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ABSTRACT
Querying XML data is a well-explored topic with powerful database-
style query languages such as XPath and XQuery set to become
W3C standards. An equally compelling paradigm for querying
XML documents is full-text search on textual content. In this paper,
we study fundamental challenges that arise when we try to integrate
these two querying paradigms.

While keyword search is based on approximate matching, XPath
has exact match semantics. We address this mismatch by consid-
ering queries on structure as a “template”, and looking for answers
that best match this template and the full-text search. To achieve
this, we provide an elegant definition of relaxation on structure and
define primitive operators to span the space of relaxations. Query
answering is now based on ranking potential answers on structural
and full-text search conditions. We set out certain desirable prin-
ciples for ranking schemes and propose natural ranking schemes
that adhere to these principles. We develop efficient algorithms for
answering top-K queries and discuss results from a comprehensive
set of experiments that demonstrate the utility and scalability of the
proposed framework and algorithms.

1. INTRODUCTION
As businesses and enterprises generate and exchange XML data

more often, there is an increasing need for searching and querying
this data. Two major paradigms for searching XML documents are
database style querying as exemplified by query languages such as
XPath and XQuery, and IR-style querying, in particular, full-text
and keyword search [28]. Ideally, users should not have to choose
between these two paradigms but really benefit from both. Key-
word search enhances the value of querying by permitting a fine
level of querying textual content while query expressions, written
in XPath or XQuery, bring value to keyword search by specify-
ing a context in which to conduct the search. In addition, these
languages allow the extraction of data at a very fine level of gran-
ularity, thereby returning to the user the most relevant document
fragments in a document collection.

Several issues arise when attempting to put together these two
querying styles. Should we use off-the-shelf XPath and IR engines
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or should we implement the integrated paradigm from scratch? We
explore both cases. The first choice has the advantage of reusing
existing techniques for XPath query evaluation and keyword search
and looking for the best way to combine them for efficiency. The
second choice has the benefit of modifying existing XPath evalua-
tion strategies to better account for this integration. In both cases,
we consider XPath expressions where a predicate might use the
fn:containsfunction which looks for occurrences of specified key-
words. The expression used infn:containscan be as complex as an
IR engine can handle (e.g., stemming, proximity distance, Boolean
predicates). However, not all obligations specified in the XPath
expression may be satisfied by a document, although it may be rel-
evant for thefn:containsexpression. A strict interpretation of the
search context (i.e., the XPath query) would render many potential
answers invalid and thus would penalize(!) the user for provid-
ing the context. Therefore, in order to leverage XPath in specify-
ing the search context and, at the same time, not suffer from the
consequences of the exact match semantics of XPath, we view the
XPath expression on structure as a “template” and permit a flexible
interpretation of this template. In other words, if an input docu-
ment satisfies the XPath expression exactly, the requested answers
will be returned. If an input document satisfies the expression only
partially, it might be returned with a lower score. Query evalu-
ation spans the space between the strictest (i.e., exact semantics)
and the loosest interpretation of the XPath expression (i.e., the case
where the only expression that is considered is the one specified in
fn:contains).

We illustrate with an example the value and the inherent chal-
lenges in permitting flexible querying of XML documents combin-
ing both structure and keyword search.

Consider querying documents in the IEEE INEX data collection1

or the ACM SIGMOD Record collection2. Such documents exhibit
two desirable properties that we will explore in the rest of the dis-
cussion: heterogeneity in structure and presence of textual content.
Figure 1 illustrates some example XPath queries. Every query in
the figure is also shown in the form of a tree pattern together with a
Boolean formula imposing constraints on nodes in the tree. Tree
pattern queries constitute an important and expressive subset of
XPath and make our illustration easier. Single edges denote parent-
child containment, while double edges denote ancestor-descendant
containment. Also, one of the nodes is a distinguished node (shown
in a box in Figure 1), indicating that matches to this node are re-
quired as answers. All our queries in Figure 1 return articles.

Suppose a user wishes to find articles that are relevant to algo-
rithms on streaming XML data. At one extreme, the user might
simply issue the queryQ6 of Figure 1(f), which asks for articles

1http://www.is.informatik.uni-duisburg.de/projects/inex03/
2http://www.acm.org/sigmod/record/xml/
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Figure 1: Example Queries

containing the keywords “XML” and “ streaming”anywhere in the
document. This query is similar to IR queries and can be computed
solely using IR techniques which include keyword and phrase search,
proximity distance, stemming and thesauri. On the other hand, the
user might wish to refine the scope of keyword search using some
schema knowledge. Thus, the user might issue, say queryQ1 of
Figure 1(a). This query asks for articles containing a section sub-
element which contains an algorithm and a paragraph, such that the
paragraph contains the keywords of interest.Q1 is more focused
thanQ6. E.g.,Q6 may not distinguish between articlescontain-
ing algorithms relevant to XML streaming and articlesmentioning
algorithms developed in other papers relevant to XML streaming
without containing any algorithm themselves, butQ1 does.

However, suppose one of the documents queried contains an ar-
ticle which has a section containing an algorithm, the section title
contains the keywords “XML” and “ streaming”, but none of the
paragraphs in that section does. This article would be missed by
queryQ1 but might well be of interest to the user. A strict inter-
pretation ofQ1 means that the user who issuedQ1 would not see
such answers and would unfairly get “penalized” for providing use-
ful context to direct the keyword search. QueryQ2 (Figure 1(b))
would catch such articles because thecontainspredicate has been
moved upfrom node$4 to its parent node$2. Thus,Q2 merely
insists that section elements contain the keywordsanywhere, but is
otherwise identical toQ1. Q2 broadens the scope of application
of the keyword search. In other words,Q2 creates a larger search
context for the keyword search than inQ1. Therefore, all answers
to Q1 also satisfyQ2. Similarly, an article that contains a section
with a paragraph in that section containing the keywords,with all
algorithms being outside that sectionwill again be missed byQ1
(and byQ2), but might be of interest to the user. QueryQ3 (Fig-
ure 1(c)) will catch such articles. The reason is thatQ3 only insists
that the article contains a (transitive) algorithm sub-element and a
section that contains a paragraph containing the keywords of inter-
est. The algorithm might be in that section, in a subsection of that
section or, in another section. Note thatQ3 includes all answers to
Q1. QueryQ4 combinesQ2 andQ3. QueryQ5 captures articles
containing a paragraph sub-element which contains the keywords
without having any condition on algorithm containment. The re-
lationship between the five queries is:Q1 ‰ Q2, Q1 ‰ Q3,
Q2 ‰ Q4, Q3 ‰ Q4, andQ4 ‰ Q5. Finally, by repeatedly apply-
ing some primitive operations to the user query, once can produce
queryQ6 that contains all five queries. Intuitively, each query is
a “relaxation” of the query it contains. The key point is thatif we

adopt a strict interpretation of the user queryQ1, many answers to
one or more relaxations above, potentially of interest to the user’s
keyword search, would be missed out.

One naive solution is for the user to write these queries by hand.
This is both tedious and expensive, not only in terms of user time,
but also in terms of the (potentially large) number of queries that
the user might need to write and in terms of repeated processing
of similar queries and, thus, of lost optimization opportunities. In
this paper, we argue that the solution to this problem lies in treating
the user query expression as a “template” and seeking answers that
are approximate matches to this template, using a principled notion
of approximation. We describe the FleXPath system that integrates
XPath querying with full-text search in a flexible way, and make
the following technical contributions.

† In order to integrate structure and keyword querying, we pro-
pose a formal framework in which queries on structure are
viewed as a “template” for keyword search. Such queries are
used to specify a context to conduct full-text search. In or-
der to achieve this, we develop a query semantics that consis-
tently extends classical semantics of queries without full-text
search.

† A second question is how do we define approximate matches?
Thereto, we formalize the notion ofquery relaxation. Intu-
itively, a relaxation to a query expression is any expression
that contains the former. This admits a huge search space of
relaxations, permitting many expressions that may be irrele-
vant to the user query. We provide an elegant definition of
relaxation for the class of tree pattern queries (with full-text
search) that addresses this problem.

† Thirdly, how do we span and search the space of relaxations?
We present a set of primitive operations on queries that build
on the ones proposed in [3, 15, 30], and show that they are
independent (i.e., no operation can be derived from the oth-
ers) and complete (they span exactly the space of relaxations
defined). We define the semantics of a query so it includes
answers to all relaxations of the query. We propose three
natural schemes for ranking query results in this context and
show that they satisfy certain desirable properties.

† A natural class of queries in this setting are top-K queries.
We develop three algorithms for this purpose. Two of the al-
gorithms (DPO and SSO) are designed to be able to use off-
the-shelf XPath and IR engines while one (Hybrid) modifies



an existing XPath evaluation algorithm. The algorithms can
use any of the proposed ranking schemes and are designed
to optimize repeated computation, the number of interme-
diate query answers, and the cost of (re)sorting answers to
compute top-K results. We run experiments that evaluate the
performance of the three algorithms.

In Section 2, we give some basic background and an overview
of our problem. Section 3 defines relaxations and how to span the
space of relaxations. In Section 4, we present our ranking schemes
and their properties. Section 5 describes our query processing ar-
chitecture and top-K algorithms. Section 6 contains the experi-
ments carried on the algorithms. Related work is in Section 7.

2. BACKGROUND AND PROBLEMS

2.1 Tree Pattern Queries
We consider the class oftree pattern queries, an expressive frag-

ment of XPath. A tree pattern query (TPQ) is a pair(T; F ) where
T is a rooted tree andF is a Boolean combination of value-based
predicates. The nodes inT are labeled by variables, denoted$i
wherei is an integer. The edges are parent-child (pc) or ancestor-
descendant (ad). Figure 1 contains examples of such queries. One
of the nodes inT is designated as thedistinguished node(shown
inside a box in Figure 1) and identifies query answers.

Value-based predicates are of the form$i:tag =<tagname> that
constrains the type of a node and$i:attr relOp value. E.g.,$i:price <
100 says the value of theprice attribute associated with the ele-
ment represented by node$i (say a book), must be< 100.3 Note
that pc-edges (resp., ad-edges) in the treeT are an inherent part of
the query and formally correspond to assertionspc($i; $j) (resp.,
ad($i; $j)). We call the latter predicatesstructural predicates.
Thus, logically, the query should be understood as the conjunc-
tion of the formulaF with all structural predicatespc($i; $j) and
ad($i; $j) represented byT . For example, the logical expression
corresponding to queryQ1 in Figure 1 is given in Figure 2.

pc($1; $2) ^ pc($2; $3) ^ pc($2; $4) ^ $1:tag = article ^
$2:tag = section ^ $3:tag = algorithm ^ $4:tag =
paragraph ^ contains($4; “XML” and “streaming”).

Figure 2: Logical Expression of QueryQ1.

We define an additional value-based predicatecontains($i; FTExp),
that we allow inF . It takes a variable$i and a full-text expression
FTExp and returns a Boolean value. The variable defines thecon-
text in which the full-text search expression given inFTExp oper-
ates. The predicate returns true if at least one node in$i satisfies
FTExp. FTExp can vary from a simple conjunction of keywords to
an expression that uses proximity distance, stemming, regular ex-
pressions and negation. In this paper, we do not focus on how to
express such conditions in XPath. A language for such expressions
is proposed in [2]. In the sequel, by tree pattern queries (TPQs), we
mean TPQs with thecontainspredicate.

The semantics of a TPQ is captured in terms of a match. Let
D be a data tree (i.e., an XML document collection) andQ =
(T; F ) be a TPQ. Amatchis a functionf : Q!D that maps the
nodes ofT to those ofD such that: (i) all value-based predicates
in F (including contains) are satisfied and (ii) all structural rela-
tionships are preserved, i.e., whenever($i; $j) is a pc-edge (resp.,
ad-edge) inQ, f($j) is a child (resp., descendant) off($i) in

3We do not consider “join” conditions that compare the con-
tents/attributes of different nodes.

D. Finally, the answer to a TPQQ with distinguished node$d,
against an XML databaseD is the set of data nodesQ(D) = fx j
x is a data node inD ^ 9 a matchf : Q ! D ^ f($d) = xg.

Query containment is at the heart of relaxation. A TPQQ is said
to be contained in a TPQQ0, denotedQ µ Q0, if for every XML
database instanceD, Q(D), the result of applyingQ to D, is con-
tained inQ0(D).

2.2 Problems Overview
Full-text search has been extensively researched in IR and has a

semantics based on approximate match as a result of which query
answers are ranked lists, unlike for conventional database queries.
The first problem we tackle is how can we find a semantics for
TPQs that is consistent with both database and IR paradigms. We
argue that such a semantics should permit some degree of approx-
imation of the XPath query. The second problem is how to score
query answers under the new semantics. The third problem is how
can we efficiently evaluate top-K queries ranked on the structural
and full-text search expression(s). We address these three problems
in the rest of the paper.

3. QUERY RELAXATION

3.1 Issues with Relaxation
Intuitively, a relaxation of a query is any query which contains

the former. However, such a definition is too broad. Indeed, three
principled ways of relaxing a query are (a) adding an explicit dis-
junction or union to the query, (b) replacing predicates present in
the query by weaker ones, and (c) as a special case of (b), sim-
ply dropping those predicates. In this paper, we are not interested
in relaxing theFTExp used in thecontainspredicate. So, we do
not consider (b) further. A discussion on this case can be found in
Section 3.4. Both (a) and (c) still have attendant drawbacks. E.g.,
consider queryQ1 in Figure 1(a). Following (a), we can add an
explicit union with anarbitraryquery that asks for, say publisher
addresses, thus permitting answers that are clearly irrelevant to the
original query. Therefore, we regard relaxation by arbitrary union
unacceptable. Following (c), we can drop one or more of the predi-
cates$1:tag = article, contains($4; “XML” and “streaming”)
to obtain a relaxation. However, dropping the first admits non-
articles as answers. Arguably, such answers may not be of interest
to the user. Section 3.4 contains a discussion of this case and how
such answers could be incorporated in a principled way. We do not
consider them further here. Dropping the second predicate admits
articles not containing the given keywords and thus, not relevant to
the query. In addition, dropping an arbitrary predicate can lead to a
query that is not a TPQ anymore. E.g., if we simply drop the pred-
icatespc($1; $2) from the logical expression of queryQ1 given in
Figure 2, the result is a query whose pattern graph is disconnected.
One can argue why not treat it as the union of two (or more) TPQs.
The problem with this union is that the distinguished node in some
of those trees is not well-defined. Furthermore, we wish to obtain
relaxations of TPQs that are themselves TPQs.

In the next section, we show how we can avoid these pitfalls by
reasoning on the logical expression of a TPQ.

3.2 Closure and Core of TPQs
Structural and value-based predicates in a TPQ imply other pred-

icates. E.g.,pc($1; $2) implies ad($1; $2). More generally, we
have the inference rules shown in Figure 3.

The rules are self-explanatory. The last rule says if an element
satisfies the full-text expressionFTExp, then any element that (tran-
sitively) contains this element necessarily satisfies that expression.



pc($x; $y) ‘ ad($x; $y)
ad($x; $y); ad($y; $z) ‘ ad($x; $z)
ad($x; $y); contains($y; FTExp) ‘ contains($x; FTExp)

Figure 3: Inference Rules

pc($1; $2) ^ pc($2; $3) ^ pc($2; $4) ^ $1:tag = article ^
$2:tag = section ^ $3:tag = algorithm ^ $4:tag =
paragraph ^ contains($4; “XML” and “streaming”) ^
^ ad($1; $2) ^ ad($2; $3) ^ ad($2; $4) ^ ad($1; $3) ^
ad($1; $4) ^ contains($2; “XML” and “streaming”) ^
contains($1; “XML” and “streaming”).

Figure 4: Closure of QueryQ1.

We define theclosureof a TPQ as the expression obtained by tak-
ing the logical expression of the TPQ and adding (i.e., conjoining)
all predicates that are derived using the above rules. The closure of
queryQ1 (Figure 4) is computed from its logical expression (Fig-
ure 2). It is easy to show that the closure of a TPQ is equivalent to
it and is unique.

Given (a subset of) the closureC of a TPQ, a predicatep in C
is said to beredundantif p can be derived from the rest of the
predicates inC using the above inference rules. E.g., in the query
pc($1; $2) ^ ad($2; $3) ^ ad($1; $3), the predicatead($1; $3)
is redundant. A query is minimal if it contains no redundant pred-
icates. We define thecoreof a TPQ to be any minimal query that
is equivalent to it. By the core of a TPQ, we mean the core of its
closure. We can show:

THEOREM 1. [Uniqueness of Core] : Let Q be a tree pattern
query. Then it has a unique core.

Flesca et al. [16] recently showed that when an XPath expression
only uses child and descendant axes, wildcards, and branching, the
minimal equivalent query can be obtained by pruning nodes and
edges from it, thus showing that it has a unique minimal equivalent
query. We can show that this result continues to hold when impli-
cation between predicates is taken into account. In other words, the
closure of any TPQ has a unique core.

3.3 Defining Relaxations
We first deal with relaxations based on structural predicates. Let

Q be a TPQ,C be its closure, andS ‰ C be a set of structural
predicates. We denote the result of removing predicatesS from
C asC ¡ S. We assume that whenever a node variable$i does
not appear inC ¡ S, all value-based predicates involving$i are
dropped automatically.

DEFINITION 1. [Structural Relaxation] A structural relax-
ationof Q is any queryC ¡S, provided (i)C ¡S is not equivalent
to C and (ii) the core ofC ¡ S is a tree pattern query.

Intuitively, a structural relaxation of a TPQ is obtained by drop-
ping predicates from its closure such that the resulting query has
a core, itself a TPQ, that strictly contains the original query. Sup-
pose we drop just the predicatead($1; $3) from the closureC1
of queryQ1 (see Figure 4), the resulting query is still equivalent
to the original, sincead($1; $3) is derivable from the other predi-
cates. So,C1¡ fad($1; $3)g is not a (structural) relaxation. Sup-
pose we drop the predicatespc($2; $3) andad($2; $3) from C1.
The core ofC1 ¡ fpc($2; $3); ad($2; $3)g is shown in Figure 5.
This query corresponds to queryQ3 in Figure 1. Clearly,Q3 is a
TPQ andQ1 ‰ Q3. So,C1¡ fpc($2; $3); ad($2; $3)g is a valid
relaxation.

Indeed, each of the queries in Figure 1(b)-(e) is a valid structural
relaxation of queryQ1 in Figure 1(a).

pc($1; $2) ^ pc($2; $4) ^ ad($1; $3) ^ $1:tag = article ^
$2:tag = section ^ $3:tag = algorithm ^ $4:tag =
paragraph ^ contains($4; “XML” and “streaming”).

Figure 5: Core of Query C1¡ fpc($2; $3); ad($2; $3)g.

It is important to note that structural relaxationscannotbe defined
on the basis of dropping predicates from a TPQ.It is indeed neces-
sary to consider the closure of the TPQ.For example, in Figure 1,
queriesQ3 andQ4 cannot be obtained fromQ1 in this way, even
though they are relaxations ofQ1.

In addition to structural relaxation, we consider relaxations on
thecontainspredicate. While many forms of relaxations can be de-
fined on value-based predicates,4 we only consider this relaxation
because it interacts with structure in in teresting ways.

DEFINITION 2. [contains-Relaxation] Let Q = (T; F ) be
any tree pattern query and letcontains($i; FTExp) be a predi-
cate inF , such that$i is not the root ofT . ThenQ0 = (T; F 0),
whereF 0 is identical toF exceptcontains($i; FTExp) is replaced
by contains($j; FTExp), where$j is an ancestor of$i in T , is a
contains-relaxationof Q.

From the definition, it should be clear that acontains-relaxation
of a TPQ is itself a TPQ and strictly contains the original query. As
an example, in Figure 1, queryQ2 is obtained fromQ1 by relax-
ing the contains($3; “XML” and “streaming”) to contains($2;
“XML” and “streaming”). Note thatcontains- and structural re-
laxations can be composed leading to various relaxations of the
original query. For example, queriesQ5 andQ6 in Figure 1, are
obtained by applying a series of structural andcontainsrelaxations
to the original user queryQ1. In the sequel, by thespace of relax-
ationsof a TPQ, we mean the space consisting of the TPQ as well
as all its relaxations.

3.4 Other Relaxations
It is possible to consider other forms of relaxations [3, 15, 30].

E.g., if we have a type hierarchy associated with element types,
then we can relax a query by replacing a tag with a tag associated
with a supertype: e.g., inQ1, replace$1:tag = article with
$1:tag = publication if the type hierarchy saysarticle is
a subtype ofpublication. We could replace value-based pred-
icates, e.g.,$i:price • 98 with $i:price • 100. We could
also relax thecontainspredicate by making use of thesauri and
replacing keywords with more general ones or drop some of the
keywords. While these other forms of relaxations are interesting
and useful, they are orthogonal to the ones studied in this paper. In
fact, all relaxations that can be applied on theFTExp in thecontains
predicate can already be performed by a separate IR engine before
returning its results. The goal of our relaxations is tobroaden the
scope of full-text searchprovided in the original user query and
study its impact on query results.

3.5 Spanning Relaxations
Given a user query, we would like to consider the space of re-

laxed queries, evaluate them and return a ranked list of answers.
A significant challenge in this exercise is how to search this space.

4E.g., a predicate$i:content > 5 can be relaxed to$i:content >
k, for eachnumberk < 5.



In particular,contains-relaxations on a TPQ with one or morecon-
tains predicates are easily enumerated by promotingcontainsto
ancestors of the nodes they originally apply to. However, as ex-
amples from the preceding section show, identifying structural re-
laxation that can be applied to a user query, can be challenging.
Dropping some predicates from an original TPQ(’s closure) can vi-
olate the tree property or it can lead to a query that is equivalent to
the original query. Ensuring that the resulting query is a structural
relaxation involves a query containment check, a problem that is
NP-hard in general [24]. What we would like is a systematic way
to generate queries that are guaranteed to be relaxations and which
covers all relaxations in the space. In this section, we present a set
of operators for this purpose. The operators preserve the contain-
ment property between a query and its relaxed version. The first
three operators are specific to querying structure and are similar to
the ones proposed in [3, 15, 30]. The last one is new and is specific
to querying text in XML documents.

3.5.1 Axis Generalization
The intuition behind this operator is that in place of a parent-child

relationship between two nodes in a TPQ, if an ancestor-descendant
relationship is present between these nodes in an actual database,
they will be considered as a match. More precisely, for a TPQQ =
(T; F ) and a predicatepc($x; $y) in the logical representation of
Q, °pc($x;$y)(Q), theaxis generalizationof Q on pc($x; $y), is
the TPQ which is identical toQ except the pc-edge from$x to $y
in T is replaced with an ad-edge from$x to $y.

3.5.2 Leaf Deletion
The intuition behind this operator is that if we delete a leaf node
$x in the query, we allow answers where that leaf node might not
be matched. More precisely, given a TPQQ = (T; F ) and a leaf
node$x in T , ‚$x(Q), the leaf deletion ofQ on $x, is the TPQ
Q0 which is identical toQ except: (i) the leaf node$x is deleted
from T , (ii) all value-based predicates involving$x are dropped
from F , and (iii) if the deleted node$x is a distinguished node in
Q, then the parent of$x in Q is made the distinguished node inQ0.
As an example,‚$3(Q2) applied to queryQ2 in Figure 1 would
result in a queryQ5 where the leaf$2 is deleted and the condition
$2:tag = algorithm is dropped (i.e., replaced by “true”) from
Q2. In order to avoid queries that evaluate to true on every element,
we forbid deleting the root of a TPQ. QueryQ6 is an extreme case
where leaf node deletion is applied repeatedly on the user query.

3.5.3 Subtree Promotion
The intuition behind this operator is that rather than insist on the

existence of paths that go through nodes of a certain type, we sim-
ply insist on the existence of the said paths. More precisely, letQ
be a TPQ,$x any node ofQ other than the root, and$y its grand-
parent inQ. Then¾$x(Q), the subtree promotion ofQ on $x, is
the TPQQ0 identical toQ except the subtree rooted at$x is made a
corresponding subtree of$y, where the edge between$y and$x is
an ad-edge. As an example,¾$3(Q1) applied to queryQ1 results
in the queryQ3 in Figure 1(c).

3.5.4 “contains” Promotion
The containspredicate, when imposed on a node$x of a TPQ,

requires any match to contain the specified keywords somewhere
within its scope. Incontainspromotion, we move this predicate
from node$x to its query parent. More precisely, for a TPQQ and
a node$x in Q other than the root,•$x(Q), thecontainspromotion
of Q on node$x, is the TPQ where anycontainspredicate of the
form contains($x; FTExp) is replaced bycontains($y; FTExp),

where$y is the parent of$x in Q. As an example,•$4(Q1) re-
sults in the queryQ2 in Figure 1(b). This query admits sections
containing the specified keywords somewhere, not necessarily in a
paragraph in the section.

THEOREM 2. [Soundness and Completeness] : Let Q be a
tree pattern query. Every query obtained by applying a composition
of one or more of the operators°; ‚; ¾; • applied toQ is a valid
structural orcontainsrelaxation. Every valid relaxation ofQ can
be obtained by finitely many applications of these operators toQ.

While we omit the proof for lack of space, soundness is intu-
itively clear. The intuition behind completeness is thateach valid
relaxation can be regarded as obtained by dropping some predicates
from a TPQ that cannot be derived from the remaining predicates.
We can identify the operator or sequence of operators that exactly
captures each such dropping operation. The main value of this the-
orem is that it tells us that in the set of operators presented, we
have a mechanism to systematically generate all and only valid re-
laxations of a given tree pattern query, while avoiding expensive
minimization of a closure in order to obtain the core and expensive
containment tests. When describing our algorithms, we exploit this
correspondence between relaxation operators and predicate drop-
ping: we often refer to “the next predicate dropped” when present-
ing our algorithms, for convenience and clarity, even though the
algorithms are based on the operators.

4. DESIRABLE RANKING SCHEMES

4.1 Ranking on Structure and Keywords
While we believe a single ranking scheme may not always be ac-

ceptable, we identify some general principles that any good ranking
scheme on both structure and keyword should adhere to.

Numerous algorithms have been proposed in the IR community
(e.g., see [28]) for ranking documents based on keyword search.
Our intention is not to propose yet another ranking algorithm for
keyword search but rather focus on how to combine structural and
keyword scores to produce the score of an answer. One can as-
sociate two numerical scores with an answer to a (relaxed) query:
(i) a score reflecting how well it structurally matches the original
query and (ii) a score based on its full-text expression. We regard
these two scores as orthogonal and propose three alternative rank-
ing schemes to combine these scores. This is different from exist-
ing content and structure ranking schemes in IR that rely on pre-
specified XML fragments [9, 18]. We discuss these works in Sec-
tion 7. However, a study and comparison of these ranking schemes
is outside the scope of this paper.

Since we do not consider relaxations based on value-based predi-
cates, we will assume they are satisfied when computing scores. A
ranking scheme may associate a weight with each predicate present
in the query. This weight may be user-specified, or computed by
analyzing the input document. It may be static or dynamic (e.g.,
different for different elements with the same tag, depending on
their context). Also, this weight may or may not depend on the
query in question. For thecontainspredicate, we assume a weight
of 1. We also assume the score returned by the IR engine forcon-
tains is normalized to be in the range[0; 1].

DEFINITION 3. [Answer Score] Given a TPQQ, the score
of an answer toQ and, to any of its relaxations, is obtained by
a computable arithmetic function of the weights associated with
those query predicates (in the closure ofQ) which are satisfied by
the answer.



The score of an answer measures the relevance of that answer to
the user query.

DEFINITION 4. [Top-K Answers] Given a TPQQ and its
closureC, the top-K answers toQ and, to any of its relaxations,
is the set of answers toQ and, to any of its relaxations, with the K
highest scores.

4.2 Properties of Ranking Schemes
Recall that every answer to a query is also an answer to any of its

relaxations. SupposeQ is a (possibly relaxed) query andQ0 is any
relaxation ofQ. We identify the following desirable properties for
ranking schemes.

1. Relevance Scoring: Whenever a (possibly relaxed) query
Q is relaxed to obtainQ0, every answer ofQ should have
a structural score higher or equal to that of any answer of
Q0. This is natural since answers that did not make the “first
cut” imposed byQ are not as relevant as answers that exactly
matchQ. Note that keyword score may not satisfy this prop-
erty: e.g., promotion of thecontainspredicate from a node to
its query parent widens its search scope and may well result
in a higher keyword score.

2. Order Invariance : A relaxation may be obtained by drop-
ping predicates from a query(’s closure) in any order. The
score assigned to an answer to a relaxed query should be
independent of the order in which predicates were dropped
from an initial query to obtain the relaxed query.
This property is orthogonal to themeansused for generating
relaxations. For example, in place of our operators from Sec-
tion 3.5, one could use any other complete set of operators as
long as this property is satisfied.

3. Efficiency: Finally, it is desirable that the ranking scheme
used allow efficient query answering.

The first two properties are motivated primarily by semantical
considerations while the last one is motivated by practical consider-
ations. The first property is satisfied by making sure that the struc-
tural score of an answer decreases with the number of predicates
that are dropped from the original query to evaluate that answer.
The following theorem gives a sufficient condition for ensuring the
second property.

Let f be any aggregate function, i.e., any total function from finite
sets of multisets over real numbers to real numbers.

THEOREM 3. [Good Ranking Schemes] : Let Q be a TPQ,
wQ a function that associates a weight with each predicate inQ,
andf be an aggregate function. Suppose the score of each answer
t to queryQ or one of its relaxations is computed by the ranking
scheme:
f(ffwQ(p1); :::; wQ(pk)gg), wherep1; :::; pk are the predicates
satisfied by the answert andff:::gg denotes a multiset. Then the
ranking scheme is order invariant.

Intuitively, the theorem says that if scores of answers are com-
puted by a ranking scheme that combines weights associated with
predicates satisfied by an answer using any aggregate function, then
the ranking scheme is guaranteed to be order invariant. In partic-
ular, note that the aggregate function used may be arbitrary – i.e.,
distributive (like sum), algebraic (like average), or holistic (like me-
dian). The intuition is that the weight associated with each predi-
cate does not depend on which predicate is present in a relaxation.

Thus, the score assigned to an answer to a relaxation does not de-
pend on how that relaxation was obtained, only on the predicates
present in it. In practice, the structural scoress and keyword score
ks may be computed separately by separate engines.

4.3 Ranking Schemes
In this section, we propose some example ranking schemes that

adhere to the principles defined in Section 4.2. First, though we
discuss “predicate penalty”, a notion that is at the heart of score
computation for relaxed queries.

4.3.1 Predicate Penalty
Given a TPQQ and its closureC, thepredicate penaltyassociated

with each predicatep in C measures how much context an answer
loses by not satisfying that predicate. A subtlety is that we must
associate weights not just with predicates present in a query but
with all predicates in its closure.

Suppose that each predicate in the closure ofQ (including the
containspredicate and excluding other value-based predicates) is
assigned a weight using some functionwQ. All relaxations ofQ
correspond to dropping either thepc or thead predicates or the
containspredicate from a query closure. Consider a pair of nodes
$i; $j in Q. Suppose$i and$j are constrained to have tagsti and
tj respectively. For tagsti; tj , we denote by#pc(ti; tj) (resp.,
#ad(ti; tj)) the number of pairs of nodes of type(ti; tj) related
by parent-child (resp., ancestor-descendant) relationships. We de-
note by#(t) the number of elements of tagt in the document and
by#contains($i; FTExp), the number of matches to theFTExp ex-
pression in the context of node$i.

We define the penalty associated with dropping the predicate
pc($i; $j) from Q (but notad($i; $j)) as:

[#pc(ti; tj)=#ad(ti; tj)]£ wQ(pc($i; $j))

The intuition is that this penalty measures the loss of context result-
ing from relaxingpc to ad . If a majority of ancestor-descendant
(ti; tj) pairs in a document are parent-child pairs, then the relax-
ation enables fewer additional answers than if this had not been the
case. Thus, such a relaxation incurs a heavier penalty (i.e., closer
to the weight of the edge itself).

We define the penalty of droppingad($i; $j) from Q to be:

[#ad(ti; tj)=(#(ti)£#(tj))]£ wQ(ad($i; $j))

This penalty is proportional to the ratio of the number of ancestor-
descendant(ti; tj) pairs over the total number of elements of tag
ti or tj . The more this ratio, the closer the penalty to the predicate
weight.

Suppose$l is the parent node of$i in Q. We define the penalty of
droppingcontains($i; FTExp) (which corresponds to promoting it
to $l) as:

[#contains($i; FTExp)=#contains($l; FTExp)]£
wQ(contains($i; FTExp))

The parent node$l contains at least as many matches to the full-
text expressionFTExp as its child node$i. The intuition behind this
penalty is that it measures context broadening of keyword search.

4.3.2 Answer Score
SupposeQ0 is a relaxation ofQ. Let fp1; :::; pkg be the struc-

tural predicates present inQ. Let S be the set of predicates that
were dropped from the closure ofQ to obtainQ0.5 Then the struc-

5In an actual algorithm, we will use our relaxation operations in-
stead of predicate droppings. However, the effect can be under-
stood in terms of predicate dropping.



tural score of any answer toQ0 is denotedss and is calculated as:Pk
i=1 wQ(pi) ¡Pp2S …(p), where…(p) denotes the penalty as-

signed to dropping predicatep.
The keyword score of a query answer is denotedks, and is defined

as the the weighted sum of the scores associated by an IR engine
with all thecontainspredicates satisfied by that answer.

The final score of an answer combines its structural scoress and
its keyword scoreks. We propose three general ranking schemes
for combining these scores that conform to the principles defined
in Section 4.2.

Structure first: The score of an answer is a pair(ss; ks).
Keyword first: The score of an answer is a pair(ks; ss).
Combined: The score of an answer is computed with an arithmetic
function that combinesks andss, e.g., the sumks+ ss.

When the combined score is an ordered pair, we use the standard
lexicographic ordering. The above classification makes no commit-
ment tohow structural and keyword scores are computed. A spe-
cific ranking scheme is obtained by choosing a strategy for com-
puting predicate penalties associated with relaxations, as in Sec-
tion 4.3.1 and a general ranking scheme. The following example
illustrates this.

pc($1; $2) ^ pc($2; $3) ^ pc($2; $4) ^ $1:tag = article ^
$2:tag = section ^ $3:tag = algorithm ^ $4:tag =
paragraph ^ contains($4; “XML” and “streaming”) ^
^ ad($1; $2) ^ ad($2; $3) ^ ad($2; $4) ^ ad($1; $3) ^
ad($1; $4) ^ contains($2; “XML” and “streaming”) ^
contains($1; “XML” and “streaming”).
pc($1; $2) ^ pc($2; $4) ^ $1:tag = article ^ $2:tag =
section ^ $4:tag = paragraph ^ ad($1; $2) ^ ad($2; $4) ^
ad($1; $4) ^ contains($2; “XML” and “streaming”) ^
contains($1; “XML” and “streaming”).

Figure 6: Closure of QueriesQ1 and Q5.

EXAMPLE 1. : Consider the closure ofQ1 andQ5 in Fig-
ure 6. Q5 is obtained fromQ1 by promoting thecontainspred-
icate from node$4 to its parent node$2 (i.e., dropping the pred-
icatecontains($4; “XML” and “streaming”) from Q1(’s closure)
and then, deleting node$3 (i.e., dropping predicatespc($2; $3),
ad($2; $3), ad($1; $3)). Suppose our weight assignment is uni-
form and assigns a unit weight to every structural andcontains
predicate inQ1. The structural score of an answer toQ1 is then
equal to 3. The penalty of dropping the predicates to obtainQ5 is
(Exp denotes the full-text expression inQ1):

(#pc(section; algorithm)=#ad(section; algorithm))£ 1+
(#ad(section; algorithm)=(#(section)£#(algorithm)))£
1+
#ad(article; algorithm)=(#(article)£#(algorithm))£
1+
(#contains(algorithm; Exp)=#contains(article; Exp))£ 1
The structural score of answers toQ5 is then 3 minus the penalty
computed above. The final score of answers toQ5 is computed
in the same manner asQ1, by combining their keyword score and
structural score using one of the general ranking schemes above.

The ranking schemes proposed in this section all conform to prop-
erties 1 and 2 defined in Section 4.2. In the next section, we shall
evaluate their efficiency (property 3) empirically by exploring how

to put together an IR engine and an XPath engine and stydying how
to optimize repeated computation, the number of intermediate an-
swers and the cost of (re)sorting to compute the top-K answers.

5. QUERY PROCESSING
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Figure 7: FleXPath Query Processing Architecture

5.1 FleXPath Architecture
Figure 7 depicts the general architecture of our top-K query eval-

uation in FleXPath. We developed three algorithms. All our algo-
rithms assume that thecontainspredicate is evaluated by a sepa-
rate IR engine that returns a ranked list of pairs (node,score). In
our implementation (Section 5.2), we use the same techniques as
in [20, 29] that return the most specific elements that satisfy the
full-text expression used incontains. The output of the IR engine
is combined with the output of the XPath engine by comparing the
returned nodes from the IR engine with the context elements re-
turned by the XPath engine.

We developed three algorithms – DPO, for Dynamic Penalty Or-
der and, SSO, for Static Selectivity Order and Hyrid, a performance
improvement over SSO. While DPO relies on evaluating multiple
queries one by one to decide if an additional relaxation is needed,
SSO uses selectivity estimates to decide which relaxations to en-
code in a query before sending that query (at once) to the XPath
and IR engines.

Our algorithms assume that structural conditions are evaluated in-
dependently of anycontainspredicates. An alternative possibility
would first use an inverted index to evaluate thecontainspredicates
and filter out potential answers, and then match structural predi-
cates. The efficiency of each approach depends on the types of
queries. A comparison of these two approaches would be interest-
ing but is outside the scope of this paper.

We provide the pseudo-code of our algorithms for thestructure
first ranking scheme (see Section 4.3). The pseudo-code would
need to be modified to accommodate the other ranking schemes.
For thekeyword-first scheme, all relaxations need to be encoded in
the query because an answer with the worst structural score might
still make it to the top-K answer set.

When theCombined ranking scheme is used, we use the follow-
ing pruning technique. SupposeQ1; Q2; :::; Qn are the relaxations
in descreasing order of structural score. Let the structural and key-
word score ofQi bessi; ksi respectively. Supposei is the smallest
number for which the set of answers toQ1; :::; Qi equals or ex-
ceeds (exactly for DPO and according to estimates for SSO)K.
Stopping afterQi might miss some of the top-K answers. Suppose
there arem containspredicates in the query. Recall thatcontains
has weight1 and so the keyword score for each predicate is• 1.
Let j ‚ i be the smallest number for which the structural scoressj
of Qj satisfiesssj • ssi ¡ m. Clearly, no answer to relaxations
Qs, s > j can be in the top-K answer set so we can ignore all
relaxationsQs, s > j.



5.1.1 DPO
The main benefit of DPO is the fact that it is able to use off-

the-shelf XPath and IR engines. DPO relies on query-rewriting
as in [15, 30]. However, instead of generating a potentially large
number of queries, one for each relaxation, DPO decides which
relaxations to consider, using predicate penalties. For brevity, we
omit the pseudo-code and explain the algorithm for thestructure-
first case.

DPO admits a user query as input, computes its closure and sorts
its predicates by increasing penalty order. Then, it evaluates the
user query by sending it to the XPath engine. If the number of an-
swers to that query does not exceed K, it drops6 the predicate with
the lowest penalty from the query, sends the resulting query to the
XPath engine which computes and returns the results. Our predi-
cate dropping ensures that answers to a query include answers to
the previous query and no answer will be lost. For example, if the
query is A [.//B and .//C] and if the predicate .//C is dropped, then
at the next step, predicate .//B could be dropped but this does not
mean that the query A[.//C] will never be considered since drop-
ping corresponds to making predicates optional (and not loosing
them entirely). This is captured by using vectors of answer lists for
avoiding recomputation (see Section 5.2.2).

Based on the number of answers obtained at each step, DPO de-
cides or not to further relax the query by dropping the predicate
with the next lowest penalty. Thus, DPO might generate and send
multiple queries to the XPath and IR engines. DPO has the prop-
erty that answers to a query will have a lower score than answers
to a preceding query. Therefore, it appends query results without
having to sort results. The algorithm then calls an IR engine to
evaluate thecontainspredicates in the user query and combines the
result. When the number of answers exceeds K, DPO stops query
evaluation.

If the number of relaxations to encode in the query is small, we
expect DPO to perform well. Due to the fact that the non-relaxed
version of a query is contained in its relaxed version, DPO might
do a lot of repeated computation. We will see how we avoid this in
our implementation in Section 5.2.

5.1.2 SSO
The pseudocode for SSO is given below. This algorithm decides

which relaxations to keep in the query to obtain K answers, based
on the selectivity estimates and the penalty of the predicates that
were dropped to obtain the relaxation. For example, given the clo-
sure of queryQ1 (see Figure 4), SSO might decide to drop the two
structural predicatesad($2; $4) andad($1; $3) because they have
the lowest penalties (i.e., these relaxations produce answers with
the highest scores) and the sum of the selectivities of the remaining
predicates guarantees that at least K answers will be produced. In
general, SSO needs a selectivity estimator that can provide a lower
bound on the number of results for an XPath expression. If not,
then potentially we might need to restart SSO to compute the top-
K results.

SSO proceeds as follows. First, it computes the query closure
(line 1) and sorts its predicates in increasing penalty order (line 2).
Then, unlike DPO which evaluates the query, SSO estimates the re-
sult size of the query using techniques such as the ones in [27] (line
3). If the estimated number of answers is less than K, SSO drops
the next predicate with the lowest penalty from the query (line 5).
The process continues until the number of estimated answers is at
least K. At this point, SSO decides to evaluate the structural part of

6Recall that predicate dropping is achieved using relaxation opera-
tions of Section 3.5.

the query (line 8). The IR engine is invoked to compute thecon-
tains predicates (line 9). Finally, SSO combines the results (line
10). When the selectivity estimation is not accurate, the number
of answers might be smaller than K (line 11), in which case, the
algorithm has to drop more predicates. When the number of an-
swers exceeds K, the final result is sorted and pruned (line 15) and
returned to the user.

Algorithm 1 Static Selectivity Order (SSO)

Require: Query Q, K
1: closureQ = computeClosure(Q);
2: currentQ = sortPenalties(closureQ);
3: estimNumAnswers = estimResultSize(currentQ);
4: while estimNumAnswers< K do
5: currentQ = dropNextPredicate(currentQ);
6: estimNumAnswers += estimResultSize(currentQ);
7: end while
8: resultQ = evaluateQuery(currentQ);
9: IRresult = IRevaluate(FTExp(currentQ));

10: tempResult = Combine(resultQ,IRresult);
11: if ComputeSize(tempResult)< K then
12: Goto 5;
13: end if
14: finalResult = SortandPrune(tempResult,K);
15: return finalResult;

5.2 Implementation

5.2.1 Join Plans for DPO and SSO
Both DPO and SSO could use an off-the-shelf engine for evalu-

ating structural queries (theevaluateQuery() function in both
pseudocodes). However, we chose to implement our own evalu-
ation engine in the two cases for two reasons. First, DPO would
benefit from a modification which avoids recomputing answers that
are common to two successive queries. Second, SSO would benefit
from a more accurate computation of answer scores. Unlike DPO,
where all answers to a specific relaxation have the same structural
score which is known at compile time (i.e., they all satisfy the same
set of query predicates), answers to the query produced by SSO
(which encodes several relaxations into one query) might satisfy a
different subset of predicates which are known only at query eval-
uation time. This will become clear after we briefly present our
evaluation algorithm.

We represent a query using left-deep join plans and we use the
structural join algorithm given in [1]. This algorithm requires input
lists to be sorted on node identifiers. Relaxations are encoded in
the same join plan in the same manner as in [3]. Figure 8(a) shows
the join plan corresponding to queryQ1 given in Figure 1, without
the containspredicate. Figure 8(b) contains the join plan ofQ3,
a relaxed version ofQ1, and Figure 8(c) contains the join plan of
Q5, another relaxed version ofQ1. These plans group a structural
predicate and its derived version (using the inference rules given in
Figure 3) in the same join predicate. The structural scores of nodes
returned by the join plan are computed as described in Section 4.3.
Our join plans are not affected by the ranking scheme that we use.
We omit thecontainspredicate for brevity.

We denoter1, the relaxation that drops predicatepc($2; $3) from
the closure ofQ1 (given in Figure 4),r2, the relaxation that drops
ad($2; $3) from the closure ofQ1, r3, the relaxation that drops
contains($4; FTExp) from the closure ofQ1. Supposer1; r2; r3
are ordered by increasing penalty, and that using selectivity esti-
mates, SSO decides that all three relaxations need to be encoded
in Q1 to obtain at least K answers. Then SSO would generate and
evaluate the join plan ofQ5 while DPO would first evaluate the



join plan of Q1, find out if the number of answers is less than K,
evaluate it, and so on.

5.2.2 Implementing DPO and SSO
In order to preserve DPO’s benefit, we designed its algorithm

in such as way that it saves computation. For example, suppose
DPO evaluates first the query plan in Figure 8(a). It builds a vec-
tor for each predicate in the query. If the next join plan to evalu-
ate is 8(b) (say, because there were not enough answers produced
by the first join plan), then since the difference between the two
plans is that nodealgorithm has been promoted, DPO excludes
all algorithm-section pairs(a; s) wherea is a child ofs.

SSO relies on keeping athreshold at each join node to prune
answers that will not end up in the top-K set, as early as possible in
query evaluation. We refer to this threshold as the maximal score
growth of an answer (maxScoreGrowth ). It is associated with
each join in the join plan and records the sum of the weights of
the remaining predicates in the plan. Intuitiveley, it corresponds to
the highest score an intermediate answer can have in the remaining
plan. When an intermediate answer arrives at a join, SSO decides
whether or not this answer should remain in the set of answers,
based on its current computed score and themaxScoreGrowth
at the join node. If the sumthreshold + maxScoreGrowth
is lower than the score of the current kth result, the intermediate
answer is discarded. In order to know what the score of the kth

result is, the set of intermediate query answers is sorted on their
score. This algorithm is similar to the one proposed in [3]. The
difference is that SSO uses selectivity estimates and penalties to
decide which relaxations will be encoded in the query while in [3],
all possible relaxations are initially encoded in the query thereby
resulting in large intermediate query results.

The bottleneck of SSO is that the algorithm used to evaluate the
structural join expects its result to be sorted on node identifiers
while pruning intermediate query answers requires their sorting on
scores. There is a fundamental tension between these two sort or-
ders. We address this weakness in the next section.

5.2.3 Hybrid
We want to combine the best of DPO and SSO. DPO’s strength is

that it does not compute any relaxation unless at least one answer
from that relaxation is guaranteed to end-up in the top-K set. SSO’s
strength is that it uses a single evaluation plan for computing all re-
laxations deemed necessary for the given top-K query, thus avoid-
ing repeated passes over the data. However, SSO might resort data.
We propose Hybrid, an algorithm that avoids resorting on scores us-
ing bucketization. The key idea behind Hybrid is to create buckets
of intermediate results at each join where each bucket corresponds
to a set of predicates. Answers in a bucket satisfy the same set of
predicates and so have the same score. E.g., in the query plan for
Q1 given in Figure 8, when computingc(article; algorithm) or
if not c(article; algorithm) thend(article; algorithm), we
would create two buckets for the output – one for results satisfying
c(a; b) and another for results satisfying
d(article; algorithm) but notc(article; algorithm). Within
each bucket, answers are sorted on their node id. Since this sort or-
der is preserved by the join algorithm we use, no additional sorting
is necessary. We illustrate this in the pseudocode given below.

Hybrid is a recursive algorithm that takes the root of a join plan
and a value for K and, returns the top-K answers. If the input node
is a leaf (line 1), it is evaluated (line 2) otherwise, its left (line 5) and
right (line 6) subplans are sent to the algorithm. We show a nested
loop join algorithm for simplicity of exposition. Given two input
lists, the algorithm computes the score of an intermediate answer

Algorithm 2 Hybrid

Require: Node n, k
1: if (n is leaf)then
2: list= evaluateLeaf(n);
3: return list;
4: end if
5: list1= Hybrid(n.left);
6: list2= Hybrid(n.right);
7: for r1 in list1 do
8: for r2 in list2 do
9: s= computeScore(r1,r2,n.predicate);

10: if ((s+ n.maxGrowth)‚ currentk) then
11: res= computeResult(r1,r2,n.predicate);
12: if ( 6 9 bucket(r1,r2,n.predicate))then
13: b= createBucket(r1,r2,n.predicate);
14: else
15: b= getBucket(r1,r2,n.predicate);
16: end if
17: addToBucket(res,b);
18: end if
19: return currentbuckets();
20: end for
21: end for

using the scores of its inputs and the score of the join predicate
(n.predicate) that is used to compare the two inputs (line 9). If
that score is not going to end up in the top-K answers (line 10),
it is dropped, otherwise, Hybrid decides to create a new bucket
for that answer (line 13) if a bucket with the same score does not
exist (line 12) or, it puts it in an existing bucket with the same
score (line 15). Depending on the predicate used to generate it, an
intermediate result will end-up in a different bucket. The output of a
join might be multiple buckets, one for each distinct score. Pruning
of intermediate answers translates to elimination of buckets with
a score (added tomaxScoreGrowth at the join) lower than the
score of the current bucket containing the kth answer.

DPO’s strength comes from the fact that (i) it evaluates the latest
relaxation determined as necessary, counts the answers, and then
decides if the next relaxation is necessary, thus using exact knowl-
edge; and (ii) it does not require resorts on intermediate results.
However, the price is that it might make repeated passes over input
lists. Hybrid minimizes the number of passes over input data (like
SSO) while at the same time never sorting intermediate results on
score (like DPO). Also, because of bucketization, we continue to
have the advantage of SSO in pruning intermediate results using
threshold andmaxScoreGrowth . Note that buckets are or-
dered by score, since each bucket is uniquely identified by the set
of structural predicates satisfied by the answers it contains, from
which threshold can be calculated.

In the next section, we substantiate these claims empirically.

6. EXPERIMENTS
We ran several experiments to show the utility and scalability of

our algorithms when relaxing the user query. Our experiments
compare and evaluate the performance of DPO, SSO and Hybrid
algorithms under various conditions.

Setup: We run the experiments on an Intel CPU P4 2GHz ma-
chine with 512MB memory and 10GB disk space under Linux Red-
hat version 7.2. Our programs were written in Java and C for the
expat XML parser.

Dataset and Queries:We use the XMark XML data generator
(http://monetdb.cwi.nl/xml/index.html ). We varied the
size of our documents from 1MB to 100MB. In order to “exploit
the heterogeneity of the datasets” for relaxation, we designed three
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Figure 9: Varying Number of Relaxations

queriesQ1, Q2 andQ3.
Q1 : //item[./description/parlist]
Q2 : //item[./description/parlist and
./mailbox/mail/text]
Q3 : //item[./description/parlist/listitem and
./mailbox/mail/text[./bold and ./keyword and
./emph] and ./name and ./incategory]

Edge generalization is enabled by recursive nodes in the DTD (e.g.,
parlist ). Deleting leaf nodes is enabled by optional nodes in the
DTD (e.g.,incategory ). Finally, subtree promotion is enabled
by shared nodes (e.g.,text ).

Figure 10: Varying K

Selectivity estimation is an integral part of the SSO algorithm.
It allows SSO to statically estimate the number of relevant relax-
ations. Although we could use off-the-shelf selectivity estimators
such as [27], we decided to build our own because the precision
with which the estimation is done has a significant impact on SSO.
In case, the estimation is not precise and the number of answers
obtained are less than what is estimated, we would need to restart
SSO. In our implementation, we have developed an estimation tech-

nique which gave precise estimations for our data sets. We first do
intensive pre-processing of the document in order to obtain counts
of the various types of nodes and edges in the XML document. We
then assume a uniform distribution of elements. For example, sup-
pose 60% of A’s in the document have a B as a child. We assume
that this fraction is independent of the location of A in the docu-
ment. So we estimate that in 60% of occurences of C/A also, A
will have B as a child. So, the estimate for C/A/B is 0.6 times that
of C/A. We found that this technique works well for our dataset and
we never had to restart SSO.

Parameters: In order to compare our algorithms we varied the
size of the input documents, the size of K in top-K, the query size
and the number of relaxations that a query can admit.Q1 admits
one relaxation: generalize edgedescription/parlist . Q2
containsQ1 and admits promotetext . Q3 containsQ2 and ad-
mits deleteincategory and generalize edges
parlist/listitem , text/bold , text/keyword and
text/emph .

Figure 11: Varying Document Size (K = 12)

Preliminary results: We report four preliminary experiments
that compare DPO and SSO. Figure 9 shows a comparison between
DPO and SSO on a 1MB document, with K set to 50 answers. We
report execution times for the three queries. The results show that
by increasing the number of relaxations (no relaxation when run-
ning Q1, 2 relaxations when runningQ2 and 6 relaxations when
runningQ3), SSO performs better than DPO and the difference be-
tween the two algorithms increases with the number of relaxations.
Figure 10 reports the time of evaluating queryQ3 using both algo-
rithms on a 10MB document. K varies from 50 to 600 answers.

When the number of answers is small (50) SSO and DPO last the
same time since no relaxation is required. When the number of
answers increases, more relaxations are required and the number
of intermediate answers increases. The effect of pruning in SSO



Figure 12: Varying Document Size (K = 500)

makes this algorithm superior to DPO, reaching 68% improvement
in query time when the number of answers is 600. The last two
experiments report a comparison between DPO and SSO when the
size of the input document increases (from 1MB to 100MB). In the
first one (Figure 11), K was set to 12 answers while in the second
one K was equal to 500 answers (Figure 12). Both experiments
are run onQ2. In the case where K is small, DPO and SSO are
close because the only case where a relaxation is needed is on the
1MB document (on whichtext is promoted tomailbox in or-
der to obtain at least 12 answers). In the case where K is large (500
answers), more relaxations are encoded inQ3 (from 0 to 8 relax-
ations). By increasing the number of relaxations and the size of
the document, we increase the number of intermediate results and
thus, the difference between DPO and SSO since SSO is better at
pruning intermediate query answers.

Figure 13: Varying Number of Relaxations (K = 500)

These first experiments show the scalability of SSO with respect
to the number of relaxations, the number of query answers and the
size of input documents. The difference between SSO and DPO
plots increases with K.

SSO and Hybrid: The previous experiments showed the superi-
ority of SSO over DPO. We will now compare Hybrid to SSO.

Overall, Hybrid does not do much better than SSO (although
it does consistently better). However, the difference between the
two algorithms increases with an increasing K or document size
or number of relaxations. Figure 13 verifies this claim in the case
where we varied the number of relaxations with a value of K set to
500 on a 10MB document.

Figure 14 shows the case of running queryQ3 with K set to 500
(1MB to 100MB documents). Figures 15 report the time to evalu-
ate queryQ3 on a 10MB and 100MB document respectively. The

Figure 14: Varying Document Size (K = 500)

Figure 15: Varying K (DocSize = 10MB)

figures show that Hybrid is useful even in the case of small docu-
ments since SSO might be sorting large sets of intermediate query
answers. The difference between the overall times of the two algo-
rithms increases when increasing K even if document size is small.
This is due to the fact thatSSO is more sensitive to the value of K
than Hybridbecause the size of intermediate answers that need to
be resorted depends on K.

Figure 16: Varying K (DocSize = 100MB)

7. RELATED WORK
Combining structure and text search has attracted a lot of inter-

est in the database and the information retrieval communities [4,
5, 6, 11, 12, 13, 17, 18, 19, 25, 26, 31]. In IR, approaches are
classified to content-only search (CO) and content and structure
search (CAS). CAS approaches include ELIXIR [11], XIRQL [18]



and JuruXML [9]. These approaches focus on a vague matching
of limited XPath predicates and on designing specific indices to
score document fragments. For example, JuruXML [9] relies on
element=-specific indexing ad on the vector-space model to score
query results. However, it allows only limited XPath queries which
must be known in advance to be pre-indexed.

Different relaxations on structure have been defined previously.
[15] defines: unfold node, delete node, propagate condition at a
node to its parent. In both [18] and [30], the authors define re-
laxations on XQL such as generalize datatypes, ontologies on ele-
ments, edit distance on paths, delete node, insert intermediate nodes
and rename node. Finally, [3] proposed the relaxations: relax node,
delete node, relax edge, promote node. Our work is the first for-
malization of relaxations on structure in XML queries and the first
sound and complete algebraic framework for spanning relaxations.
In addition, we propose ranking schemes and define properties that
they must satisfy and develop efficient evaluation algorithms.

There are three evaluation strategies for approximate XML queries.
Rewriting strategiessuch as DPO [11, 15, 18, 30] enumerate pos-
sible queries derived by transformation of the initial query. Some
of these strategies use schema information to reduce the number of
queries [30].Plan-based strategiessuch as SSO and Hybrid [3, 23]
encode relaxations in the query evaluation process. Finally,Data-
relaxationcomputes a closure of the document graph by inserting
shortcut edges between each pair of nodes in the same path [14].
Since this strategy was shown to quickly fail with large databases,
we experimented the first two strategies in FleXPath.

In relational databases, Carey and Kossmann [8] optimize top-K
queries when the scoring is done through a traditional SQL order-
by clause, by limiting the cardinality of intermediate result tuples.
Although algorithmically different, SSO is similar to works that
use statistical information to map top-K queries into selection pred-
icates (which may require restarting query evaluation when the
number of answers is less thanK [7, 10, 22]).

8. CONCLUSION
We presented FleXPath, a framework that integrates structure and

full-text querying in XML. A key idea in FleXPath is to interpret
the XPath query as a template for keyword search, thereby enabling
approximate query answers on structure and using it to provide a
context for full-text search. FleXPath is the first formalization of
query relaxations that characterizes the space between the strictest
(i.e., exact semantics) and the loosest interpretation of the XPath
expression. We studied ranking schemes and developed algorithms
for top-K queries that span this space and evaluated their perfor-
mance. FleXPath initiates a wide range of new research opportuni-
ties including a tighter integration of structure and keyword indices
for a more efficient approximate query evaluation.
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