt and Gray 1990]. The
result is a parallel scan and join occur-
ring at each site

7.6 Join-Type Processing in Nonrelational

Databases

Although the join operation is unique to
relational algebra and query languages
on relational databases, equivalent oper-
ations exist in other data models. In fact,
the use of join-type operations predates
what is currently thought of as database
systems. With the introduction of direct
access files [Harbron 1988], the capabil-
ity of linking two different files together
was provided. By using pointers between
such files, users were provided the abil-

ity to “join” the two files together in
predefine ways. Early bill-of-material
processors facilitated the easy processing
of these joined files by providing “chain-
chasing” operations.

ACM Computmg Surveys, Vol. 24, No. 1, March 1992

106 0 P. Mishra and M. H. Eich

With the development of the DBTG
(Database Task Group) database stan-
dard in 1971 [CODASYL], the DML (Data
Manipulation Language) operations re-
quired by network database systems were
defined. Many of these operations allow
the chasing of chains between records.
As with the early file systems, however,
only predefined chains (sets) with prede-
fine joins were allowed. Operations such
as FIND OWNER and FIND NEXT are
used to chase chains in network
databases. IBM’s IMS DBMS [1978] pro-
vides similar chain-chasing capabilities.
Since IMS is only hierarchical in nature,
however, the types of joining operations
that are allowed is somewhat reduced
from that of the DBTG network systems.
Operations such as GET NEXT and GET
NEXT WITHIN PARENT are provided.
Via the use of logical relationships and
logical databases, IMS provides the abil-
ity to combine segments from one physi-
cal database with segments from another
dynamically. To the user, it appears as if
the two segments are joined together into
one. IMS also facilitates path calls that
allow the joining of segments from mul-
tiple levels in the same database into one
segment. The concatenated key for IMS
is the key of all the joined segments.

Object-oriented databases also provide
operations similar to a join. The idea of a
class hierarchy that indicates inheri-
tance relationships (ISA) between object
classes must often be traversed [Atkin-
son et al. 1989]. Its traversal requires a
join-type operation to travel between the
levels in the structure, Since other rela-
tionships are also allowed between ob-
jects and object classes, other types of
join operations are often provided. The
ORION query model provides the ability

to follow the ISA relationship as well as

complex attribute relationships [Kim

1989]. As stated by Kim [1989], this type

of operation “is an implicit join of the

classes on a class-composition hierarchy

rooted at the target class of the query. ”

Unlike relational databases where for-

eign keys are often used to facilitate the

join, object-oriented database systems

may use the unique object identifier.

Special indexes may be built to provide a
fast retrieval of the joined objects [Bertino
and Kim 1989]. Complex attributes also
require a type of join operation to find
the actual primitive attribute values

[Banerjee et al. 19881.
Recently, many researchers have in-

vestigated the extension of relational
database systems to provide features
beyond those of the original relational
proposal and its associated relational
algebra. Starburst extensible DBMS pro-
vides a pointer-based access structure
[Carey et al. 1990; Shekita and Carey
19901. The purpose of these pointers is to
provide an efficient implementation tech-
nique for joins. The result is a pointer
structure similar to that provided by the
earlier network and hierarchical models.
An extension to the relational model to
handle temporal data and join processing
on it has been proposed [E1-Masri 1990].
The idea of a join has also been extended
to include non-lNF data. Postgres has
extended relations to include procedures
as data types [Stonebraker and Rowe
1986]. A MATCH operator that performs
join-type operations for pattern matching
has also been proposed [Held and Carlis
1987]. An experimental database system
called RAD, which allows comparisons
(and thus joins) between arbitrary ab-
stract data types, has been proposed
[Osborn and Heaven 1986]. These com-
parisons are provided by user-defined
procedures. Join algorithms have been
parallelized for nested relations
[Deshpande 1990].

8. CONCLUSIONS

A large number of algorithms for per-
forming the join operation is in use. It
has been found that many algorithms are
variants of others, often tailored to suit a
particular computing environment. For
instance, the hash-loops join is a variant
of the nested-loops join that takes advan-
tage of the presence of a hashed index on
the join attributes of the inner relation.
An algorithm and its derivatives may be
considered as a class of algorithms.

Some algorithms require preprocess-
ing, for example, sorting of relations in

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases ● 107

the sort-merge method. The efficiency of
the split-based algorithms is on account
of the join load reduction. Others require
special index structures to be viable
methods, for example, T-trees. The large
number of algorithms of each type indi-
cates that different computing environ-
ments demand different join methods.
This feature could have an effect on the
process of query optimization. In fact, the
proportion of query-processing literature
devoted to the optimization of the join
algorithm is larger than for any other
aspect of query processing. The purpose
of this survey has been to study

join algorithms, to provide a means of
classifying them, and to point to
query-processing techniques based on
particular join methods.

Join processing remains an area of ac-
tive research. New algorithms are being
devised for specific computing environ-
ments, parallel architectures [Baru et al.
1987; Lakshmi and Yu 1990; Nakayanna
1984; Su 1988], main memory databases
[DeWitt et al. 1984; Pucheral et al. 1990;
Shapiro 1986], and distributed databases
[Bandyopadhyay and Sengupta 1988;
Mullin 1990; Pramanik and Vineyard
1988]. They are usually variants or ex-
tensions of the basic methods reviewed
here. Optimization of queries involving
joins is also being studied in detail. For
example, queries involving joins using
large data files are examined in Kitsure -
gawa et al. [1989a] and Swami and Gupta

[19881. The issue of processing join
queries accessing a large number of rela-
tions is addressed in Ioannidis and Karng

[19901. Queries involving joins and outer-
joins are discussed in detail in [Rosenthal
and GaIindo-Legaria 1990]. A join-
processing method, called intelligent join,

consisting of determining which rela-
tions need to be joined in order to re-
spond to a query and the order in which
they could be joined has been proposed in
Cammarata et al. [1989]. The problem of
optimizing processor use and reducing
1/0 bandwidth requirements for join pro-
cessing on multiprocessors has been
studied in Murphy and Rotem [1989a,
1989b].

APPENDIX: NOTATION

Symbol Explanation

R

s
Q
n

m

r
s
a,
b,
r(a)
S(b)
s(a)

t(a)

t(b)

Input relation

Input relatlon

Result relation

Cardmality of R

Cardinality of S

[Note: It is assumed that n > m.]
Tuple in relation R
Tuple in relation S
All attributes of r

All attributes of s
Join attributes in relation R
Join attributes in relation S
Join attributes in relation S
This is necessary for an equijoin between
R and S
Join attribute columns in result relation

Q
Join attribute columns in result relation

Q

ACKNOWLEDGMENTS

The authors would like to thank the referees for

their valuable comments and recommendations for

improvements to early drafts of this paper. Special

thanks go to Salvatore March for his thorough

review of the paper ?nd to Masaru Kltsuregawa

for inspiring our partitioning classification and

Figure 9.

This material is based m part upon work sup-

ported by the Texas Advanced Research Program

(Advanced Technology Program) under Grant No.

2265.

REFERENCES

AGRAW.AL, R., DAR, S,, AND JAGADHH, H, V. 1989.

Composition of clatabase relations, In Proceed-
ings of Conference on Data Engineering, pp

102-108.

AIIO, A. V , BEERG C,, .4NrI ULLMAN, J. D, 1979.
The theory of joins in relational databases.
ACM Trans. Database Syst. 4, 3 (Sept ,),

ATKINSON, M., BANCILHON, F , DEWITT, D.,
DITTRICH, K., M,UER, D., AND ZDONIK, S 1989
The object-oriented database system manifesto.

In Proceedings of the Deductme and Object Ori-
ented Databases Con feren ce.

BABA, T., SAITO, H.j AND YAO, S. B, 1987, A net-
work algorithm for relational database opera-
tions In International Workshop on Database
Machines, pp. 257-270.

BABB, E. 1979. Implementing a relational
database by means of specialized hardware
ACM Trans. Database S.yst. 4, 1,1-29

BANCILHON, F., RICHARD, P., AND SCHOLL, M 1983.
VERSO: The relational database machine. In
Advanced Database Machzne Architecture,
D. Hsiao, Ed., Prentice-Hall, Englewood Cliffs,
N.J.

ACM Computmg Surveys, Vol 24, No. 1, March 1992

108 ● P. Mishra and M. H. Eich

BANDYOPADHYAY, S., AND SENGUPTA, A, 1988. A
robust protocol for parallel join operation in
distributed databases. In Proceedings oflnter-
natzonal Symposzum on Databases tn Parallel
and Dwtrtbuted Systems, pp. 97-106.

BANERJEE, J, KIM, W., AND KIM, K-C. 1988.
Queries m object-oriented databases In Pro-
ceedings of the 4th International Conference on
Data Engmeermg (Feb.),pp, 31-38.

BARU, C. K., AND FRIEDER, O. 1989, Database

operations in a cube-connected multicomputer
system. IEEE Trans. Comput. C-38, 6 (June),
920-927.

BARU, C K , FRIEDER, O., DANDLUR, D , AND SEGAL,
M. 1987 Join on a cube: Analysis, simulation

and implementation In Proceedz ngs of Inter-
national Workshop on Database Mach znes
(Dee), pp. 74-87

BEERI, C., AND VARDI, M. Y 1981. On the proper-

ties of jom dependencies. In Aduances m
Database Theory, vol. 1. Plenum Pubhshmg,
New York, pp. 25-72.

BELL, D A , LING, D H O., AND MCCLEAN, S.
1989. Pragmatic estimation of join sizes and
attribute correlations. In proceedings of Con-

ference on Data Engmeermg, pp. 76-84

BENTLEY, J. L. 1975. Multidimensional binary

search trees used for associative searching.
Commun. ACM, 18, 9 (Sept.), 509-516.

BENTLEY, J L. 1979 Multidimensional binary
search trees in database applications. IEEE

Trans. Softw. Eng. SE-5, 4 (July).

BENTLE~, J. L., AND KUNG, H. T. 1979. A tree
machme for searching problems. IEEE Confer-
ence on Parallel Processing, pp. 257-266.

BERNSTEIN, P. A , .4ND CHIU, D.-M. W. 1981. Us-
ing semi-joins to solve relational queries J
ACM28, 1 (Jan) 25-40

BERNSTEIN, P. A., AND GOODMAN, N 1979a The
theory of semijoins. Computer Corporation of
America Rep. 79-27, Cambridge, Mass.

BERNSTEIN, P A., AND GOODMAN, N. 1979b, In-
equality semijoins. Computer Corporation of
America Rep 79-28, Cambridge, Mass.

BERNSTEIN, P A , AND GOODMAN, N 1980 The
power of inequality semijoms Aiken Computa-
tion Lab Rep 12-80, Harvard Umv , Cam-
bridge, Mass.

BERTINO, E , AND KIM, W 1989 Indexing tech-
niques for queries on nested objects IEEE

Trans. Knowl. Data Eng 1, 2 (June), 196-214

BITTON, D., HANRAHAN, M. B., AND TURBYFILL, C.
1987. Performance of complex queries in mam
memory database systems. In Proceedings of

Conference on Data Engineering, pp. 72-81.

BITTON, D , BORAL, M , DEWITT, D J , AND WILKIN-
SON, W. K 1983 Parallel algorithms for the
execution of relational database operations
ACM Trans. Database Syst, 8, 3 (Sept.),

324-353.

BLASGEN, M. W , AND ESWARAN, K. P, 1977. Stor-

age and access in relational databases IBM
Syst. J. 16, 4, 363-377

BLOOM, B. H. 1970. Space/time trade-offs in hash
coding with allowable errors, Comm un. ACM
13, 7 (July), 422-426.

BRATBERGSENGEN, K 1984 Hashing methods and
relational algebra operations. In Proceedings

of Conference on Very Large Data Bases, pp.
323-333.

BRITTON LEE, INC. 1981 IDM 500: Intelhgent

Database Machzne Product Description.

CAMMARATA, S., RAMACHANDRA, P , AND SHANE, D
1989 Extending a relational database with

deferred referential integrity checking and m-

telhgent joins. In Proceedings of SIGMOD, pp

88-97.

CAREY, M., SHEIUTA, E., LAPIS, G., LINDSAY, B., AND
MCPHERSON, J. 1990. An incremental join at-
tachment for starburst. In Proceedings of the

16th VLDB Conference (Brisbane, Australia),
pp 662-673

CERI, S , GOTTLOB, G., AND PELAGATTI, G 1986
Taxonomy and formal properties of distributed

joins Inf Syst. 11.1, 25-40.

CHANG, J. M., AND Fu, K. S. 1980, A dynamic
clustering technique for physical database de-
sign, In Proceedings of SIGMOD, pp. 188-199.

CHEINEY, J -P , FAUDEMAY, P , AND MICHEL, R 1986.
An extension of access paths to improve joins

and selections In Proceedz ngs of Conference on
Data Engmeermg.

CHEN, J. S. J., AND LI, V. O. K 1989. Optimizing
joins in fragmented database systems on a
broadcast local network. IEEE Trans. Softw.
Eng. 15, 1 (Jan.), 26-38.

CHRISTODULAKIS, S 1985 Estimating block trans-
fer and join sizes In Proceedings of SIGMOD

CODASYL, 1971 Data Base Task Group Re-
port

CODD, E. F. 1970. A relational model of data for
large shared data banks Commun. ACM 13, 6

(June), 377-387.

CODD, E. F. 1972. Relational completeness of data
base sublanguages. In Data Base Systems
Prentice-Hall, Englewood Cliffs, N J., pp.
65-98.

CORNELL, D, W,, AND Yu, P. S. 1988, Site assign-
ment for relatlons and Jom operations m the
dmtrlbuted transaction processing envwon
ment In Proceedz ngs of Conference on Data
Engmeerzng, pp. 100-108

DALE. A. G., MADDIX, F F., JENEVEIN, R M., AND
WALTON, C. B. 1989. Scalability of parallel
joins on high performance multlcomputers.
Tech. Rep, TR-89-17, Dept. of Computer Sci-

ences, Univ. of Texas at Austin, Austin, Tx,

DATE, C J, 1983. The outer Jom In Proceedings
of In ternatlonal Conference on Databases (Cam-

bridge, England), pp. 76-106.

DAYAL, U 1985 Query processing in a multi-
database system. In Query Processing zn

ACM Computmg Surveys, Vol 24, No 1, March 1992

Join Process ingin Relational Databases 8 109

Database Systems, W. Kim, D. S. Reiner, and
D. S. Batory, Eds. Springer-Verlag, New York,

pp. 81-108.

DESAI, B. P. 1989. Performance of a composite

attribute and join index. IEEE Trans. Softw.

Eng. S,?15, 2 (Feb.), 143-152.

DESAI, B. C. 1990. An Introduction to Database
Systems. West Publishing Co, St. Paul, Minn.

DESHPANDE, V., LARSON, P.-A., AND MARTIN, T. P.

1990. Parallel join algorithms for nested rela-
tions on shared-memory multiprocessors. IEEE

Symposmm on Parallel and Distributed Pro-
cessing, pp. 344-351.

DEWITT, D., AND GERBER, R. J. 1985. Multiproces-
sor hash-based join algorithms. In Proceedings

of Conference on Very Large Data Bases, pp.
151-164.

DEWITT, D. J., AND GRAY, J. 1990. Parallel
database systems: The future of database pro-

cessing or a passing fad? SIGMOD Rec. 19, 4
(Dec.), 104-112.

DEWITT, D. J., KATZ, R. H., OLKEN, F., SHAPIRO, L.

D., STONEBRAKER, M. R., AFTD WOOD, D. 1984.
Implementation techniques for main memory

datab ase systems. Proceedings of SIGMOD,
pp. 1-8.

DUTKA, A. F., AND HANSON, H. H. 1989. Functa-

mentals of Data Normalization. Addison-Wes-
ley, Reading, Mass.

EHRENSBERGER, M. J. 1984. The DBC/1012

database computer’s systems-architecture,
components, and performance. In Minnow-

brook Workshop on Database Machines.

EL-MASRI, R., AND NAVATHE, S. B. 1989. Fzmda-

mentals of Database Systems. Benjamin/Cum-

mings, Menlo Park, Calif.

EL-MASRI, R., Wuu, G. T. J., AND KIM, Y.-J. 1990.

The time index: An access structure for tempo-
ral data. In Proceedings of the 16th VLDB

Conference (Aug., Brisbane, Australia), pp.
1-12.

EPSTEIN, R., AND STONEBRAKER, M, 1980. Analy-

sis of distributed database processing strate-
gies, In Proceedings of Conference on Very
Large Data Bases, pp. 92-101,

EPSTEIN, R. 1982, Query Processing Techniques

for Distributed, Relational Database Systems.

University Microfilms Internationalj Ann Ar-
bor, Mich.

FAGIN, R. 1979. Normal forms and relational
database operators. In Proceedings of SIG-
MOD.

F’OTOUHI, F., AND PRAMANIK, S. 1989. Optimal sec-
ondary storage access sequence for performing
relational join. IEEE Trans. Know. Data Eng.
1, 3 (Sept.), 318-328.

FUSHIMI, S., KITSUREGAWA, M., NAKAYAMA, M.,

TANAKA, H., AND MOTO-OKA, T. 1985. Algo-
rithm and performance evaluation of adaptive
multidimensional technique. In proceedings of

SIGMOD, pp. 308-318.

GARDARIN, G., AND VALDURIEZ, P. 1989. Rela-

t~onal Databases and Knowledge Bases. Addi -
son-Wesley, Reacling, Mass,

GERBER, R. J. 1986 Dataflow query processing

using multiprocessor hash-partitioned algo-
rithms. Computer Sciences Tech, Rep. No. 672,

Computer Sciences Dept., Univ. of Wisconsin,
Madison, Wise.

GHANDEHARIZADEH, S., AND DEWITT, D J. 1990
Hybrid-range partitioning strategy: A new

declustering strategy for multiprocessor
database machines. In proceedings of Confere-
nce on Very Large Data Bases, pp. 481-492,

GOODMAN, J. R 198;1. An investigation of multi-
processor structures and algorithms for
database management. Tech. Rep. UCB/ERL,
M81/33, Univ of California, Berkeley

GOUDA, M. G., AN~, D.AYAL, U, 1981. Optimal

semijoin schedules for query processing in local

distributed database systems, In Proceedings

of SIGMOD, pp. 164-173.

GOYAL, P., LI, H. F., REGENER, E., AND SADRI, F.
1988, Scheduling of page fetches in join oper-

ations using Bc-t,rees. In Proceedings of Confer-
ence on Data Engineering, pp. 304-310,

GRAEFE, G. 1989. Relational division: Four algo-
rithms and their performance. In Proceedings
of Conference on Data Engineering, pp. 94-101

GYSSENS, M. 1986. On the complexity of join de-
pendencies, ACM Trans. Database Syst. 11, 1
(Mar.), 81-108

HAGMANN, R. B. 1986, An observation on database

buffering performance metrics, In Proceedings

of Conference on Very Large Data Bases, pp.
289-293.

HARADA, L., NAKANO, M., KITSUREGAWA, M., AND

TAKAGI, M. 1990. Query processing method
for multi-attribute clustered relations. In Pro-
ceedings of Conference on Very Large Data
Bases, pp. 59-70.

HARBRON, T. R. 1988. Fde S-vstems Structures and
Algorithms. Prentice-Hall, Englewood Cliffs,

N.J.

HELD, J. P., AND CARLIS, J. V. 1987. MATCH: A
new high-level relational operator for pattern

matching Commun. ACM 30, 1 (Jan.), 62-75.

HSIAO, D. K. (ED.) 1!380. Collected Readings on a

Database Computer (DBC). The Ohio State
University, Columbus, Ohio

HUA, K. A., AND LEE,, C. 1990, An adaptive data

placement scheme for parallel database com-
puter systems. In Proceechngs of Conference on
Very Large Databases, pp. 493-506.

HURSCH, J. L. 1989 Relational joins: More than
meets the eye. Database Program. Design 2, 12
(Dec.), 64-70.

HURSON, A. R. 1981 An associative backend for

data base management. IEEE Workshop on
Computer Archit,~cture for Pattern Analysw and
Image Data Base Management, pp. 225-230.

HURSON, A. R. 1986. VLSI time/space complexity

ACM Computmg Surveys, Vol. 24, No, 1, March 1992

110 “ P. Mishra and M. H. Eich

of an associative parallel join module. In Infer-
nutzonal Conference on Parallel Processing, pp.

379-386

HURSON, A. R. ET AL. 1989. Performance evalua-
tion of an associate parallel]om module. Com -
put Syst. SCL. Eng, 4, 3 (July), 131-146

IBM 1978. IMS/VS General Information Manual

GH20-1260. White Plains. New York

INTEL CORPORATION. ~DBP DBMS Reference Man-
ual, Order No. 222100.

IOANNIDIS, Y E., AND KANG, Y 1990. Randomized

algorithms for optimizing large join queries In

proceedings of SIGMOD, pp. 312-321

KAMBAYASHI, Y 1985 Processing cyclic queries.

In Query Processing m Database Systems,
W. Kim, D. S, Remer, and D. S. Batory, Eds.

Sprmger-Verlag, New York, pp. 62-78.

KANG) H., .4ND ROUSSOPOULOS, N 1987a. Using
2-way semijoins in distributed query process-
ing In Proceedings of C’onferen ce on Data En-
gmeenng, pp. 644-651.

KANG, H., AND ROUSSOPULOS, N. 1987b. On the
cost-effectiveness of a semijoin in query pro-

cessing. In COMPSAC, pp. 531-537

KENT, W 1983 A simple guide to five normal

forms in relational database theory Commun.

ACM 26, 2 (Feb.)

KIM, W, 1980. A new way to compute the product
and jom of relation. In Proceedings of SIG-
MOD, pp. 179-187.

KIM, W 1989 A model of queries for object-ori-
ented databases In Proceedings of the 15th
International Conference on Very Large

Databases (Amsterdam), pp. 423-432.

KIM, W., REINER, D. S., AND BATORY, D. S. 1985.
Query Processing m Database Systems.
Springer-Verlag, New York.

KITSUREGAWA, M , TANAKA, H , AND MOTO-OKA, T
1983 Application of hash to database ma-

chine and its architecture. New Generation
Comput 1, 1

KITSUREGAWA, M., NAKANO, M., AND TAKAGI, M.
1989a. Query execution for large relations on
functional disk system. In proceedings of Con
ference on Data Engineering, pp. 159-167.

KITSUREGAWA, M , HARADA, L , AND TAKAGI, M
1989b. Join strategies on Kd-tree indexed re-
lations. In Proceedings of Conference on Data
Engzneermg, pp. 85-93

KITSUREGAWA, M., NAKAYAMA, M., AND TAKAGI, M.
1989c The effect of bucket size tuning in the
dynamic hybrid GRACE hash join method. In
Proceedings of Conference on Very Large Data

Bases, pp. 257-266

KITSUREGAWA, M., AND OGAWA, Y. 1990, Bucket
spreading parallel hash: A new, robust, paral-
lel hash join method. In proceedings of Confer-
ence on Very Large Data Bases, pp. 210–221.

KUMAR, A., AND STONEBRAKER, M. 1987. The ef-
fect of join selectivities on optimal nesting or-
der, SIGMOD Rec. 16, 1 (Mar.), 28-41.

KUNG, H. T , AND LEHMAN, P. L 1980. Systolic

(VLSI) arrays for relational database opera-

tions. In Proceedings of SIGMOD, pp 105-116.

LAKSHMI, M S., AND Yu, P. S. 1988 Effect of
skew on join performance m ,parallel architec-
tures In Proceedings of International Sympo-
sium on Databases m Parallel and Dwtrlbuted
Systems, pp. 107-117.

LAKSHMX, M S , AND Yu, P. S 1989 Limiting

factors of join performance on parallel proces-

sors. In Proceedings of Conference on Data En-
gzneerzng, pp 488-496

LAKSHMI, M. S,, AND Yu, P. S. 1990, Effectiveness

of parallel joins. IEEE Trans. Know. Data Eng.
2, 4 (Dec.), 410-424.

LEHMAN, T.j AND CAREY, M. 1986. Query process-

ing in main memory database systems. In Pro-
ceedings of SIGMOD, pp 239 –250

LIPTON, R. J , NAUGHTON, J. F., AND SCHNEIDER, A
D. 1990 Practical selectivity estimation
through adaptive sampling In Proceedings of

SIGMOD. pp. 1-11.
Lu, H , AND CAREY, M 1985. Some experimental

results on distributed join algorithms in a local
network In Proceedings of Conference on Very

Large Databases, pp 292-304

MACKERT, L F , AND LOHMAN, G. M 1986 R*

Optimizer: Validation and performance evalua-
tion for distributed queries. In Proceedings of

Conference on Very Large Data Bases, pp.
149-159,

MAIER, D. 1983. The Theory of Relational

Databases Computer Science Press, Rockville,
Md

MASUYAMA, S., IBARAKI, T , NISHIO, S , AND

HASEGAWA, T 1987 Shortest semijoin sched-

ule for a local area distributed database sys-
tem IEEE Trans. Softw. Eng. SE-1.3, 5 (May),

602-606

MENEZES, B. L., THADANI, K., DALE, A. G., AND
JENEVEIN, R 1987 Design of a HyperKYK-
LOS-based multiprocessor architecture for
high-performance join operations. In Interns
ttonal Workshop on Database Machines, pp.
74-87.

MIKKILINENI, K P., AND Su, S. Y. W 1988 An

evaluation of relational join algorithms in a
plpelined query processing environment. IEEE
Trans. Softw. Eng. 14, 6 (June), 838-848.

MULLIN, J. K. 1990. Optimal semijoins for dis-

tributed database systems. IEEE Trans. Softw.
Eng. 16, 5 (May), 558-560

MURPHY, M. C., AND ROTEM, D. 1989a. Effective
resource utilization for multiprocessor join exe-

cution. In Proceedings of Conference on Very
Large Data Bases, pp. 67-76.

MURPHY, M. C,, AND ROTEM, D. 1989b. Processor
scheduling for multiprocessor joins In Pro-
ceedings of Conference on Data Engineering,

pp. 140-148.

NAKAYAMA, T., HIRAKAWA, M., AND ICHIKAWA, T.

ACM Computmg Surveys, Vol. 24, No 1, March 1992

Join Process ingin Relational Databases ● 111

1984. Architecture andalgorithm for parallel
execution ofajoin operation. In Proceedings of

Conference on Data Engineering, pp 160-166.

NAKAYAMA, M., KITSUREGAWA, M., AND TAKAGI, M.

1988. Hash-partitioned join method using dy -

namic destaging strategy. Proceedings of Con-
ference on Very Large Databases, pp. 468-478.

OMIECINSKI, E! R. 1989. Heuristics for join pro-

cessing using nonclustered indexes. In IEEE
Trans. Softw. Eng. 15, 1 (Jan.), 18-25,

OMIECINSKI, E., AND SHONKWILER, R. 1990. Paral-
lel join processing using nonclustered indexes
for a shared memory environment. In IEEE
Symposium on Parallel and Dwtributed Pro-
cessing, pp. 144-159.

OSBORN, S. L., AND HEAVEN, T. E. 1986. The de-

sign of a relational database system. ACM
Trans. Database Syst. 11,3 (Sept.), 357-373,

OZKARAHAN, E. A. 1986. Database Machines and
Database Management. Prentice-Hall, Engle-

wood Cliffs, N.J.

OZKARAHAN, E. A., AND BOZSAHIN, H. 1988. Join

strategies using data space partitioning. New
Generation Comput. 16, 19-39.

OZSOYOGLU, G., MATos, V., AND OZSOYOGLU, Z. M.
1989. Query processing techniques in the

summary-table-by-example database query.
ACM Trans. Database Syst. 14, 4 (Dec.),

526-573.

PERRIZO, W., LIN, J. Y, Y., AND HOFFMAN, W. 1989,

Algorithms for distributed query processing in

broadcast local area networks. IEEE Trans.
Know. Data Eng. l,2(June),215-225.

PIATETSKY-SHAPIRO, G.j AND CONNELL, C. 1984.

Accurate estimation of the number of tuples

satisfying a condition. In Proceedings of SIG-
MOD, Pp. 256-276.

PRAMANIK, S. 1986. Performance analysis of a
database filter search hardware. IEEE Trans.
Comput. C3’5, 12 (Dec.), 1077-1082,

PRAMANIK, S., AND FOTOUHI, F. 1985. An index

database machine: An efficient m-way join pro-
cessor. In Proceedings of Hawaii International

Conference on System Sciences, vol. 1, pp.
330-338.

PRAMANIK, S., AND ITTNER, D. 1985. Use of graph-
theoretic models for optimal relational database

accesses to perform joins. ACM Trans.
Database Syst. 10, 1 (Mar.), 57-74.

PRAMANIK, S., AND VINEYARD, D. 1988. Optimiz-
ing join queries in distributed databases. IEEE
Trans. Softw. Eng. 14, 9 (Sept.), 1319-1326.

PUCHERAL, P., THEVENIN, J. M., AND VALDURIEZ, P.
1990. Efficient main-memory data manage-
ment using the DBGraph model. In Proceed-

ings of Conference on Very Large Data Bases.

RASGHID, L. ET AL. 1986. A special-function unit
for sorting and sort-based database operations.

IEEE Trans. Comput. C-35, 12 (Dec.),
1071-1077.

RICHARDSON, J. P., Lu, H., AND MIKKILINENI, K.

1987. Design and evaluation of parallel
pipelined join algorithms. In Proceedings of
SIGMOD, pp. 399-409.

ROBINSON, J. T. 1981. The KDB tree: A search

structure for large multidimensional dynamic
indexes. In proceedings of SIGMOD, pp 10-18.

ROSENTHAL, A., AND GALINDO-LEGARIA, C 1990.

Query graphs, implementing trees, and freely
reorderable outerjoins In Proceedings of SIG-
MOD, pp. 291-2!)9.

ROSENTHAL, A. AND REINER, D. 1984. Extending
the algebraic framework of query processing to
handle outerjoins. In Proceedings of Conference
on Very Large Data Bases, pp. 334-343

RUDOLPH, J, A. 1972R. A production implementa-

tion of an associative array processor In Pro-

ceedings of Fall Joint Computer Conference, pp.
229-241.

SACCO, G. M. 1984. Distributed query evaluation
in local area networks. In Proceedings of Con-

ference on Data Engineering, pp. 510-516.

SACCO, G. M., AND SCHKOLNICK, M. 1986. Buffer

management in relational database systems.
ACM Trans. Database Syst. 11, 4 (Dec.),

473-498.

SAKAI, H,, IWATA, K., KAMIYA, S., ABE, M., TANAKA,
A., SHIBAYAMA, !3., AND MURAKAMI, K, 1984.
Design and implementation of the relational
database engine. In Proceedings of Conference

on Fifth Generation Computer Systems, pp.
419-435.

SCHNEIDER, D. A., AND DEWITT, D. J. 1989. A

performance evaluation of four parallel join
algorithms in a shared-nothing multiprocessor

environment. In Proceedings of SIGMOD, pp
110-121.

SEGEV, A. 1986. optimization ofjoin operationsin
horizontally partitioned database systems.
ACM Trans. Database Syst, 11, 1 (Mar.), 48-80.

SELINGER, P. G., ASTRAHAN, M. M., CHAMBERLAIN,.
D. D., LOME, R. A., AND PRICE, T. G. 1979.
Access path selection in a relational database
management. In Proceedings of SIGMOD

SHAPIRO, L. 1986. Joinprocessing indatabasesys-
terns with large memories. ACM Trans.

Database Syst. 11, 3 (Sept.), 239-264.

SHEKITA, E. J., AND CAREY, M. J. 1990. Aperfor-

mance evaluation of pointer-based joins. In
Proceedings of1990ACMSIGMOD Conference
(May), pp. 300-311.

STONEBRAKER, M,, AND ROWE, L. A. 1986. The
postgres papers. Univ. of California at Berke-
ley Tech. Rep. UCB/ERL M86/85.

Su, S. Y. W. 1988. Database Computers: Princi-
ples, Architectures, and Techniques, McGraw-
Hill, New York.

SWAMI, A., AND GUPTA, A. 1988. Optimizmg large

join queries. In Proceedings of SIGMOD, pp.
8-17.

TANDEM DATABASE GFtOUP 1987. NonStop SQL:A
distributed, high-performance, high-reliability,

ACM Computing Surveys, Vol. 24, No. l, March 1992

112 “ P. Mishra and M. H. Eich

implementation of SQL In Workshop on Hzgh
Performance Transaction Systems (Asilomar,

Calif)

TONG, F., AND YAO, S. B., 1982. Performance
analysls of database]om processors In Na-
t~onal Computer Conference, pp. 627-637.

ULLMAN, J. D. 1988 Principles of Database and

Knowledge-Base Systems, vol. 1, Computer Sci-

ence press, Rockville, Md

VALDURIEZ, P. 1982 Semijoin algorithms for dis-
tributed databases. In 3rd International Symp-
osium on Distributed Databases

VALrJURIEZ, P 1986 Optimization of complex

database queries using join indices Database
Eng. 9, 4 (Dee), 10-16

VALDURIEZ, P. 1987. Jom indices ACM Trans.
Database Syst. 12, 2 (June), 218-246.

VALDURIEZ, P., AND BORAL, H. 1986. Evaluation of
recursive queries using Join indices. In Pro-
ceedings of Conference on Expert Database Sys-

tems

VALDURIEZ, P , AND GARDARIN, G. 1982 Multipro-
cessor join algorithms of relations In Improzl-

ing Usab dlty and Responsiveness. Academic
Press, New York, pp 219-237

VALDURIEZ, P , AND GARDARIN, G. 1984 Join and
semijoin algorithms for a multiprocessor

database machme ACM Trans. Database Syst.
9, 1 (Mar.), 133-161

VALDURIEZ, P., AND VIEMONT, Y. 1984. A new
multikey hashing scheme using predicate trees.
In Proceedings of SIGMOD.

VALDURIEZ, P , KHOSHAFIAN, S., AND COPELAND, G
1986 Implementation techniques of complex

objects. In Proceedings of Conference on Very
Large Data Bases

WALTON, C B 1989. Investigating skew and scal-

ability in parallel joins Tech Rep. TR-89-39,
Dept. of Computer Sciences, Univ of Texas at
Austin, Austin, Tx.

WANG, X., AND LUK, W S. 1988. Parallel Join
algorithms on a network of workstations. In
Proceedings of International Symposum on
Databases in Parallel and Dwtrtbuted Systems,
pp. 87-96.

WHANG, K -Y , WIEDERHOLD, G , AND SAGALOWICZ,
D. 1985 The property of separability and its

application to physical database design In
Query Processing m Database Systems, W Kim,

D. S Reiner, and D S. Batory, Eds. Sprmger-

Verlag, New York, pp. 297-317.

YAO, S B., TONG, F., AND SHENG Y. Z. 1981 The

eystem architecture of a data baee machine

(DBM). IEEE Database Eng. Bull. 42, 53-62.

Yoo, H., AND LAFORTUNE, S. 1989. An intelligent

search method for query optimization by semi-

joins IEEE Trans. Knowl. Data Eng. 1, 2
(June), 226-237

YOSHD.ZAWA, M , AND KAMBAYASHI, Y. 1984 Pro-

cessing mequahty queries based on generahzed

semi-joins. In Proceedings of Conference on
Very Large Data Bases, pp 416-428

Yu, C. T., CHANG, C. C., TEMPLETON, M., BRILL, D.,
.AND LUND, E, 1985. Query proceesmg m a
fragmented relational database system: Mer-
maid. IEEE Trans. Softu$. Eng. SE-11 8 (Aug,),
795-810.

Yu, C. T , GUH, K.-C., ZHANG, W , TEMPLETON, M ,

BRILL, D , AND CHEN, A L. P 1987 Algo-

rithms to process distributed queries in fast
local networks. IEEE Trans. Compuf. C-36, 10
(Oct.), 1153-1164.

ZELLER, H., AND GRAY, J. 1990. An adaptive hash

join algorithm for multluser environments In
Proceedings of Conference on Very Large Data
Bases, pp. 186-197

BIBLIOGRAPHY

BANCILHON, F., AND SCHOLL, M. 1980 Design of a

backend processor for a database machine In
Proceedings of SIGMOD.

BANERJEE, J , AND HSIAO, D K 1979 Concepts

and capabdlties of a database computer. ACM
Trans. Database S’yst. 4, 1 (Mar.).

BROWNSMITH, J D 1981 A simulation model of
the MICRONET computer system during join

processing In Proceedings of the Annual Sim-

ulation Symposium, pp. 1– 16.

BROWNSMITH, J D., AND Su, S. Y W 1980 Per-
formance analysis of the equijoin operation m
the MICRONET computer system In Proceed-
ings of ICC, pp 264-268.

CHASE) K. 1981 Join graphs and acyclic database
schemes. In Proceedz ngs of Conference on Very
Large Data Bases, pp 95-100

CHIU, C. M , AND Ho, Y C 1980 A methodology

for interpreting tree queries into optimal seml-
Jom expressions. In Proceedings of SIGMOD,
pp. 169-178.

CIACCIA, P., AND SCALAS, M R 1989. Optimiza-
tion strategies for relational disjunctive
queries. IEEE Trans Softw. Eng. 15, 10 (Oct.),
1217-1235

CODD, E. F. 1979, Extending the data base rela-
tional model to capture more meamng. ACM
Trans. Database Syst. 4, 4, 397-434.

DEWJTT, D. J 1979. DIRECT: A multiprocessor
organization for supporting relational database
management systems. IEEE Trans. Comput.

C-28, 6, 395-406.

DEWITT, D. J., NAUGHTON, J. F,, AND SCHNEIDER,

D. A. 1991. An evaluation of non-equijoin
algorithms Tech. Rep. 1011, Univ of
Wisconsin-Madison, Madison, WMC.

GARDY, D , AND PUECH, C 1989 On the effect of
join operations on relation sizes. ACM Trans.
Database Syst. 14, 4 (Dec.), 574-603.

GOTLIEB, L. R 1975 Computing joins of relations
In Proceedings of SIGMOD, pp 55-63.

GRAEFE, G. 1990. Encapsulation of parallelism in

ACM Computmg Surveys, Vol. 24, No 1, March 1992

Join Process ingin Relational Databases e 113

the VoIcano query processing systems, In Pro-
ceedingsof SIGMOD, 102-111.

GRAEFE, G. 1991. Heap-filter merge join: A new
algorithm forjoining medium-size inputs. IEEE
Trans. Soflw. Eng.17, 9(Sept.),979-982,

HONEYMAN, P. 1980. Extension joins. In Proceed-
ings of Conferences on Very Large Data Bases,

pp. 239-244.

HONG, Y. C. 1984. A pipeline and parallel archi-

tecture for supporting database management

systems. In Proceedings of Conference on Data
Engmeermg, pp. 152-159.

KAMIBAYASHI, N., AND SEO, K, 1982. SPIRIT-III:

An advanced relational database machine in-
troducing a novel data staging architecture
with tuple stream filters to preprocess rela-
tional algebra. In National Computer Confer-

ence Proceedings, pp. 605-616.

KELLER, A. 1985. Algorithms for translating view

updates into database updates for views involv-
ing select, In Proceedings of ACM Sympostum
on Principles of Database Systems, pp. 154–163.

KENT, W. 1979. Theentityjoin. In Proceedings of
Conference on Very large Data Bases, pp.
232-238.

LACROIX, M., AND PIROTTE, A. 1976. Generalized
joins. SIGMODRec. 8,3, 14-15.

Lu, H., TAN, K. L, AND SHAN, M.-C. 1990. Hash-
based join algorithms for multiprocessor com-

puters with shared memories. In Proceedings

of Conference on Very Large Data Bases, pp.
198-209.

MAIER, D., SAGIV, Y., AND YANNAKIS, M. 1981, On
the complexity of teeting implications of func-
tional and join dependencies. J. ACM28, 4,
680-695.

MENON, M, J. AND HSIAO, D. K 1983. Design and
analysis of join operations of database ma-
chines. In Aduanced Database Machine Arch i-
tecture, D. K. Hsiao, Ed. Prentice-Hall, Engle -
wood Cliffs, N. J., pp. 203-255.

MERRET, T. H. 1983, Why sort-merge gives the
best implementation of the natural joins. ACM

SIGMOD Rec. 13, 2 (Jan.), 39-51.

MERRET, T. H. 1984. Practical hardware for linear

execution of relational database operations.
ACM SIGMOD Rec. 14, 1 (Mar.) 39-44.

MERRETT, T, H., KAMBAYASHI, Y,, AND YASUURA, H.
1981. Scheduling of page fetches in join oper-
ations, In Proceedings of Conference on Very
Large Data Bases, pp. 488-497,

OMIECINSKI, E. R., AND LIN, E. T. 1989. Hash-
based and index-based join algorithms for cube
and ring connected multicomputers. IEEE

Trans. Knowl. Data Eng. 1, 3 (Sept.), 329-343

ONO, K., AND LOHMAN, G. M. 1990. Measuring
the complexity of join enumeration in query
optimization. In Proceedings of Conference on
Very Large Data Bases, pp. 314-325.

QADAH, G. Z, 1984. Evaluation of performance of

the equi-join operation on the Michigan rela-

tional database machine. In Proceedings of
Conference on Parallel Processing, pp. 260-265.

QADAH, G. Z. 1985. The equijoin operation on a
multiprocessor database machine. In Proceed-
ings of International Workshop on Database
Mach znes, Spri nger-Verlag, New York, pp.
35-67.

QADAH, G. Z., AND IRANI, K, B. 1985. A database
machine for very large databases. IEEE Trans.

Comput. C-34, 11, 1015-1025.

QADAH, G. Z., AND IRANI, K. B. 1988 The join

algorithm on a shared-memory multiprocessor
database machine. IEEE Trans. Softw. Eng.

14, 11 (Nov.), 1668-1683.

RISSANEN, J. 1979. Theory of joins for relational
databases: A tutorial survey. In Proceedings of

Sympos~um on Mathematical Foundations of
Computer Science, Lecture Notes in Computer
Science, vol. 64 Springer-Verlag, New York,
pp. 537-551.

ROSENTHAL, A. 1981. Note on the expected size of

a join. ACM SIGMOD Rec. 11, 4 (July), 19-25.

SCHNEIDER, D. A., AND D~WrrT, D. J. 1990.
Trade-offs in processing complex join queries
via hashing in multiprocessor database ma-
chines, In Proceedings of Conference on Very
Large Data Bases, pp. 469-480.

SCHUSTER, S. A., NGUYEN, H. B., OZKARAHAN,
E. A., AND SMITH, K. C. 1979. RAP.2: An

associative processor for databases and its ap-
plications. IEEE Trans. Comput. C-28, 6,
446-458,

SCIORE, E. 1982. A complete axiomatization for
full join dependencies. J. ACM 29, 2 (Apr.),
373-393.

SHAW, D. E ET AL 1981. The NON-VON database

machine: A brief” overview. Database Eng. 4, 2

SHULTZ, R., AND MILLER, I. 1987. Tree structured
multiple processor join methods, In Proceed-

ings of Conference on Data Engineering, pp.
190-199.

Su, S. Y. W., NGIJYEN, L. H., EMAN, A , AND
LIPOVSKI, G. J. 1979. The architectural fea-
tures and implementation techniques of multi-

cell CASSM. IEEE Trans. Comput. C-28, 6

(June), 430-445.

THO~, J. A., RAMAMOHANARAO, K., AND NAISH, L.
1986. A superjoin algorithm for deductive
databases, In Proceedings of Conference on
Very Large Databases, pp. 189-196,

VARDI, M. Y. 1980. Axiomatization of functional
and join dependencies in the relational model.

Weizman Institute M. SC. thesis, Rehovot,
Israel.

VARDI, M. Y. 1983. Inferring multlvalued depen-
dencies from functional and Join dependencies.
Acts Znf 19, 2, 305-324.

Received April 1990, final revision accepted July 1991

ACM Computing Surveys, Vol 24, No 1, March 1992

