
Web spam Identification Through Content and Hyperlinks

Jacob Abernethy
Dept. of Computer Science

University of California
Berkeley, CA, USA

jake@cs.berkeley.edu

Olivier Chapelle
Yahoo! Research

Santa Clara, CA, USA
chap@yahoo-inc.com

Carlos Castillo
Yahoo! Research
Barcelona, Spain

chato@yahoo-inc.com

ABSTRACT
We present an algorithm, witch, that learns to detect spam
hosts or pages on the Web. Unlike most other approaches,
it simultaneously exploits the structure of the Web graph
as well as page contents and features. The method is effi-
cient, scalable, and provides state-of-the-art accuracy on a
standard Web spam benchmark.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous; I.2.6 [Learning]; I.5 [Pattern Recognition]

Keywords
Web spam, graph regularization, Support Vector Machines

1. INTRODUCTION
Web spam manifests itself as web content generated de-

liberately for the purpose of triggering unjustifiably favor-
able relevance or importance of some Web page or pages [9].
It has been observed that spam and non-spam pages ex-
hibit different statistical properties which can be exploited
for building automatic classifiers [13].

From a machine learning perspective, the spam detection
task differs from a typical classification task since not only do
we have standard features available for every page/host, but
we are also given a directed hyperlink structure on our data
as well. A hyperlink often reflects some degree of similar-
ity [7, 16] among pages. Complex patterns can be observed
in hyperlinks; for instance, in the particular case of spam it
has been observed that non-spam hosts rarely link to spam
hosts, even though spam hosts do link to non-spam hosts.
Several techniques based on the propagation of (dis)trust
along the hyperlinks have exploited this idea [10, 12, 17].

In this paper we present a learning algorithm that we call
witch, for Web spam Identification Through Content and
Hyperlinks, that directly uses the hyperlink structure during

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AIRWeb ’08, April 22, 2008 Beijing, China.
Copyright is held by authors/owners.

the learning process in addition to page features. Specif-
ically, we learn a linear classifier on a feature space using
an SVM-like objective function. The hyperlink data is ex-
ploited by way of graph regularization, which produces a
predictor that varies smoothly between linked pages. Our
results suggest that this method of SVM with graph reg-
ularization is highly effective at detecting Web spam, out-
performing all other state-of-the-art methods that we im-
plemented. Our method also performs well even with little
training data.

It is, as far as we know, the first technique for spam de-
tection that simultaneously uses features and the hyperlink
graph for training. Note that these features can be a com-
bination of any type of features such as content-based and
link-based features.

2. ALGORITHMS
For the remainder of this paper, we will discuss classifi-

cation of hosts as spam or non-spam. A host is a group
of Web pages sharing the same “host” component in their
URLs. All techniques can be similarly applied to individual
pages as well. Assume we are given the following: (i) a set
of l labeled examples (x1, y1), . . . , (xl, yl), where xi denotes
the feature vector associated with the i-th host and yi is
its label: +1 for spam and −1 for non-spam; (ii) a set of u
unlabeled examples, xl+1, . . . ,xn, with n = l + u; and (iii)
a weighted directed graph whose nodes are x1, . . . ,xn. Let
E be the sets of pairs (i, j) whenever node i is connected to
node j, and let aij be the weight of the link from xi to xj .

2.1 Learning with Graph Regularization
Suppose we want to learn a linear classifier f(x) = w·x. A

familiar approach is to train a linear Support Vector Machine
(SVM) [15]. In this case, w is found as the minimizer of the
following objective function:

Ω(w) =
1

l

lX
i=1

R(w · xi, yi) + λw ·w, (1)

where λ is a parameter of the algorithm. The above objec-
tive function captures the necessary trade-off between fitness
and complexity, for we would choose w to correctly classify
our training data while maintaining a large margin. Here we
use the hinge function R(u, y) = max(0, 1−uy) to represent
the loss on the training data, but any convex loss function
may be used. The quantity w ·w represents the size of the
margin and is often referred to as the regularization term.

For the special case of classification tasks on the Web,
one has the additional advantage of the hyperlinks between

Algorithm 1 witch

Params: λ1, λ2, γ, convex function Φ(·, ·)
Input: labeled training set (x1, y1), . . . , (xl, yl)
Input: unlabeled set xl+1, . . . ,xn

Input: hyperlink graph E with edge weights {aij}(i,j)∈E

Solve:

w, z← arg min
w,z

Ω(w, z),

with Ω(·) defined in (3).
Predict: label node i as sign(w · xi + zi).

nodes. Hyperlinks can be represented as a directed graph
with edge set E. Hyperlinks are not placed at random, and
it has been shown empirically that they imply some degree
of similarity between the source and the target node of the
hyperlink [11, 7]. Based on this observation, it is natural to
add an additional regularizer to the objective function:

Ω(w) =
1

l

lX
i=1

R(w · xi, yi) + λw ·w

+ γ
X

(i,j)∈E

aijΦ(w · xi,w · xj), (2)

where aij is a weight associated with the link from node i
to node j. The first two terms correspond to a standard
linear SVM described above. The third term enforces the
desired graph regularization described above. The function
Φ represents any distortion measure, and is chosen according
to the problem at hand.

The objective (2) was proposed in [4, 16], where Φ was
chosen to be Φ(u, v) := (u − v)2, which implicitly encodes
the expectation that hyperlinked neighbors should have sim-
ilar predicted values. One novelty of our proposed method
is that, contrary to [4, 16], we utilize asymmetric graph
metrics tuned to the particular task of Web spam classi-
fication. With spam, incorporating hyperlink direction is
crucial: spam hosts frequently link to genuine hosts but
rarely vice versa. This has been empirically confirmed in
[6, 8]. We exploit hyperlink direction through the alterna-
tive metric Φ(u, v) = max(0, v − u)2, and provide a much
more detailed discussion in Section 3.1.

2.2 Additional Slack Variables
In the case where the feature space is not rich enough, a

simple linear classifier w · x might not be flexible enough.
But as in [16], one can introduce a parameter zi for every
node i and learn a classifier of the form f(xi) = w · xi + zi.
This extra term can be seen as an additional slack variable
that gives more freedom to the learned classifier.

Our new objective becomes:

Ω(w, z) =
1

l

lX
i=1

R(w · xi + zi, yi) + λ1w ·w + λ2z · z

+ γ
X

(i,j)∈E

aijΦ(w · xi + zi,w · xj + zj). (3)

Here we introduce two regularization parameters λ1 and λ2

for controlling the values of both w and z.
This last objective function is the basis for witch, which

we now summarize in Algorithm 1.

2.3 Optimization
Since the objective function is convex and differentiable,

one can simply use nonlinear conjugate gradient [14] to op-
timize it. This is a standard and very efficient method for
nonlinear optimization and it only requires the computation
of the gradient. It is also much faster than the dual algo-
rithm of [16]. Details can be found in [3].

Another way of optimizing (3) is to perform an alternate
optimization on w and z. The advantage of this approach is
that both steps can be performed using standard algorithms:
the minimization on w can be done using a regression algo-
rithm, while the minimization on z boils down to a standard
iterative propagation algorithm on the graph. We refer the
reader to [3] for a detailed description of this method.

3. IMPLEMENTATION AND RESULTS
All experimental results from this section are based on a

data set that we discuss in Section 4. In order to compare
performance of each method, we chose the metric Area Un-
der the ROC curve (AUC). AUC provides a natural measure
of accuracy of a predicted ranking, and requires only that
the algorithm outputs an ordering of the test set. Further
details about the experimental setup can be found in [3].

3.1 Design Elements
We proceed to analyze the performance of our spam classi-

fication technique, witch (Web spam Identification Through
Content and Hyperlinks). We start by describing in detail
the different algorithm settings that we consider.

Graph weights. For each pair of nodes i, j, we are given
ni,j , the number of links from host i to host j. To uti-
lize graph regularization we must specify edge weights, and
we tried a variety of different weighting schemes. Abso-
lute weights ai,j := ni,j tended to over-regularize hosts with
abundant hyperlinks, which was improved by using binary
weights, ai,j := 1[ni,j > 0], and further by “square-root
weights”, ai,j :=

√
ni,j . The best performance, however,

was obtained with logarithmic weights, ai,j := log(1 + ni,j),
and we report all results with this latter choice.

Graph Regularizer. Since we expect a host’s “spam-
icity” (or similarly, “authenticity”) to be preserved locally
within the web, the graph regularization function Φ(·, ·) ought
to encode how we enforce this locality in our predictions. If
node i links to node j, then Φ(fi, fj) should measure how
“unnatural” it is that a node with spam score fi links to
a node with spam score fj . We have already defined two
possible regularization functions:

Φsqr(fi, fj) , (fi − fj)
2

Φ+
sqr(fi, fj) , max(0, fj − fi)

2 = [fj − fi]
2
+

The first of these penalizes the square of any deviation
between the predicted values of i and j. The second func-
tion, on the other hand, only penalizes the predicted spam
scores when the node creating the link has a lower predicted
spam value than the link’s destination. The function Φ+

sqr

encodes our assumption that, while the spamicity value can
reasonably decrease through a link (i.e. when bad links to
good), it should not increase (i.e. when good links to bad).

For the task at hand, the latter choice would appear more
appropriate. In general, while bad nodes may link to good
nodes (perhaps to appear good), good nodes typically have

0 0.2 0.4 0.6 0.8 1
0.91

0.92

0.93

0.94

0.95

0.96

0.97

α

A
U

C

Figure 1: Effect of mixed regularization. α = 0 im-
plies Φ := Φ+

sqr, while α = 1 implies Φ := Φsqr.

no incentive to link to bad nodes (unless perhaps they are
paid to do this), and thus we expect only rarely to observe
good-to-bad pairs. We have also observed this empirically:
among the labeled nodes within the WEBSPAM-UK2006 dataset
described above, only 1.8% of the out-links from non-spam
hosts point to spam hosts, while 14.7% of out-links from
spam hosts point to non-spam hosts.

Interestingly, we have found that the best choice or regu-
larization is neither of the above but rather a mixture of the
two. For any α ∈ [0, 1], define:

Φα(a, b) , αΦsqr(a, b) + (1− α)Φsqr+(a, b)

We found this mixed regularization to be very effective, and
surprisingly a great improvement over either using only Φsqr

or only Φ+
sqr. In Figure 1, we plot performance, measured

by AUC, as a function of the choice of α. When α = 0,
only the nonspam→spam links are penalized. When α = 1
any deviation in the predicted spam value between linked
hosts incurs a cost. For the remainder of the results in the
paper, we report results using Φ0.1, i.e. where α = 0.1, as
the regularization function. The value of α can be tuned
more carefully, but performance is relatively stable around
this value.

Model Selection. witch requires the choice of three
hyperparameters, λ1, λ2, γ. We maintained a hold-out set
consisting of a random 20% sample of the training data. On
a 7 × 7 × 7 grid of parameters, we trained witch for each
combination and chose the triple (λ1, λ2, γ) that returned
the best test performance on these data. The final results
we report in Table 1 were obtained after validation.

3.2 Comparison with Variant Algorithms
We now present the performance of witch on the dataset

discussed in Section 4.
Recall that witch takes advantage of three primary tools

in training: host features, slack variables, and regularization
along the hyperlink graph. Each of these elements plays a
different role in the algorithm and contributes to perfor-
mance at varying levels. To see the relative importance of
each, we now consider alternative approaches that involve
various subsets of the above.

Only Features. We train a linear classifier on the given
feature space with no graph regularization. That is, we set
λ2 = 0 and γ = 0 in (3). This is a standard SVM.

Features + Graph Regularization (GR). We train a
linear classifier on the provided feature space but we addi-
tionally regularize according to the hyperlink graph struc-
ture. This corresponds to minimizing (2).

Slack Variables + GR. We ignore features and directly
learn the label using graph regularization. This is equivalent
to optimizing (3) under constraints w = 0.

Features + Slack + GR (witch). We now utilize all
tools available. We simultaneously train a linear classifier
and slack variables, and we regularize the predicted values
along the graph. This is algorithm 1.

In Table 1 we report performance for each of the above
four methods. We observe that the greatest boost appears
to be due to the addition of slack variables. This is likely the
result of underfitting: there may not be a single linear pre-
dictor w on the available feature space that can accurately
detect spam, thus the slack introduces an additional level of
freedom to the model for accurately classifying spam.

To see how performance depends on subset size, in Fig-
ure 2 we also compare each of the above algorithms for seven
different training-set sizes.

 1% 2% 5% 10% 20% 50% 100%
0.75

0.8

0.85

0.9

0.95

1

Subsample rate from the training set

A
U

C

Features
Features + GR
Slacks + GR
Features + Slacks + GR

Figure 2: Performance of WITCH and variants
(from Section 3.2). Experiments repeated 10 times
with random subsets and median is plotted.

4. COMPARISON WITH OTHER METHODS
To compare methods for detecting spam on the World

Wide Web, a group of researchers recently organized the
Web Spam Challenge [2] based on the WEBSPAM-UK2006 spam
collection [5], a public Web Spam dataset annotated at the
level of hosts. The collection represents a graph of 11,402
hosts in the .uk domain, out of which 7,473 are labeled. We
used the set of 236 features proposed for the challenge. The
training/testing split was fixed and is the same that was
used in the Web Spam Challenge Track I.

The first track of the competition, in which we did not take
part, ended in April of 2007; the best performance in terms
of AUC1 was obtained by Gordon Cormack with 0.956. On
the same dataset, witch outperforms all submissions to the

1This track in fact had several winners, as the competition
consider F-Measure as well as AUC for a performance met-
ric.

first track of the challenge, obtaining an AUC performance
of 0.9632.

The challenge included a Track II that ended in July 2007,
and for this track we submitted predictions using the meth-
ods discussed herein. witch obtained the highest AUC
against the 10 other submissions [1]. The data in Track
II was generated from the data in the first track, but with
a modified feature set, a new training/test set split, and it
omitted page contents and host addresses.

Table 1 summarizes the performances of the methods dis-
cussed in this paper. It also includes 2 recent state-of-the-art
methods for web spam detection, stacked graphical learn-
ing [6] and transductive link spam proposed in [17], which
uses only hyperlinks and not content based features. This
method outperforms other well-known graph-based methods
based on label propagation such as TrustRank [10] and Anti-
Trust Rank [12]. Further experimental results using these
two competing methods can be found in [3].

Table 1: Results summary with two training sets.

Training Algorithm AUC 10% AUC 100%

SVM + stacked g.l. 0.919 0.953
Link based (no features) 0.906 0.948
Challenge winner – 0.956
Only Features 0.859 0.917
Features + GR 0.874 0.917
Slack + GR 0.919 0.954
witch (Feat. + Slack + GR) 0.928 0.963

5. CONCLUSIONS
In this paper we have presented a novel algorithm, witch,

for the task of detecting Web spam. We have compared
witch to several proposed algorithms and we have found
that it outperforms all such techniques. Finally, witch ob-
tains the highest AUC performance score on an independent
Web spam detection challenge.

We attribute these positive results to a few key obser-
vations. First, best results are achieved when both con-
tent features and the hyperlink structure are used. Second,
simply training a graph-regularized linear predictor is in-
sufficient, as the addition of slack variables provides a very
significant improvement. Third, one needs to choose the
right graph regularizer, as we have observed that penaliz-
ing both spam→nonspam links and nonspam→spam links
is important, yet the tradeoff should be much heavier on the
latter. Lastly, we have observed that the form of the graph
weights contributes significantly to performance, where us-
ing the logarithm of the number of links worked best.

6. REFERENCES
[1] Graph Labeling Workshop. http://graphlab.lip6.fr/,

2007.

[2] Web Spam Challenge. http://webspam.lip6.fr/, 2007.

[3] J. Abernethy, O. Chapelle, and C. Castillo. WITCH:
A new approach to web spam detection. Technical
Report 2008-001, Yahoo! Research, 2008.

2The hyperparameters λ1, λ2, γ were chosen on a validation
set as we describe in Section 3.1.

[4] M. Belkin, P. Niyogi, and V. Sindhwani. On manifold
regularization. In Proceedings of the Tenth
International Workshop on Artificial Intelligence and
Statistics (AISTATS), 2005.

[5] C. Castillo, D. Donato, L. Becchetti, P. Boldi,
S. Leonardi, M. Santini, and S. Vigna. A reference
collection for web spam. SIGIR Forum, 40(2):11–24,
December 2006.

[6] C. Castillo, D. Donato, A. Gionis, V. Murdock, and
F. Silvestri. Know your neighbors: Web spam
detection using the web topology. In Proceedings of
SIGIR, Amsterdam, Netherlands, July 2007. ACM.

[7] B. D. Davison. Topical locality in the web. In
Proceedings of the 23rd annual international ACM
SIGIR conference on research and development in
information retrieval, pages 272–279, Athens, Greece,
2000. ACM Press.

[8] Q. Gan and T. Suel. Improving web spam classifiers
using link structure. In AIRWeb ’07: Proceedings of
the 3rd international workshop on Adversarial
information retrieval on the web, pages 17–20, New
York, NY, USA, 2007. ACM.

[9] Z. Gyöngyi and H. Garcia-Molina. Web spam
taxonomy. In First International Workshop on
Adversarial Information Retrieval on the Web, pages
39–47, Chiba, Japan, 2005.

[10] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen.
Combating Web spam with TrustRank. In Proceedings
of the 30th International Conference on Very Large
Data Bases (VLDB), pages 576–587, Toronto,
Canada, August 2004. Morgan Kaufmann.

[11] S. W. Haas and E. S. Grams. Page and link
classifications: connecting diverse resources. In DL
’98: Proceedings of the third ACM conference on
Digital libraries, pages 99–107, New York, NY, USA,
1998. ACM Press.

[12] V. Krishnan and R. Raj. Web spam detection with
anti-trust rank. In ACM SIGIR workshop on
Adversarial Information Retrieval on the Web, 2006.

[13] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly.
Detecting spam web pages through content analysis.
In Proceedings of the World Wide Web conference,
pages 83–92, Edinburgh, Scotland, May 2006.

[14] J. R. Shewchuk. An introduction to the conjugate
gradient method without the agonizing pain.
Technical Report CMU-CS-94-125, School of
Computer Science, Carnegie Mellon University, 1994.

[15] V. Vapnik. Statistical Learning Theory. John Wiley &
Sons Inc, 1998.

[16] T. Zhang, A. Popescul, and B. Dom. Linear prediction
models with graph regularization for web-page
categorization. In KDD ’06: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 821–826, New York,
NY, USA, 2006. ACM Press.

[17] D. Zhou, C. J. C. Burges, and T. Tao. Transductive
link spam detection. In AIRWeb ’07: Proceedings of
the 3rd international workshop on Adversarial
information retrieval on the web, pages 21–28, New
York, NY, USA, 2007. ACM Press.

