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ABSTRACT or should we implement the integrated paradigm from scratch? We

Querying XML data is a well-explored topic with powerful database- €XPlore both cases. The first choice has the advantage of reusing
style query languages such as XPath and XQuery set to becomeEXisting techniques for XPath query evaluation and keyword search

: : ; d looking for the best way to combine them for efficiency. The
W3C standards. An equally compelling paradigm for querying an . . i L
XML documents is full-text search on textual content. In this paper, second choice has the benefit of modifying existing XPath evalua-

we study fundamental challenges that arise when we try to integrate 10" Strategies to better account for this integration. In both cases,
these two querying paradigms we consider XPath expressions where a predicate might use the
While keyword search is baséd on approximate matching, XPath fn:containsfunction which looks for occurrences of specified key-
has exact match semantics. We address this mismatch by considll’:’:zords"_The exE‘res(ilon usedfmcontainscan be asdc_;omplex gs aln
ering queries on structure as a “template”, and looking for answers 'R €ngine can handle (e.g., stemming, proximity distance, Boolean

that best match this template and the full-text search. To achieve Predicates). However, not all obligations specified in the XPath
this, we provide an elegant definition of relaxation on structure and expression may be satisfied by a document, although it may be rel-

define primitive operators to span the space of relaxations. Queryevant for the‘n:cpntainsexpression. A strict interpretation of the.
answering is now based on ranking potential answers on structuralS€arch context (i.e., the Xpath query) would render many potential
and full-text search conditions. We set out certain desirable prin- answers invalid and thus W.OU|d penalize(!) the user fpr prov.ld-
ciples for ranking schemes and propose natural ranking schemeg"9 the context. Therefore, in order to Ievgrage XPath in specify-
that adhere to these principles. We develop efficient algorithms for Ing the search context and, at the same t_|me, not suffer frqm the
answering top-K queries and discuss results from a comprehensiveCoNSeduences of the exact match semantics of XPath, we view the
set of experiments that demonstrate the utility and scalability of the XPath expression on structure as a “template” and permit a flexible

proposed framework and algorithms interpretation of this template. In other words, if an input docu-

ment satisfies the XPath expression exactly, the requested answers
will be returned. If an input document satisfies the expression only
1. INTRODUCTION partially, it might be returned with a lower score. Query evalu-
As businesses and enterprises generate and exchange XML dat&tion spans the space between the strictest (i.e., exact semantics)
more often, there is an increasing need for searching and queryingand the loosest interpretation of the XPath expression (i.e., the case
this data. Two major paradigms for searching XML documents are Where the only expression that is considered is the one specified in
database style querying as exemplified by query languages such a$h:containg.
XPath and XQuery, and IR-style querying, in particular, full-text ~ We illustrate with an example the value and the inherent chal-
and keyword search [28]. Ideally, users should not have to chooselenges in permitting flexible querying of XML documents combin-
between these two paradigms but really benefit from both. Key- ing both structure and keyword search.
word search enhances the value of querying by permitting a fine Consider querying documents in the IEEE INEX data collection
level of querying textual content while query expressions, written or the ACM SIGMOD Record collectioh Such documents exhibit
in XPath or XQuery, bring value to keyword search by specify- two desirable properties that we will explore in the rest of the dis-
ing a context in which to conduct the search. In addition, these cussion: heterogeneity in structure and presence of textual content.
languages allow the extraction of data at a very fine level of gran- Figure 1 illustrates some example XPath queries. Every query in
ularity, thereby returning to the user the most relevant document the figure is also shown in the form of a tree pattern together with a
fragments in a document collection. Boolean formula imposing constraints on nodes in the tree. Tree
Several issues arise when attempting to put together these twopattern queries constitute an important and expressive subset of
querying styles. Should we use off-the-shelf XPath and IR engines XPath and make our illustration easier. Single edges denote parent-
child containment, while double edges denote ancestor-descendant
containment. Also, one of the nodes is a distinguished node (shown
in a box in Figure 1), indicating that matches to this node are re-
Permission to make digital or hard copies of all or part of this work for quired as answers. All our queries in Figure 1 return articles.
personal or classroom use is granted without fee provided that copies are Suppose a user wishes to find articles that are relevant to algo-
not made or distributed for profit or commercial advantage, and that copies rithms on streaming XML data. At one extreme, the user might

bear this notice and the full citation on the first page. To copy otherwise, to imolv i th r f Figure 1(f). which asks for articl
republish, to post on servers or to redistribute to lists, requires priorspecificS ply issue the quer@6 of Figure 1(f), ch asks for articles
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lel. ti [./alg ithm qnd . iclel. i [./alg i and
-/[paragraphl.contains("XML" and "streaming')]]] ./paragraph and .contains("XML" and "streaming")]]
$1 ($1.tag = article) & $1 ($1.tag = article) &
($2.tag = section) & ($2.tag = section) &
$2 ($3.tag = algorithm) & $2 ($3.tag = algorithm) &
($4.tag = paragraph) & ($4.tag = paragraph) &
$3 $4 contains ($4, "XML" and "streaming") $3 $4 contains ($2, "XML" and "streaming")
(a) Q1 (b) Q2
/larticlel.//lalgorithm and ./section/./paragraph/ /larticlel.//algorithm and ./section/./paragraph and
.contains("XML" and "streaming’)]]] .contains("XML" and "streaming’)]]
31 ($1.tag = article) & $1 ($1.tag = article) &
($2.tag = section) & ($2.tag = section) &
$3 $2 ($3.tag = algorithm) & $3 $2 ($3.tag = algorithm) &
($4.tag = paragraph) & ($4.tag = paragraph) &
$4 contains($4, "XML" and "streaming") $4 contains($2, "XML" and "streaming’)
(c) @3 (d) Q4
/larticlel./section]./paragraph and Narticlel.contains("XML" and "streaming’)]
contains("XML" and "streaming')]]
$1
T ($1.tag = article) &
$2 ($2.tag = section) & $1 El
I ($4.tag = paragraph) & ($1.tag = article) &
$4 contains ($2, "XML" and "streaming") contains ($1, "XML" and "streaming")
(e) @5 () Q6

Figure 1: Example Queries

containing the keywords “XML" and “ streaminginywhere in the adopt a strict interpretation of the user quéy, many answers to
documentThis query is similar to IR queries and can be computed one or more relaxations above, potentially of interest to the user’s
solely using IR techniques which include keyword and phrase searctkeyword search, would be missed out

proximity distance, stemming and thesauri. On the other hand, the One naive solution is for the user to write these queries by hand.
user might wish to refine the scope of keyword search using some This is both tedious and expensive, not only in terms of user time,
schema knowledge. Thus, the user might issue, say queérgf but also in terms of the (potentially large) number of queries that
Figure 1(a). This query asks for articles containing a section sub- the user might need to write and in terms of repeated processing
element which contains an algorithm and a paragraph, such that theof similar queries and, thus, of lost optimization opportunities. In
paragraph contains the keywords of intere3tl is more focused this paper, we argue that the solution to this problem lies in treating

thanQ6. E.g., Q6 may not distinguish between articlesntain- the user query expression as a “template” and seeking answers that
ing algorithms relevant to XML streaming and articlegntioning are approximate matches to this template, using a principled notion
algorithms developed in other papers relevant to XML streaming of approximation. We describe the FleXPath system that integrates
without containing any algorithm themselves, Qit does. XPath querying with full-text search in a flexible way, and make

However, suppose one of the documents queried contains an arthe following technical contributions.
ticle which has a section containing an algorithm, the section title

contains the keywords “XML” and “ streaming”, but none of the T In order to integrate structure and keyword querying, we pro-
paragraphs in that section does. This article would be missed by pose a formal framework in which queries on structure are
queryQ1 but might well be of interest to the user. A strict inter- viewed as a “template” for keyword search. Such queries are
pretation ofQ1 means that the user who issu@d would not see used to specify a context to conduct full-text search. In or-
such answers and would unfairly get “penalized” for providing use- der to achieve this, we develop a query semantics that consis-
ful context to direct the keyword search. Quép (Figure 1(b)) tently extends classical semantics of queries without full-text
would catch such articles because tmmtainspredicate has been search.

moved upfrom nodesd to its parent nodé2. Thus, Q2 merely t Asecond question is how do we define approximate matches?

insists that section elements contain the keywamgvherebut is
otherwise identical t@1. Q2 broadens the scope of application
of the keyword search. In other word32 creates a larger search
context for the keyword search than@i. Therefore, all answers
to Q1 also satisfyQ2. Similarly, an article that contains a section
with a paragraph in that section containing the keywovdg all
algorithms being outside that sectivill again be missed b1
(and byQ2), but might be of interest to the user. Quépy (Fig-

Thereto, we formalize the notion guery relaxation Intu-
itively, a relaxation to a query expression is any expression
that contains the former. This admits a huge search space of
relaxations, permitting many expressions that may be irrele-
vant to the user query. We provide an elegant definition of
relaxation for the class of tree pattern queries (with full-text
search) that addresses this problem.

ure 1(c)) will catch such articles. The reason is Qatonly insists t Thirdly, how do we span and search the space of relaxations?
that the article contains a (transitive) algorithm sub-element and a We present a set of primitive operations on queries that build

section that contains a paragraph containing the keywords of inter- on the ones proposed in [3, 15, 30], and show that they are
est. The algorithm might be in that section, in a subsection of that independent (i.e., no operation can be derived from the oth-

section or, in another section. Note tl§a3 includes all answers to ers) and complete (they span exactly the space of relaxations
Q1. QueryQ4 combinesQ2 andQ3. QueryQ5 captures articles defined). We define the semantics of a query so it includes

containing a paragraph sub-element which contains the keywords answers to all relaxations of the query. We propose three

without having any condition on algorithm containment. The re- natural schemes for ranking query results in this context and

lationship between the five queries iIQ1 % Q2, Q1 % Q3, show that they satisfy certain desirable properties.

Q2 % Q4, Q3 % Q4, andQ4 % Q5. Finally, by repeatedly apply-

ing some primitive operations to the user query, once can produce T A natural class of queries in this setting are top-K queries.

query Q6 that contains all five queries. Intuitively, each query is We develop three algorithms for this purpose. Two of the al-

a “relaxation” of the query it contains. The key point is tifave gorithms (DPO and SSO) are designed to be able to use off-
the-shelf XPath and IR engines while one (Hybrid) modifies



an existing XPath evaluation algorithm. The algorithms can D. Finally, the answer to a TPQ with distinguished nodé&d,
use any of the proposed ranking schemes and are designedagainst an XML databad® is the set of data node&3(D) = x j
to optimize repeated computation, the number of interme- X is adatanode ilD ~ 9amatchf : Q ¥ D ™ f($d) = xg.
diate query answers, and the cost of (re)sorting answers to Query containment is at the heart of relaxation. A TR@ said
compute top-K results. We run experiments that evaluate the to be contained in a TPQ", denotedQ  Q°, if for every XML
performance of the three algorithms. database instand®@, Q(D), the result of applyin@ to D, is con-
_ _ _ _ tained inQ"(D).
In Section 2, we give some basic background and an overview
of our problem. Section 3 defines relaxations and how to span the2.2  Problems Overview

space of relaxations. In Section 4, we present our ranking schemes y|text search has been extensively researched in IR and has a
and their properties. Section 5 describes our query processing ar-semantics based on approximate match as a result of which query
chitecture and top-K algorithms. Section 6 contains the experi- answers are ranked lists, unlike for conventional database queries.
ments carried on the algorithms. Related work is in Section 7. The first problem we tackle is how can we find a semantics for
TPQs that is consistent with both database and IR paradigms. We
argue that such a semantics should permit some degree of approx-
imation of the XPath query. The second problem is how to score
guery answers under the new semantics. The third problem is how
can we efficiently evaluate top-K queries ranked on the structural
and full-text search expression(s). We address these three problems
in the rest of the paper.

2.

2.1 Tree Pattern Queries

We consider the class tree pattern queriesan expressive frag-
ment of XPath. A tree pattern query (TPQ) is a pdif F ) where
T is a rooted tree anB is a Boolean combination of value-based
predicates. The nodes ih are labeled by variables, denotéd
wherei is an integer. The edges are parent-child (pc) or ancestor- 3. QUERY RELAXATION
descendant (ad). Figure 1 contains examples of such queries. One . .
of the nodes il is designated as thaistinguished nodéshown 3.1 Issues with Relaxation

inside a box in Figure 1) and identifies query answers. Intuitively, a relaxation of a query is any query which contains
Value-based predicates are of the fd¥irtag =<tagname- that the former. However, such a definition is too broad. Indeed, three
constrains the type of a node afidattr relOp value. E.g.,$i:price < principled ways of relaxing a query are (a) adding an explicit dis-
100 says the value of thﬁl’ice attribute associated with the ele- junction or union to the query, (b) rep|acing predicates present in
ment represented by nodé (say a book), must be: 100.° Note the query by weaker ones, and (c) as a special case of (b), sim-
that pc-edges (resp., ad-edges) in the Tresre an inherent part of  ply dropping those predicates. In this paper, we are not interested
the query and formally correspond to assertipog$i; $j) (resp., in relaxing theFTExp used in thecontainspredicate. So, we do
ad(8i;8j)). We call the latter predicatestructural predicates not consider (b) further. A discussion on this case can be found in
Thus, logically, the query should be understood as the conjunc- Section 3.4. Both (a) and (c) still have attendant drawbacks. E.g.,
tion of the formulaF with all structural predlcatepc($l, $j) and consider quer)Ql in Figure 1(a) F0||Owing (a)’ we can add an
ad(8i; 8j) represented by . For example, the logical expression  explicit union with anarbitraryquery that asks for, say publisher
corresponding to quer@1 in Figure 1 is given in Figure 2. addresses, thus permitting answers that are clearly irrelevant to the
original query. Therefore, we regard relaxation by arbitrary union
unacceptable. Following (c), we can drop one or more of the predi-
cates$l:tag = article, contains($4; “XML" and “streaming”)
to obtain a relaxation. However, dropping the first admits non-
articles as answers. Arguably, such answers may not be of interest
to the user. Section 3.4 contains a discussion of this case and how
such answers could be incorporated in a principled way. We do not
consider them further here. Dropping the second predicate admits
articles not containing the given keywords and thus, not relevant to
the query. In addition, dropping an arbitrary predicate can lead to a
query that is not a TPQ anymore. E.g., if we simply drop the pred-
icatespc($1; $2) from the logical expression of quey1 given in
Figure 2, the result is a query whose pattern graph is disconnected.

BACKGROUND AND PROBLEMS

pc($1;82) ™~ pc($2;83) N pc($2;$4) ™ $1:tag = article &~
$2:tag = section ~ $3:tag = algorithm ~ $4:tag =
paragraph ™ contains($4; “XML” and “streaming”).

Figure 2: Logical Expression of QueryQ1.

We define an additional value-based predicatetains($i; FTExp),
that we allow inF . It takes a variabl&i and a full-text expression
FTExp and returns a Boolean value. The variable definestime
textin which the full-text search expression givenRTEXp oper-
ates. The predicate returns true if at least one noda Batisfies
FTExp. FTExp can vary from a simple conjunction of keywords to

an expression that uses proximity distance, stemming, regular ex-
pressions and negation. In this paper, we do not focus on how to
express such conditions in XPath. A language for such expression
is proposed in [2]. In the sequel, by tree pattern queries (TPQs), we
mean TPQs with theontainspredicate.

The semantics of a TPQ is captured in terms of a match. Let
D be a data tree (i.e., an XML document collection) &pd=
(T; F) be a TPQ. Amatchis a functionf : Q ¥ D that maps the
nodes ofT to those ofD such that: (i) all value-based predicates
in F (including containg are satisfied and (i) all structural rela-
tionships are preserved, i.e., whene{&ir, $j) is a pc-edge (resp.,
ad-edge) inQ, f($j) is a child (resp., descendant) 6{$i) in

3We do not consider “join” conditions that compare the con-
tents/attributes of different nodes.

S

One can argue why not treat it as the union of two (or more) TPQs.
The problem with this union is that the distinguished node in some
of those trees is not well-defined. Furthermore, we wish to obtain
relaxations of TPQs that are themselves TPQs.

In the next section, we show how we can avoid these pitfalls by
reasoning on the logical expression of a TPQ.

3.2 Closure and Core of TPQs

Structural and value-based predicates in a TPQ imply other pred-
icates. E.g.pc(81;$2) implies ad($1; $2). More generally, we
have the inference rules shown in Figure 3.

The rules are self-explanatory. The last rule says if an element
satisfies the full-text expressiéiiExp, then any element that (tran-
sitively) contains this element necessarily satisfies that expression.



pc($%;8y) © ad($x; $y)
ad(3x; 3y); ad(3y;$z) “ ad($x;$z)
ad(8x; 3y); contains($y; FTExp) “ contains($x; FTEXp)

Figure 3: Inference Rules

pc($1;82) ™ pe(82;83) ~ pc($2;$4) ~ $litag = article
$2:tag = section ~ $3:itag = algorithm ~ $4:tag
paragraph ~  contains($4; “XML" and “streaming”)

N ad($1;82) N ad($2;83) N ad($2;$4) N ad($1;$3)
ad($1;$4) ~  contains($2; “XML” and “streaming”)
contains(31; “XML” and “streaming”).

> > >

Figure 4: Closure of Query Q1.

We define thelosureof a TPQ as the expression obtained by tak-
ing the logical expression of the TPQ and adding (i.e., conjoining)

Indeed, each of the queries in Figure 1(b)-(e) is a valid structural
relaxation of queryQ1 in Figure 1(a).

pc($1;82) ™ pe($2;84) ™ ad($1;33) ~ $1:tag = article &~
$2:tag = section ~ $3:itag = algorithm ~ $4:tag =
paragraph ~ contains($4; “XML” and “streaming”).

Figure 5: Core of Query C1 j fpc($2; $3); ad($2; $3)g.

Itis important to note that structural relaxatioczemnobe defined
on the basis of dropping predicates from a TRG@s indeed neces-
sary to consider the closure of the THE@r example, in Figure 1,
queriesQ3 andQ4 cannot be obtained froiQ1 in this way, even
though they are relaxations Qfl1.

In addition to structural relaxation, we consider relaxations on
thecontainspredicate. While many forms of relaxations can be de-

all predicates that are derived using the above rules. The closure offined on value-based predicatesie only consider this relaxation

queryQ1 (Figure 4) is computed from its logical expression (Fig-
ure 2). It is easy to show that the closure of a TPQ is equivalent to
it and is unique.

Given (a subset of) the closufe of a TPQ, a predicatp in C
is said to beredundantif p can be derived from the rest of the
predicates irC using the above inference rules. E.g., in the query
pc($1;82) ™ ad($2;$3) ™ ad($1;$3), the predicated($1; $3)
is redundant. A query is minimal if it contains no redundant pred-
icates. We define theore of a TPQ to be any minimal query that
is equivalent to it. By the core of a TPQ, we mean the core of its
closure. We can show:

THEOREM 1. [Uniqueness of Core] : LetQ be atree pattern
query. Then it has a unique core. ]

because it interacts with structure in in teresting ways.

DEFINITION 2. [containsRelaxation] LetQ = (T;F) be
any tree pattern query and ledpntains($i; FTExp) be a predi-
cate inF, such thasi is not the root ofT. ThenQ’ = (T;F"),
whereF' is identical toF exceptcontains($i; FTExp) is replaced
by contains($j; FTExp), where$j is an ancestor o§i in T, is a
contains-relaxatiorof Q. [

From the definition, it should be clear thatantainsrelaxation
of a TPQ is itself a TPQ and strictly contains the original query. As
an example, in Figure 1, quef?2 is obtained fronQ1 by relax-
ing the contains($3; “XML” and “streaming”) to contains($2;
“XML"and “streaming”). Note thatcontains and structural re-

Flesca et al. [16] recently showed that when an XPath expression!@xations can be composed leading to various relaxations of the
only uses child and descendant axes, wildcards, and branching, thé’”g'f‘a| query. For examp_le, queri€¥s and Q6 in Figure 1, are
minimal equivalent query can be obtained by pruning nodes and obtained by applying a series of structural aedtainsrelaxations

edges from it, thus showing that it has a unique minimal equivalent
query. We can show that this result continues to hold when impli-

to the original user quer@1. In the sequel, by thepace of relax-
ationsof a TPQ, we mean the space consisting of the TPQ as well

cation between predicates is taken into account. In other words, the@S all its relaxations.

closure of any TPQ has a unique core.

3.3 Defining Relaxations

3.4 Other Relaxations
It is possible to consider other forms of relaxations [3, 15, 30].

We first deal with relaxations based on structural predicates. Let E.g., if we have a type hierarchy associated with element types,

Q be a TPQLC be its closure, an® % C be a set of structural
predicates. We denote the result of removing predicStéom
C asC j S. We assume that whenever a node varidhleloes
not appear irC j S, all value-based predicates involvig are
dropped automatically.

DEFINITION 1. [Structural Relaxation] A structural relax-
ationof Q is any quenyC j S, provided (i)C j S is not equivalent
to C and (ii) the core of j S is a tree pattern query. [

Intuitively, a structural relaxation of a TPQ is obtained by drop-

ping predicates from its closure such that the resulting query has

a core, itself a TPQ, that strictly contains the original query. Sup-
pose we drop just the predicat@($1; $3) from the closureC1

of queryQ1 (see Figure 4), the resulting query is still equivalent
to the original, sincexd($1; $3) is derivable from the other predi-
cates. SoC1 j fad(81; $3)gis not a (structural) relaxation. Sup-
pose we drop the predicates($2; $3) and ad($2; $3) from C1.

The core ofC1 § fpc($2;$3); ad($2; $3)g is shown in Figure 5.
This query corresponds to que®B in Figure 1. ClearlyQ3 is a
TPQ andQ1 % Q3. So,C1 j fpc($2;$3); ad($2; $3)g is a valid
relaxation.

then we can relax a query by replacing a tag with a tag associated
with a supertype: e.g., iQ1, replace$l:tag = article with
$1:tag = publication if the type hierarchy sayarticle is

a subtype ofpublication. We could replace value-based pred-
icates, e.g.8i:price = 98 with $i:price = 100. We could

also relax thecontainspredicate by making use of thesauri and
replacing keywords with more general ones or drop some of the
keywords. While these other forms of relaxations are interesting
and useful, they are orthogonal to the ones studied in this paper. In
fact, all relaxations that can be applied on Bi&xp in thecontains
predicate can already be performed by a separate IR engine before
returning its results. The goal of our relaxations ibtoaden the
scope of full-text searchrovided in the original user query and
study its impact on query results.

3.5 Spanning Relaxations

Given a user query, we would like to consider the space of re-
laxed queries, evaluate them and return a ranked list of answers.
A significant challenge in this exercise is how to search this space

“E.g., a predicat8i:content > 5 can be relaxed t$i:content >
k, for eaclnumberk < 5.



In particular,containsrelaxations on a TPQ with one or maren- where8y is the parent ofx in Q. As an exampless,(Q1) re-
tains predicates are easily enumerated by promotingtainsto sults in the quenyQ2 in Figure 1(b). This query admits sections
ancestors of the nodes they originally apply to. However, as ex- containing the specified keywords somewhere, not necessarily in a
amples from the preceding section show, identifying structural re- paragraph in the section.

laxation that can be applied to a user query, can be challenging.

Dropping some predicates from an original TPQ('s closure) can vi- | HEOREM 2. [Soundness and Completeness] : LetQ bea
olate the tree property or it can lead to a query that is equivalent to (€€ pattern query. Every query obtained by applying a composition
the original query. Ensuring that the resulting query is a structural of one or more of the operators ,; ;< applied toQ is a valid
relaxation involves a query containment check, a problem that is Structural orcontainsrelaxation. Every valid relaxation @ can
NP-hard in general [24]. What we would like is a systematic way be obtained by finitely many applications of these operatof3.to

to generate queries that are guaranteed to be relaxations and which =
covers all relaxations in the space. In this section, we present a set While we omit the proof for lack of space, soundness is intu-

of operators for this purpose. The operators preserve the contain-ig ey clear. The intuition behind completeness is teath valid
ment property between a query and_ its relaxed version. T_he_ first rejaxation can be regarded as obtained by dropping some predicates
three operators are.speuflc to querying structgre and are.S|m|Iar. t,ofrom a TPQ that cannot be derived from the remaining predicates
the ones propos_ed in [3, 15, 30]. The last one is new and is specche can identify the operator or sequence of operators that exactly
to querying textin XML documents. captures each such dropping operation. The main value of this the-
351 Axis Generalization orem is that it t_eIIs us that in t_he set of operators presented_, we
o ) ) ) . _ have a mechanism to systematically generate all and only valid re-
Thg intuition behind this operator is that in place of a parent-child |5xations of a given tree pattern query, while avoiding expensive
relationship between two nodes in a TPQ, if an ancestor-descendantynimization of a closure in order to obtain the core and expensive
relationship is present between these nodes in an actual databasgontainment tests. When describing our algorithms, we exploit this

they will be considered as a match. More precisely, for a TPQ correspondence between relaxation operators and predicate drop-
(T;F) and a predicatec($x; 3y) in the logical representation of  ping: we often refer to “the next predicate dropped” when present-
Q. peesxisy) (Q), theaxis generalizatiorof Q on pe(8x; 8y), is ing our algorithms, for convenience and clarity, even though the
the TPQ which is identical t@ except the pc-edge frofx to Sy algorithms are based on the operators.

in T is replaced with an ad-edge frafx to $y.
352 Leaf Deletion 4. DESIRABLE RANKING SCHEMES

The intuition behind this operator is that if we delete a leaf node 4 1 Ranking on Structure and Keywords

$x in the query, we allow answers where that leaf node might not . . . .
be matched. More precisely, given a TRR= (T;F) and a leaf While we bglleve_a single ranking st_:he_me may not always be ac
- : : ceptable, we identify some general principles that any good ranking
node$x in T, ,sx(Q), the leaf deletion of) on $x, is the TPQ
AT . o . scheme on both structure and keyword should adhere to.

Q" which is identical toQ except: (i) the leaf nod&x is deleted . - .

from T, (i) all value-based predicates involvirx are dropped Numerous algorithms have been proposed in the IR community
' P pp (e.g., see [28]) for ranking documents based on keyword search.

from F, and (iii) if the deleted nodéx is a distinguished node in ! L . ;
; ) T Our intention is not to propose yet another ranking algorithm for
Q, then the parent dix in Q is made the distinguished nodeQi. keyword search but rather focus on how to combine structural and

As an example, s3(Q2) applied to quenyQ2 in Figure 1 would keyword scores to produce the score of an answer. One can as-

resutt in a quenQ5 where the leaf2 is deleted and the condition sociate two numerical scores with an answer to a (relaxed) query:

$2:tag = algorithm is dropped (i.e., replaced by “true”) from . : : A
Q2 Ig ordert% avoid queriesptrr)lat e(valuatepto true o}rlw every)element (i) a score r.(.eflectlng how well it §tructurally matchgs the original
) "query and (ii) a score based on its full-text expression. We regard

we forbid deleting the root of a TPQ. Que6 is an extreme case h h | and h | . K
where leaf node deletion is applied repeatedly on the user query. t ese two scores as o_rt ogonaf an propo_se't ree alternative rank-
" ing schemes to combine these scores. This is different from exist-

3.5.3 Subtree Promotion ing content and structure ranking schemes in IR that rely on pre-
specified XML fragments [9, 18]. We discuss these works in Sec-
tion 7. However, a study and comparison of these ranking schemes
is outside the scope of this paper.

Since we do not consider relaxations based on value-based predi-
cates, we will assume they are satisfied when computing scores. A
ranking scheme may associate a weight with each predicate present
in the query. This weight may be user-specified, or computed by
analyzing the input document. It may be static or dynamic (e.g.,
different for different elements with the same tag, depending on
their context). Also, this weight may or may not depend on the
query in question. For theontainspredicate, we assume a weight
of 1. We also assume the score returned by the IR engineofor

The intuition behind this operator is that rather than insist on the
existence of paths that go through nodes of a certain type, we sim-
ply insist on the existence of the said paths. More precisellet
be a TPQ3x any node ofQ other than the root, andy its grand-
parent inQ. Then sx(Q), the subtree promotion @ on $x, is
the TPQQ" identical toQ except the subtree rooted$t is made a
corresponding subtree 8§, where the edge betwe&y and$x is
an ad-edge. As an example;;(Q1) applied to quenyQ1 results
in the queryQ3 in Figure 1(c).

3.5.4 “contains” Promotion

The containspredicate, when imposed on a nogbe of a TPQ, tainsis normalized to be in the range; 1].
requires any match to contain the specified keywords somewhere
within its scope. Incontainspromotion, we move this predicate DEFINITION 3. [Answer Score] Given a TPQQ, the score
from node$x to its query parent. More precisely, for a TRRand of an answer taQ and, to any of its relaxations, is obtained by
anodebx in Q other than the roows (Q), thecontainspromotion a computable arithmetic function of the weights associated with

of Q on node$x, is the TPQ where angontainspredicate of the those query predicates (in the closurefwhich are satisfied by
form contains($x; FTExp) is replaced bycontains(8y; FTExp), the answer. n



The score of an answer measures the relevance of that answer td’hus, the score assigned to an answer to a relaxation does not de-

the user query. pend on how that relaxation was obtained, only on the predicates
presentin it. In practice, the structural scessand keyword score
DEFINITION 4. [Top-K Answers] Given a TPQQ and its ks may be computed separately by separate engines.

closureC, the top-K answers t@ and, to any of its relaxations, .
is the set of answers @ and, to any of its relaxations, with the K~ 4.3 Ranking Schemes

highest scores. u In this section, we propose some example ranking schemes that
. . adhere to the principles defined in Section 4.2. First, though we
4.2 Properties of Ranking Schemes discuss “predicate penalty”, a notion that is at the heart of score

Recall that every answer to a query is also an answer to any of its computation for relaxed queries.
relaxations. Suppos@ is a (possibly relaxed) query a®f is any .
relaxation ofQ. We identify the following desirable properties for ~ 4.3.1 ~ Predicate Penalty
ranking schemes. Given a TPQQ and its closur€&, thepredicate penaltassociated
with each predicatp in C measures how much context an answer
1. Relevance Scoring Whenever a (possibly relaxed) query loses by not satisfying that predicate. A subtlety is that we must
Q is relaxed to obtairQ’, every answer of) should have associate weights not just with predicates present in a query but
a structural score higher or equal to that of any answer of with all predicates in its closure.
Q". This is natural since answers that did not make the “first ~ Suppose that each predicate in the closur€afincluding the
cut” imposed byQ are not as relevant as answers that exactly containspredicate and excluding other value-based predicates) is
matchQ. Note that keyword score may not satisfy this prop- assigned a weight using some functiow. All relaxations ofQ
erty: e.g., promotion of theontainspredicate fromanodeto  correspond to dropping either the or the ad predicates or the
its query parent widens its search scope and may well result containspredicate from a query closure. Consider a pair of nodes
in a higher keyword score. $i; $J in Q. Supposesi and$j are constrained to have tagsand
. ) ) tj respectively. For tagsi;tj, we denote by#.c(ti;tj) (resp.,
2. Qrder Invariance: A relaxat|0r3 may be obtalned by drop- #aa(ti;t;)) the number of pairs of nodes of tyfei; t;) related
ping predicates from a query(’s closure) in any order. The py narent-child (resp., ancestor-descendant) relationships. We de-
score assigned to an answer to a relaxed query should bey e py-4 (t) the number of elements of tagn the document and
independent of the order in which predicates were dropped by #contains($i; FTEXp), the number of matches to tREExp ex-
frqm an initial query to obtain the relaxed query. . pression in the context of node.
This property is orthogonal to theeansused for generating We define the penalty associated with dropping the predicate
rfelaxatlons. For example, in place of our operators from Sec- pe($i; $j) from Q (but notad($i; $j)) as:
tion 3.5, one could use any other complete set of operators as
long as this property is satisfied. [#Hoc(ti; tj)=Fad(ti; )] £ Wo (pc(3i; $]))
The intuition is that this penalty measures the loss of context result-
ing from relaxingpc to ad. If a majority of ancestor-descendant
(ti; tj) pairs in a document are parent-child pairs, then the relax-
ation enables fewer additional answers than if this had not been the
case. Thus, such a relaxation incurs a heavier penalty (i.e., closer

3. Efficiency: Finally, it is desirable that the ranking scheme
used allow efficient query answering.

The first two properties are motivated primarily by semantical
considerations while the last one is motivated by practical consider- to the weight of the edge itself)
ations. The first property is satisfied by making sure that the struc- We define th itv of d - $i- §i) f 0 be:
tural score of an answer decreases with the number of predicates e define the penalty of droppingi (8i; 8} from Q to be:
that are dropped from the original query to evaluate that answer. [Fad(ti; 1j)=(F () £ #(6 )£ Wo(ad(31; $1))

The following theorem gives a sufficient condition for ensuring the
second property.

Let f be any aggregate function, i.e., any total function from finite
sets of multisets over real numbers to real numbers.

This penalty is proportional to the ratio of the number of ancestor-
descendan(t;; tj) pairs over the total number of elements of tag
t; or tj. The more this ratio, the closer the penalty to the predicate
weight.

Supposél is the parent node dfi in Q. We define the penalty of
droppingcontains($i; FTExp) (which corresponds to promoting it
Fo $1) as:

THEOREM 3. [Good Ranking Schemes] : LetQ be a TPQ,
wg a function that associates a weight with each predicatg,in
andf be an aggregate function. Suppose the score of each answe
t to queryQ or one of its relaxations is computed by the ranking  Zcontains (31; FTEXP)=Fcontains (3T, FTEXp)[E
scheme: wo (contains($i; FTExp))

f(fFfwo(p1);:; Wo(pk)gg), whereps;:::; pk are the predicates The :
L : parent nod@&l contains at least as many matches to the full-
satisfied by the answarandfT:::gg denotes a multiset. Then the text expressiofTExp as its child nod@i. The intuition behind this

ranking scheme is order invariant. " penalty is that it measures context broadening of keyword search.

Intuitively, the theorem says that if scores of answers are com- 4 3 2  Answer Score
puted by a ranking scheme that combines weights associated with

predicates satisfied by an answer using any aggregate function, ther% SulpposdeQ tls a relaxattllon (I)_Qt.SLSt ftﬂl ""tp"? beéhe tstrut(;]- t
the ranking scheme is guaranteed to be order invariant. In partic- ural predicates present @. Le € the set ot predicates tha

H 05
ular, note that the aggregate function used may be arbitrary — e, Were dropped from the closure Qfto obtainQ".” Then the struc-

distributive (like sum), algebraic (like average), or holistic (like me- 5|5 an actual algorithm, we will use our relaxation operations in-

dian). The intuition is that the weight associated with each predi- stead of predicate droppings. However, the effect can be under-
cate does not depend on which predicate is present in a relaxationstood in terms of predicate dropping.




{al score of ananswer 0’ is denotedss and is calculated as:
'i‘:l WQ(Pi) i pas ~(P), where..(p) denotes the penalty as-
signed to dropping predicafe
The keyword score of a query answer is dend&gdand is defined

to put together an IR engine and an XPath engine and stydying how
to optimize repeated computation, the number of intermediate an-
swers and the cost of (re)sorting to compute the top-K answers.

as the the weighted sum of the scores associated by an IR engines QU ERY PROCESSING

with all the containspredicates satisfied by that answer.

The final score of an answer combines its structural sseend
its keyword scor&s. We propose three general ranking schemes
for combining these scores that conform to the principles defined
in Section 4.2.

Structure first: The score of an answer is a péss; ks).
Keyword first: The score of an answer is a péks; ss).
Combined: The score of an answer is computed with an arithmetic
function that combineks andss, e.g., the sunks + ss.

When the combined score is an ordered pair, we use the standard

lexicographic ordering. The above classification makes no commit-
ment tohow structural and keyword scores are computed. A spe-
cific ranking scheme is obtained by choosing a strategy for com-

puting predicate penalties associated with relaxations, as in Sec-

tion 4.3.1 and a general ranking scheme. The following example
illustrates this.

pc($1;82) ™ pe(82;83) ~ pc($2;$4) ~ $litag = article
$2:tag = section ~ $3:tag = algorithm ~ $4:tag
paragraph ~  contains($4; “XML" and “streaming”)

N ad($1;$2) N ad(32;83) N ad($2;$4) N ad($1;$3)
ad($1;$4) ~  contains($2; “XML” and “streaming”)
contains(3$1; “XML” and “streaming”).

pc(31;82) ~ pc($2;84) ~ $l:tag = article ©~ $2:tag
section /™ $4:tag = paragraph ™ ad($1; $2) ™ ad($2;$4)
ad($1;$4) ~  contains($2; “XML” and “streaming”)
contains($1; “XML" and “streaming”).

> > >

> >l

Figure 6: Closure of QueriesQ1 and Q5.

EXAMPLE 1. Consider the closure @1 andQ5 in Fig-
ure 6. Q5 is obtained fromQ1 by promoting thecontainspred-
icate from nodeb4 to its parent nodé2 (i.e., dropping the pred-
icate contains($4; “XML” and “streaming”) from Q1(’s closure)
and then, deleting nod&3 (i.e., dropping predicatesc($2; $3),
ad($2;$3), ad($1;$3)). Suppose our weight assignment is uni-
form and assigns a unit weight to every structural aodtains
predicate inQ1. The structural score of an answer@ is then
equal to 3. The penalty of dropping the predicates to olsins
(Exp denotes the full-text expression@i):

(Fpc(section; algorithm)=7faq(section; algorithm)) £ 1+

(#ad(section; algorithm)=(#(section)£#(algorithm)))£

1+

#ad(article; algorithm)=(#(article) £ #(algorithm)) £

1+

(#contains (algorithm; EXp)=#-contains(article; Exp)) £ 1

The structural score of answers@s is then 3 minus the penalty

computed above. The final score of answer€®is computed

in the same manner &31, by combining their keyword score and

structural score using one of the general ranking schemes above.
|

The ranking schemes proposed in this section all conform to prop-
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Figure 7: FleXPath Query Processing Architecture

5.1 FleXPath Architecture

Figure 7 depicts the general architecture of our top-K query eval-
uation in FleXPath. We developed three algorithms. All our algo-
rithms assume that theontainspredicate is evaluated by a sepa-
rate IR engine that returns a ranked list of pairs (node,score). In
our implementation (Section 5.2), we use the same techniques as
in [20, 29] that return the most specific elements that satisfy the
full-text expression used ioontains The output of the IR engine
is combined with the output of the XPath engine by comparing the
returned nodes from the IR engine with the context elements re-
turned by the XPath engine.

We developed three algorithms — DPO, for Dynamic Penalty Or-
der and, SSO, for Static Selectivity Order and Hyrid, a performance
improvement over SSO. While DPO relies on evaluating multiple
gueries one by one to decide if an additional relaxation is needed,
SSO uses selectivity estimates to decide which relaxations to en-
code in a query before sending that query (at once) to the XPath
and IR engines.

Our algorithms assume that structural conditions are evaluated in-
dependently of angontainspredicates. An alternative possibility
would first use an inverted index to evaluate toatainspredicates
and filter out potential answers, and then match structural predi-
cates. The efficiency of each approach depends on the types of
queries. A comparison of these two approaches would be interest-
ing but is outside the scope of this paper.

We provide the pseudo-code of our algorithms for gtreicture
first ranking scheme (see Section 4.3Jhe pseudo-code would
need to be modified to accommodate the other ranking schemes.
For thekeyword-first scheme, all relaxations need to be encoded in
the query because an answer with the worst structural score might
still make it to the top-K answer set.

When theCombined ranking scheme is used, we use the follow-
ing pruning technique. Suppo€¥; Q2; :::; Qn are the relaxations
in descreasing order of structural score. Let the structural and key-
word score ofQi bessi; ksi respectively. Suppodds the smallest
number for which the set of answers @l; :::; Qi equals or ex-
ceeds (exactly for DPO and according to estimates for S&O)
Stopping afteQi might miss some of the top-K answers. Suppose
there arem containspredicates in the query. Recall thaintains
has weightl and so the keyword score for each predicate is.

Letj ., ibethe smallest number for which the structural sasje
of Qj satisfiesssj = ssi j m. Clearly, no answer to relaxations

erties 1 and 2 defined in Section 4.2. In the next section, we shall Qs, s > j can be in the top-K answer set so we can ignore all

evaluate their efficiency (property 3) empirically by exploring how

relaxationaQs, s > j.



5.1.1 DPO the query (line 8). The IR engine is invoked to compute ¢ba-

The main benefit of DPO s the fact that it is able to use off- tainspredicates (line 9). Finally, SSO combines the results (line
the-shelf XPath and IR engines. DPO relies on query-rewriting 10). When thg selectivity estimation is not accurate, the number
as in [15, 30]. However, instead of generating a potentially large ©f answers might be smaller than K (line 11), in which case, the
number of queries, one for each relaxation, DPO decides which algorithm has to drop more predicates. When the number of an-
relaxations to consider, using predicate penalties. For brevity, we SWers exceeds K, the final result is sorted and pruned (line 15) and
omit the pseudo-code and explain the algorithm forgtracture- returned to the user.
first case.

DPO admits a user query as input, computes its closure and sortsAlgorlthm 1 Static Selectivity Order (SSO)
its predicates by increasing penalty order. Then, it evaluates the Require: Query Q, K
user query by sending it to the XPath engine. If the number of an- 1: closureQ = computeClosure(Q);
swers to that query does not exceed K, it dfape predicate with 2. currentQ = sortPenalties(closureQ),

' . 3: estimNumAnswers = estimResultSize(currentQ);

the lowest penalty from the query, sends the resulting query to the 4: while estimNumAnswers= K do
XPath engine which computes and returns the results. Our predi- 5:  currentQ = dropNextPredicate(currentQ);
cate dropping ensures that answers to a query include answers to6:  estimNumAnswers += estimResultSize(currentQ);
the previous query and no answer will be lost. For example, if the 7: end while
query is A [./B and .//C] and if the predicate .//C is dropped, then &' resultQ = evaluateQuery(currentQ);
at the next step, predicate .//B could be dropped but this does notl%. Itlgﬁsu't - IR_evaluatf(TExp(currentQ)), .

. - ) : pResult = Combine(resultQ,IRresult);
mean that the query A[//C] will never be considered since drop- 171: if ComputeSize(tempResuk) K then
ping corresponds to making predicates optional (and not loosing 12:  Goto 5;
them entirely). This is captured by using vectors of answer lists for 13: end if
avoiding recomputation (see Section 5.2.2). 14: finalResult = SortandPrune(tempResult,K);

Based on the number of answers obtained at each step, DPO del5: return finalResult;
cides or not to further relax the query by dropping the predicate
with the next lowest penalty. Thus, DPO might generate and send
multiple queries to the XPath and IR engines. DPO has the prop- 5.2 Implementation
erty that answers to a query will have a lower score than answers
to a preceding query. Therefore, it appends query results without 5.2.1  Join Plans for DPO and SSO

having to sort results. The algorithm then calls an IR engine to  Both DPO and SSO could use an off-the-shelf engine for evalu-
evaluate theontainspredicates in the user query and combines the ating structural queries (trevaluateQuery() function in both
result. When the number of answers exceeds K, DPO stops querypseudocodes). However, we chose to implement our own evalu-
evaluation. _ ] ] ation engine in the two cases for two reasons. First, DPO would
If the number of relaxations to encode in the query is small, we penefit from a modification which avoids recomputing answers that
expect DPO to perform well. Due to the fact that the non-relaxed zre common to two successive queries. Second, SSO would benefit
version of a query is contained in its relaxed version, DPO might from a more accurate computation of answer scores. Unlike DPO,
do a lot of repeated computation. We will see how we avoid this in \yhere all answers to a specific relaxation have the same structural

our implementation in Section 5.2. score which is known at compile time (i.e., they all satisfy the same
set of query predicates), answers to the query produced by SSO
5.1.2 SSO (which encodes several relaxations into one query) might satisfy a

The pseudocode for SSO is given below. This algorithm decides different subset of predicates which are known only at query eval-
which relaxations to keep in the query to obtain K answers, based uation time. This will become clear after we briefly present our
on the selectivity estimates and the penalty of the predicates thatevaluation algorithm.
were dropped to obtain the relaxation. For example, given the clo- We represent a query using left-deep join plans and we use the
sure of queryQ1 (see Figure 4), SSO might decide to drop the two structural join algorithm given in [1]. This algorithm requires input
structural predicatesd ($2; $4) andad($1; $3) because they have  lists to be sorted on node identifiers. Relaxations are encoded in
the lowest penalties (i.e., these relaxations produce answers withthe same join plan in the same manner as in [3]. Figure 8(a) shows
the highest scores) and the sum of the selectivities of the remainingthe join plan corresponding to que@l given in Figure 1, without
predicates guarantees that at least K answers will be produced. Inthe containspredicate. Figure 8(b) contains the join plan(@3,
general, SSO needs a selectivity estimator that can provide a lowera relaxed version oR1, and Figure 8(c) contains the join plan of
bound on the number of results for an XPath expression. If not, Q5, another relaxed version €f1. These plans group a structural
then potentially we might need to restart SSO to compute the top- predicate and its derived version (using the inference rules given in
K results. Figure 3) in the same join predicate. The structural scores of nodes

SSO proceeds as follows. First, it computes the query closure returned by the join plan are computed as described in Section 4.3.
(line 1) and sorts its predicates in increasing penalty order (line 2). Our join plans are not affected by the ranking scheme that we use.
Then, unlike DPO which evaluates the query, SSO estimates the re-We omit thecontainspredicate for brevity.
sult size of the query using techniques such as the ones in [27] (line  We denota, the relaxation that drops predicate($2; $3) from
3). If the estimated number of answers is less than K, SSO dropsthe closure ofQ1 (given in Figure 4)r, the relaxation that drops
the next predicate with the lowest penalty from the query (line 5). ad($2;$3) from the closure ofQ1, rs, the relaxation that drops
The process continues until the number of estimated answers is atcontains($4; FTExp) from the closure ofQ1. Suppose;ra;rs
least K. At this point, SSO decides to evaluate the structural part of are ordered by increasing penalty, and that using selectivity esti-
mates, SSO decides that all three relaxations need to be encoded

®Recall that predicate dropping is achieved using relaxation opera-in Q1 to obtain at least K answers. Then SSO would generate and
tions of Section 3.5. evaluate the join plan of5 while DPO would first evaluate the




join plan of Q1, find out if the number of answers is less than K, Algorithm 2 Hybrid

evaluate it, and so on. Require: Node n, k
_ 1. if (nis leaf)then
5.2.2 Implementing DPO and SSO 2. list= evaluateLeaf(n);

. . . . 3. return list;
In order to preserve DPO's benefit, we designed its algorithm 4. ond'if

in such as way that it saves computation. For example, suppose 5: list1 = Hybrid(n.left):

DPO evaluates first the query plan in Figure 8(a). It builds a vec- 6: list2 = Hybrid(n.right);

tor for each predicate in the query. If the next join plan to evalu- 7: for rlinlistldo

ate is 8(b) (say, because there were not enough answers produced3: ~ for r2in list2do _ _
by the first join plan), then since the difference between the two s= computeScore(rl,r2,n.predicate);

plans is that nodalgorithm has been promoted, DPO excludes %2 i (r(:;nclcr)nn?él?t[eoF\é\gg)u’lt(crlljrrrgr:]t.lé))ntelgi?gate)'

all algorithm-section pairs(a; s) wherea is a child ofs. 12: if (@ bucket(r1,r2,n.predicateien
SSO relies on keepingtareshold  at each join node to prune  13: b= createBucket(r1,r2,n.predicate);

answers that will not end up in the top-K set, as early as possible in 14: else .

query evaluation. We refer to this threshold as the maximal score 1 b= getBucket(rl,r2,n.predicate);

growth of an answemjaxScoreGrowth ). It is associated with 23?1'||foBucket(res b):

each join in the join plan and records the sum of the weights of 7g: end if e

the remaining predicates in the plan. Intuitiveley, it corresponds to 19: return currenbuckets();

the highest score an intermediate answer can have in the remaining20:  end for
plan. When an intermediate answer arrives at a join, SSO decides21: end for
whether or not this answer should remain in the set of answers,
based on its current computed score andrfaxScoreGrowth

at the join node. If the surthreshold  + maxScoreGrowth

¢ | ) using the scores of its inputs and the score of the join predicate
is lower than the score of the currerff'kresult, the intermediate (n.predicate) that is used to compare the two inputs (line 9). If

answer is discarded. In order to know what the score of tie k  nat score is not going to end up in the top-K answers (line 10),

result is, the set of intermediate query answers is sorted on theirj; s gropped, otherwise, Hybrid decides to create a new bucket
score. This algorithm is similar to the one proposed in [3]. The for that answer (line 13) if a bucket with the same score does not
difference is that SSO uses selectivity estimates and penalties t0gyist (line 12) or, it puts it in an existing bucket with the same
decide which relaxations will be encoded in the query while in [3], gcqre (line 15). Depending on the predicate used to generate it, an
all possible relaxations are initially encoded in the query thereby jntermediate result will end-up in a different bucket. The output of a
resulting in large intermediate query results. join might be multiple buckets, one for each distinct score. Pruning
The bottleneck of SSO is that the algorithm used to evaluate the ot jnermediate answers translates to elimination of buckets with
structural join expects its result to be sorted on node identifiers 5 geore (added tmaxScoreGrowth  at the join) lower than the
while pruning intermediate query answers requires their sorting on gcqre of the current bucket containing tH8 knswer.
scores. There is a fundamental tension between these two sort or- ppo's strength comes from the fact that (i) it evaluates the latest
ders. We address this weakness in the next section. relaxation determined as necessary, counts the answers, and then
. decides if the next relaxation is necessary, thus using exact knowl-
5.2.3 Hybrid edge; and (ii) it does not require resorts on intermediate results.
We want to combine the best of DPO and SSO. DPO's strength is However, the price is that it might make repeated passes over input
that it does not compute any relaxation unless at least one answetlists. Hybrid minimizes the number of passes over input data (like
from that relaxation is guaranteed to end-up in the top-K set. SSO’s SSO) while at the same time never sorting intermediate results on
strength is that it uses a single evaluation plan for computing all re- score (like DPO). Also, because of bucketization, we continue to
laxations deemed necessary for the given top-K query, thus avoid- have the advantage of SSO in pruning intermediate results using
ing repeated passes over the data. However, SSO might resort datahreshold  andmaxScoreGrowth . Note that buckets are or-
We propose Hybrid, an algorithm that avoids resorting on scores us-dered by score, since each bucket is uniquely identified by the set
ing bucketization The key idea behind Hybrid is to create buckets of structural predicates satisfied by the answers it contains, from
of intermediate results at each join where each bucket correspondswvhichthreshold  can be calculated.
to a set of predicates. Answers in a bucket satisfy the same set of In the next section, we substantiate these claims empirically.
predicates and so have the same score. E.g., in the query plan for
Q1 given in Figure 8, when computirgarticle; algorithm) or
ifnotc(article;algorithm)thend(article;algorithm),)we 6. EXPERIMENTS
would create two buckets for the output — one for results satisfying We ran several experiments to show the utility and scalability of
c(a; b) and another for results satisfying our algorithms when relaxing the user query. Our experiments
d(article; algorithm) but notc(article; algorithm). Within compare and evaluate the performance of DPO, SSO and Hybrid
each bucket, answers are sorted on their node id. Since this sort oralgorithms under various conditions.
der is preserved by the join algorithm we use, no additional sorting Setup: We run the experiments on an Intel CPU P4 2GHz ma-
is necessary. We illustrate this in the pseudocode given below. chine with 512MB memory and 10GB disk space under Linux Red-
Hybrid is a recursive algorithm that takes the root of a join plan hat version 7.2. Our programs were written in Java and C for the
and a value for K and, returns the top-K answers. If the input node expat XML parser.
is a leaf (line 1), itis evaluated (line 2) otherwise, its left (line5) and  Dataset and Queries:We use the XMark XML data generator
right (line 6) subplans are sent to the algorithm. We show a nested (http://monetdb.cwi.nl/xml/index.html ). We varied the
loop join algorithm for simplicity of exposition. Given two input  size of our documents from 1MB to 100MB. In order to “exploit
lists, the algorithm computes the score of an intermediate answerthe heterogeneity of the datasets” for relaxation, we designed three
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Figure 8: Join Plans

nique which gave precise estimations for our data sets. We first do
% intensive pre-processing of the document in order to obtain counts
= of the various types of nodes and edges in the XML document. We
B F— then assume a uniform distribution of elements. For example, sup-
o pose 60% of A's in the document have a B as a child. We assume

g & 1 that this fraction is independent of the location of A in the docu-
g 3 | | ment. So we estimate that in 60% of occurences of C/A also, A

F will have B as a child. So, the estimate for C/A/B is 0.6 times that
2 — of C/A. We found that this technique works well for our dataset and

R we never had to restart SSO.
0 = ' i ' & Parameters: In order to compare our algorithms we varied the
= size of the input documents, the size of K in top-K, the query size
and the number of relaxations that a query can ad@it.admits
. . . . one relaxation: generalize eddescription/parlist . Q2
Figure 9: Varying Number of Relaxations containsQ1 and admits promotegext . Q3 containsQ2 and ad-
mits deleténcategory  and generalize edges
queriesQ1, Q2 andQ3. parlist/listitem ,text/bold , text/keyword  and
Q1 : /litem]./description/parlist] text/emph

Q2 : /litem[./description/parlist and
Jmailbox/mail/text]

Q3 : /litem[./description/parlist/listitem and
Jmailbox/mail/text[./bold and ./keyword and 120 1
Jemph] and ./name and ./incategory]

Edge generalization is enabled by recursive nodes in the DTD (e.qg.,
parlist ). Deleting leaf nodes is enabled by optional nodes in the
DTD (e.g.,incategory ). Finally, subtree promotion is enabled
by shared nodes (e.dext ).
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= Figure 11: Varying Document Size (K = 12)
an

1 E i I Preliminary results: We report four preliminary experiments
04

= o 5 - s that compare DPO and SSO. Figure 9 shows a comparison between
DPO and SSO on a 1MB document, with K set to 50 answers. We
report execution times for the three queries. The results show that
Figure 10: Varying K by increasing the number of relaxations (no relaxation when run-
ning Q1, 2 relaxations when runnin@2 and 6 relaxations when
Selectivity estimation is an integral part of the SSO algorithm. runningQ3), SSO performs better than DPO and the difference be-
It allows SSO to statically estimate the number of relevant relax- tween the two algorithms increases with the number of relaxations.
ations. Although we could use off-the-shelf selectivity estimators Figure 10 reports the time of evaluating qué€$ using both algo-
such as [27], we decided to build our own because the precision rithms on a 10MB document. K varies from 50 to 600 answers.
with which the estimation is done has a significant impact on SSO. When the number of answers is small (50) SSO and DPO last the
In case, the estimation is not precise and the number of answerssame time since no relaxation is required. When the number of
obtained are less than what is estimated, we would need to restartanswers increases, more relaxations are required and the number
SSO. In our implementation, we have developed an estimation tech-of intermediate answers increases. The effect of pruning in SSO
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Figure 12: Varying Document Size (K = 500)

makes this algorithm superior to DPO, reaching 68% improvement
in query time when the number of answers is 600. The last two
experiments report a comparison between DPO and SSO when the
size of the input document increases (from 1MB to 100MB). In the
first one (Figure 11), K was set to 12 answers while in the second
one K was equal to 500 answers (Figure 12). Both experiments
are run onQ2. In the case where K is small, DPO and SSO are
close because the only case where a relaxation is needed is on the
1MB document (on whictiext is promoted tanailbox in or-

der to obtain at least 12 answers). In the case where K is large (500
answers), more relaxations are encode®(from 0 to 8 relax-
ations). By increasing the number of relaxations and the size of
the document, we increase the number of intermediate results and
thus, the difference between DPO and SSO since SSO is better at
pruning intermediate query answers.
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Figure 14: Varying Document Size (K = 500)
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Figure 15: Varying K (DocSize = 10MB)

figures show that Hybrid is useful even in the case of small docu-
ments since SSO might be sorting large sets of intermediate query
answers. The difference between the overall times of the two algo-
rithms increases when increasing K even if document size is small.
This is due to the fact th&&SO is more sensitive to the value of K
than Hybridbecause the size of intermediate answers that need to
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Figure 13: Varying Number of Relaxations (K = 500)

These first experiments show the scalability of SSO with respect
to the number of relaxations, the number of query answers and the
size of input documents. The difference between SSO and DPO
plots increases with K.

SSO and Hybrid: The previous experiments showed the superi-
ority of SSO over DPO. We will now compare Hybrid to SSO.

Overall, Hybrid does not do much better than SSO (although
it does consistently better). However, the difference between the
two algorithms increases with an increasing K or document size

or number of relaxations. Figure 13 verifies this claim in the case 7.

be resorted depends on K.
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Figure 16: Varying K (DocSize = 100MB)

RELATED WORK

where we varied the number of relaxations with a value of K set to
500 on a 10MB document.

Figure 14 shows the case of running qu&¥ with K set to 500
(1MB to 100MB documents). Figures 15 report the time to evalu-
ate queryQ3 on a 10MB and 100MB document respectively. The

Combining structure and text search has attracted a lot of inter-
est in the database and the information retrieval communities [4,
5, 6, 11, 12, 13, 17, 18, 19, 25, 26, 31]. In IR, approaches are
classified to content-only search (CO) and content and structure
search (CAS). CAS approaches include ELIXIR [11], XIRQL [18]



and JuruXML [9]. These approaches focus on a vague matching [4] K. Bohm et al. Structured Document Storage and Refined

of limited XPath predicates and on designing specific indices to
score document fragments. For example, JuruXML [9] relies on
element=-specific indexing ad on the vector-space model to score
query results. However, it allows only limited XPath queries which

must be known in advance to be pre-indexed.

Different relaxations on structure have been defined previously.
[15] defines: unfold node, delete node, propagate condition at a
node to its parent. In both [18] and [30], the authors define re-
laxations on XQL such as generalize datatypes, ontologies on ele- [8]
ments, edit distance on paths, delete node, insert intermediate nodes
and rename node. Finally, [3] proposed the relaxations: relax node, (9]
delete node, relax edge, promote node. Our work is the first for-
malization of relaxations on structure in XML queries and the first (10]
sound and complete algebraic framework for spanning relaxations. [11]
In addition, we propose ranking schemes and define properties that

they must satisfy and develop efficient evaluation algorithms.

Declarative and Navigational Access Mechanisms in HyperStorM.
VLDB Journal Vol.6 No.4, Springer, 1997.

5] J. M. Bremer and M. Gertz. XQuery/IR: Integrating XML Document

and Data Retrieval. WebDB 2002.

E. W. Brown. Fast Evaluation of Structured Queries for Information
Retrieval. SIGIR 1995.

N. Bruno et al. Top-K Selection Queries Over Relational Databases:
Mapping Strategies and Performance Evaluation. ACM Transactions
on Database Systems (TODS), 27(2), 2002.

M. J. Carey and D. Kossmann. On Saying “Enough Already!” in
SQL. In SIGMOD 1997.

D. Carmel et al. Searching XML Documents via XML Fragments. In
SIGIR 2003.

C. Chen and Y. Ling. A Sampling-Based Estimator for Top-K Query.
In ICDE 2002.

1] T.T. Chinenyanga and N. Kushmerick. Expressive and Efficient

Ranked Querying of XML Data. 4th International Workshop on the
Web and Databases (WebDB). Santa Barbara, California, 2001.

There are three evaluation strategies for approximate XML queries[12] S. Cohen et al. XSEarch: A Semantic Search Engine for XML. In

Rewriting strategiesuch as DPO [11, 15, 18, 30] enumerate pos-
sible queries derived by transformation of the initial query. Some [13]
of these strategies use schema information to reduce the number of

queries [30] Plan-based strategiesich as SSO and Hybrid [3, 23]

encode relaxations in the query evaluation process. Firladia-

relaxationcomputes a closure of the document graph by inserting [15]
shortcut edges between each pair of nodes in the same path [14].
Since this strategy was shown to quickly fail with large databases,

we experimented the first two strategies in FleXPath.

In relational databases, Carey and Kossmann [8] optimize top-K [16]
queries when the scoring is done through a traditional SQL order-
by clause, by limiting the cardinality of intermediate result tuples.
Although algorithmically different, SSO is similar to works that
use statistical information to map top-K queries into selection pred-
icates (which may require restarting query evaluation when the

number of answers is less thin[7, 10, 22]).

8. CONCLUSION

We presented FleXPath, a framework that integrates structure and[20]
full-text querying in XML. A key idea in FleXPath is to interpret
the XPath query as a template for keyword search, thereby enabling[21]
approximate query answers on structure and using it to provide a
context for full-text search. FleXPath is the first formalization of
query relaxations that characterizes the space between the strictedg?]
(i.e., exact semantics) and the loosest interpretation of the XPat
expression. We studied ranking schemes and developed algorithm
for top-K queries that span this space and evaluated their perfor-
mance. FleXPath initiates a wide range of new research opportuni-[24]
ties including a tighter integration of structure and keyword indices

for a more efficient approximate query evaluation.
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